首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Dysfunctional CFTR in the airways is associated with elevated levels of NFκB mediated IL-8 signaling leading to neutrophil chemotaxis and chronic lung inflammation in cystic fibrosis. The mechanism(s) by which CFTR mediates inflammatory signaling is under debate.

Methodology/Principal Findings

We tested the hypothesis that wt-CFTR down-regulates NFκB mediated IL-8 secretion. We transiently co-expressed wt-CFTR and IL-8 or NFκB promoters driving luciferase expression in HEK293 cells. Wt-CFTR expression in HEK293 cells suppresses both basal and IL1β induced IL-8, and NFκB promoter activities as compared to the control cells transfected with empty vector (p<0.05). We also confirmed these results using CFBE41o- cells and observed that cells stably transduced with wt-CFTR secrete significantly lower amounts of IL-8 chemokine as compared to non-transfected control cells. To test the hypothesis that CFTR must be localized to cell surface lipid rafts in polarized airway epithelial cells in order to mediate the inflammatory response, we treated CFBE41o- cells that had been stably transduced with wt-CFTR with methyl-β-cyclodextrin (CD). At baseline, CD significantly (p<0.05) induced IL-8 and NFκB reporter activities as compared to control cells suggesting a negative regulation of NFκB mediated IL-8 signaling by CFTR in cholesterol-rich lipid rafts. Untreated cells exposed to the CFTR channel blocker CFTR-172 inhibitor developed a similar increase in IL-8 and NFκB reporter activities suggesting that not only must CFTR be present on the cell surface but it must be functional. We verified these results in vivo by comparing survival, body weight and pro-inflammatory cytokine response to P. aeruginosa LPS in CFTR knock out (CFKO) mice as compared to wild type controls. There was a significant (p<0.05) decrease in survival and body weight, an elevation in IL-1β in whole lung extract (p<0.01), as well as a significant increase in phosphorylated IκB, an inducer of NFκB mediated signaling in the CFKO mice.

Conclusions/Significance

Our data suggest that CFTR is a negative regulator of NFκB mediated innate immune response and its localization to lipid rafts is involved in control of inflammation.  相似文献   

3.
4.
Increased adiposity results in a heightened infiltration of immune cells into fat depots, which in turn generates a pro-inflammatory phenotype in obese individuals. To better understand the causal factors that establish this pro-inflammatory profile, we examined events leading to crosstalk between adipocytes and immune cells. Using isolated spleen-derived immune cells, stimulated with LPS, together with cultured adipocytes, we differentiated the effects of paracrine factors and cell-cell contact on TNFα, IL-6 and MCP-1 secretion levels and secretion profiles. When splenocytes and adipocytes were co-cultured without direct contact, permitting only paracrine communication, secretion of IL-6 and MCP-1 were increased by 3- and 2.5-fold, respectively, over what was secreted by individual cultures, whereas TNFα secretion was reduced by 55%. When cells were co-cultured with direct cell-cell contact, IL-6 and MCP-1 secretion were increased by an additional 36% and 38%, respectively, over that measured from just paracrine stimulation alone, indicating that cell contact provides a synergistic signal that amplifies elevated cytokine secretion stimulated by paracrine signals. Using splenocytes from TNFα-/- mice showed that the absence of TNFα has little effect on paracrine stimulation of cytokine secretion, but attenuates cell contact-mediated enhancement of IL-6 and MCP-1 secretion. Furthermore, TNFα supports cell contact-mediated signaling in part, but not exclusively, through Nuclear Factor-κB activation. These findings indicate that engagement of cell contact between immune cells and adipocytes, in conjunction with locally secreted paracrine factors, activates a unique signaling pathway that mediates crosstalk between these cell types leading to marked effects on cytokine secretion and profile.  相似文献   

5.
The value of restenosis after percutaneous coronary intervention (PCI) is recognized worldwide, especially for diabetic patients. Interleukin-1/Toll-like receptor (IL-1/TLR) signaling is involved in innate and adaptive immune responses, but whether and how the IL-1/TLR-induced nuclear factor kappa B (NFκB) pathway plays key roles in intimal formation is unclear. The underlying mechanism of intima hyperplasia was investigated with a model of carotid balloon injury in Goto-Kakizaki (GK) and Wistar rats and with lipopolysaccharide-stimulated macrophages. Elastic-van Gieson staining showed the medial area peakedon Day 3 post-injury and decreased by Day 7 post-injury in both GK and Wistar rats. The N/M at Day 7 in GK rats was significantly higher than in Wistar rats (p<0.001). The percent of 5-ethynyl-2′-deoxyuridine (EdU) staining-positive cells on Day 3 post-injury was greater than seen on Day 7 post-injury in GK and Wistar rats. The percent of EdU-positive cells on Days 3 and 7 post-injury in Wistar rats was less than that found in GK rats (p<0.01; p<0.05). NFκBp65 immunostaining had increased by Day 7 post-injury. Agilent Whole Genome Oligo Microarray verified that the IL-1/TLR-induced NFκB pathway was activated by carotid balloon injury. TLR4, IL-1 receptor associated kinase, inhibitors α of NFκB, human antigen R, c-Myc (Proto-Oncogene Proteins), EGF-like module-containing mucin-like hormone receptor-like 1 and Interleukin-6 were up-regulated or down-regulated according to immunochemistry, quantitative real-time PCR, Western blotting and Enzyme linked immunosorbent assay. Overall, we conclude that the IL-1/TLR-induced NFκB pathway participates in the intimal hyperplasia after carotid injury in GK and Wistar rats and that GK rats respond more intensely to the inflammation than Wistar rats.  相似文献   

6.
The activation of nuclear factor (NF)κB pathway and its transducing signaling cascade has been associated with the pathogenesis of many inflammatory diseases. The central role that IκBα and p65 phosphorylation play in regulating NFκB signalling in response to inflammatory stimuli made these proteins attractive targets for therapeutic strategies. Although several chemical classes of NFκB inhibitors have been identified, it is only for a few of those that a safety assessment based on a comprehensive understanding of their pharmacologic mechanism of action has been reported. Here, we describe the specific anti-inflammatory effect of bindarit, an indazolic derivative that has been proven to have anti-inflammatory activity in a variety of models of inflammatory diseases, including lupus nephritis, arthritis and pancreatitis. The therapeutic effects of bindarit have been associated with its ability to selectively interfere with monocyte recruitment and the “early inflammatory response,” although its specific molecular mechanisms have remained ill-defined. For this purpose, we investigated the effect of bindarit on the LPS-induced production of inflammatory cytokines (MCP-1 and MCPs, IL-12β/p40, IL-6 and IL-8/KC) in both a mouse leukaemic monocyte-macrophage cell line and bone marrow-derived macrophages (BMDM). Bindarit inhibits the LPS-induced MCP-1 and IL-12β/p40 expression without affecting other analyzed cytokines. The effect of bindarit is mediated by the downregulation of the classical NFκB pathway, involving a reduction of IκBα and p65 phosphorylation, a reduced activation of NFκB dimers and a subsequently reduced nuclear translocation and DNA binding. Bindarit showed a specific inhibitory effect on the p65 and p65/p50 induced MCP-1 promoter activation, with no effect on other tested activated promoters. We conclude that bindarit acts on a specific subpopulation of NFκB isoforms and selects its targets wihtin the whole NFκB inflammatory pathway. These findings pave the way for future applications of bindarit as modulator of the inflammatory response.Key words: inflammation, NFκB, MCP-1, IL-12β/p40, macrophages, lipopolysaccharide, bindarit  相似文献   

7.
Increased accumulation of macrophages in adipose tissue in obesity is linked to low-grade chronic inflammation, and associated with features of metabolic syndrome. Vitamin D3 may have immunoregulatory effects and reduce adipose tissue inflammation, although the molecular mechanisms remain to be established. This study investigated the effects of vitamin D3 on macrophage-elicited inflammatory responses in cultured human adipocytes, particularly the signalling pathways involved. Macrophage-conditioned (MC) medium (25% with adipocyte maintenance media) markedly inhibited protein expression of the nuclear factor-κB (NFκB) subunit inhibitor κBα (IκBα) (71%, P<0.001) and increased NFκB p65 (1.5-fold, P = 0.026) compared with controls. Treatment with 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) abolished macrophage-induced activation of NFκB signalling by increasing IκBα expression (2.7-fold, P = 0.005) and reducing NFκB p65 phosphorylation (68%; P<0.001). The mitogen-activated protein kinase (MAPK) signalling was activated by MC medium, which was also blunted by 1,25(OH)2D3 with a downregulation of phosphorylated p38 MAPK (32%, P = 0.005) and phosphorylated Erk1/2 (49%, P = 0.001). Furthermore, MC medium (12.5% or 25%) dose-dependently upregulated secretion of key proinflammatory chemokines/cytokines (22-368-fold; all P<0.001) and this was significantly decreased by 1,25(OH)2D3: IL-8 (61% and 31%, P<0.001), MCP-1 (37%, P<0.001 and 36%, P = 0.002), RANTES (78% and 62%, P<0.001) and IL-6 (29%, P<0.001 and 34%, P = 0.019). Monocyte migration-elicited by adipocytes treated with 1,25(OH)2D3 was also reduced (up to 25%, P<0.001). In conclusion, vitamin D3 could be anti-inflammatory in adipose tissue, decreasing macrophage-induced release of chemokines and cytokines by adipocytes and the chemotaxis of monocytes. Our data suggests these effects are mediated by inhibition of the NFκB and MAPK signalling pathways.  相似文献   

8.
Inflammation is a hallmark of several disease states ranging from neurodegeneration to sepsis but is also implicated in physiological processes like ageing. Non-resolving inflammation and prolonged neuroinflammation are unclear processes implicated in several conditions, including ageing. In this study we studied the long-term effects of endotoxemia, as systemic lipopolysaccharide (LPS) injection, focusing on the role of astrocyte activation and cytokine release in the brain of aged rats. A single dose of LPS (2 mg/kg) or 0.9% saline was injected intraperitoneally in aged rats. Levels of pro-inflammatory cytokines (TNFα and IL-1β) and NF-κB p65 activation were measured systemically and in hippocampal tissue. Astrocytes and cytokines release in the CNS were detected via double immunofluorescence staining at different time-points up to day 30. Serum levels of TNFα and IL-1β were significantly increased acutely after 30 minutes (p<0.001) and up to 6 hours (p<0.001) following LPS-injection. Centrally, LPS-treated rats showed up-regulated mRNA expression and protein levels of pro-inflammatory cytokines in the hippocampus. These changes associated with astrogliosis in the hippocampus dentate gyrus (DG), IL-1β immunoreactivity and elevated NF-κB p65 expression up to day 30 post LPS exposure. Overall, these data demonstrate that LPS induces prolonged neuroinflammation and astrocyte activation in the hippocampus of aged rats. Hippocampal NF-κB p65 and excessive astrocytes-derived IL-1β release may play a pivotal role in regulating long-lasting neuroinflammation.  相似文献   

9.
Lipocalin-2 (LCN2) is secreted from adipocytes, and its expression is up-regulated in obese and diabetic mice and humans. LCN2 expression and secretion have been shown to be induced by two proinflammatory cytokines, IFNγ and TNFα, in cultured murine and human adipocytes. In these studies, we demonstrated that IFNγ and TNFα induced LCN2 expression and secretion in vivo. Although we observed a strong induction of LCN2 expression and secretion from white adipose tissue (WAT) depots, the induction of LCN2 varied among different insulin-sensitive tissues. Knockdown experiments also demonstrated that STAT1 is required for IFNγ-induced lipocalin-2 expression in murine adipocytes. Similarly, knockdown of p65 in adipocytes demonstrated the necessity of the NF-κB signaling pathway for TNFα-mediated effects on LCN2. Activation of ERKs by IFNγ and TNFα also affected STAT1 and NF-κB signaling through modulation of serine phosphorylation. ERK activation-induced serine phosphorylation of both STAT1 and p65 mediated the additive effects of IFNγ and TNFα on LCN2 expression. Our results suggest that these same mechanisms occur in humans as we observed STAT1 and NF-κB binding to the human LCN2 promoter in chromatin immunoprecipitation assays performed in human fat cells. These studies substantially increase our knowledge regarding the requirements and mechanisms used by proinflammatory cytokines to induce LCN2 expression.  相似文献   

10.
Recently, we demonstrated that radiation (IR) instigates the occurrence of a NFκB-TNFα feedback cycle which sustains persistent NFκB activation in neuroblastoma (NB) cells and favors survival advantage and clonal expansion. Further, we reported that curcumin targets IR-induced survival signaling and NFκB dependent hTERT mediated clonal expansion in human NB cells. Herein, we investigated the efficacy of a novel synthetic monoketone, EF24, a curcumin analog in inhibiting persistent NFκB activation by disrupting the IR-induced NFκB-TNFα-NFκB feedback signaling in NB and subsequent mitigation of survival advantage and clonal expansion. EF24 profoundly suppressed the IR-induced NFκB-DNA binding activity/promoter activation and, maintained the NFκB repression by deterring NFκB-dependent TNFα transactivation/intercellular secretion in genetically varied human NB (SH-SY5Y, IMR-32, SK–PN–DW, MC-IXC and SK–N-MC) cell types. Further, EF24 completely suppressed IR-induced NFκB-TNFα cross-signaling dependent transactivation/translation of pro-survival IAP1, IAP2 and Survivin and subsequent cell survival. In corroboration, EF24 treatment maximally blocked IR-induced NFκB dependent hTERT transactivation/promoter activation, telomerase activation and consequent clonal expansion. EF24 displayed significant regulation of IR-induced feedback dependent NFκB and NFκB mediated survival signaling and complete regression of NB xenograft. Together, the results demonstrate for the first time that, novel synthetic monoketone EF24 potentiates radiotherapy and mitigates NB progression by selectively targeting IR-triggered NFκB-dependent TNFα-NFκB cross-signaling maintained NFκB mediated survival advantage and clonal expansion.  相似文献   

11.
12.
Endogenous danger signals released from necrotic cells contribute to retinal inflammation. We have now investigated the effects of necrotic cell extracts prepared from ARPE-19 human retinal pigment epithelial cells (ANCE) on the release of proinflammatory cytokines and chemokines by healthy ARPE-19 cells. ANCE were prepared by subjection of ARPE-19 cells to freeze-thaw cycles. The release of various cytokines and chemokines from ARPE-19 cells was measured with a multiplex assay system or enzyme-linked immunosorbent assays. The expression of interleukin (IL)–1α and the phosphorylation and degradation of the endogenous nuclear factor–κB (NF-κB) inhibitor IκB-α were examined by immunoblot analysis. Among the various cytokines and chemokines examined, we found that ANCE markedly stimulated the release of the proinflammatory cytokine IL-6 and the chemokines IL-8 and monocyte chemoattractant protein (MCP)–1 by ARPE-19 cells. ANCE-induced IL-6, IL-8, and MCP-1 release was inhibited by IL-1 receptor antagonist and by an IKK2 inhibitor (a blocker of NF-κB signaling) in a concentration-dependent manner, but was not affected by a pan-caspase inhibitor (Z-VAD-FMK). Recombinant IL-1α also induced the secretion of IL-6, IL-8, and MCP-1 from ARPE-19 cells, and IL-1α was detected in ANCE. Furthermore, ANCE induced the phosphorylation and degradation of IκB-α in ARPE-19 cells. Our findings thus suggest that IL-1α is an important danger signal that is released from necrotic retinal pigment epithelial cells and triggers proinflammatory cytokine and chemokine secretion from intact cells in a manner dependent on NF-κB signaling. IL-1α is therefore a potential therapeutic target for amelioration of sterile inflammation in the retina.  相似文献   

13.

Background

Mucus hypersecretion and excessive cytokine synthesis is associated with many of the pathologic features of chronic airway diseases such as asthma. 6-Mercaptopurine (6-MP) is an immunosuppressive drug that is widely used in several inflammatory disorders. Although 6-MP has been used to treat asthma, its function and mechanism of action in airway epithelial cells is unknown.

Methods

Confluent NCI-H292 and MLE-12 epithelial cells were pretreated with 6-MP followed by stimulation with TNFα or PMA. mRNA levels of cytokines and mucins were measured by RT-PCR. Western blot analysis was performed to assess the phosphorylation of IκBα and luciferase assays were performed using an NFκB reporter plasmid to determine NFκB activity. Periodic Acid Schiff staining was used to assess the production of mucus.

Results

6-MP displayed no effect on cell viability up to a concentration of 15 μM. RT-PCR analysis showed that 6-MP significantly reduces TNFα- and PMA-induced expression of several proinflammatory cytokines in NCI-H292 and MLE-12 cells. Consistent with this, we demonstrated that 6-MP strongly inhibits TNFα-induced phosphorylation of IκBα and thus attenuates NFκB luciferase reporter activity. In addition, 6-MP decreases Rac1 activity in MLE-12 cells. 6-MP down-regulates gene expression of the mucin Muc5ac, but not Muc2, through inhibition of activation of the NFκB pathway. Furthermore, PMA- and TNFα-induced mucus production, as visualized by Periodic Acid Schiff (PAS) staining, is decreased by 6-MP.

Conclusions

Our data demonstrate that 6-MP inhibits Muc5ac gene expression and mucus production in airway epithelial cells through inhibition of the NFκB pathway, and 6-MP may represent a novel therapeutic target for mucus hypersecretion in airway diseases.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0236-0) contains supplementary material, which is available to authorized users.  相似文献   

14.
Inflammatory response and cell death in hepatocytes are hallmarks of chronic liver disease, and, therefore, can be effective therapeutic targets. Neurotropin® (NTP) is a drug widely used in Japan and China to treat chronic pain. Although NTP has been demonstrated to suppress chronic pain through the descending pain inhibitory system, the action mechanism of NTP remains elusive. We hypothesize that NTP functions to suppress inflammatory pathways, thereby attenuating disease progression. In the present study, we investigated whether NTP suppresses inflammatory signaling and cell death pathways induced by interleukin-1β (IL-1β) and tumor necrosis factor-α (TNFα) in hepatocytes. NTP suppressed nuclear factor-κB (NF-κB) activation induced by IL-1β and TNFα assessed by using hepatocytes isolated from NF-κB-green fluorescent protein (GFP) reporter mice and an NF-κB-luciferase reporter system. The expression of NF-κB target genes, Il6, Nos2, Cxcl1, ccl5 and Cxcl2 induced by IL-1β and TNFα was suppressed after NTP treatment. We also found that NTP suppressed the JNK phosphorylation induced by IL-1β and TNFα. Because JNK activation contributes to hepatocyte death, we determined that NTP treatment suppressed hepatocyte death induced by IL-1β and TNFα in combination with actinomycin D. Taken together, our data demonstrate that NTP attenuates IL-1β and TNFα-mediated inflammatory cytokine expression and cell death in hepatocytes through the suppression of NF-κB and JNK. The results from the present study suggest that NTP may become a preventive or therapeutic strategy for alcoholic and non-alcoholic fatty liver disease in which NF-κB and JNK are thought to take part.  相似文献   

15.
The anti-inflammatory peptide annexin-1 binds to formyl peptide receptors (FPR) but little is known about its mechanism of action in the vasculature. Here we investigate the effect of annexin peptide Ac2-26 on NADPH oxidase activity induced by tumour necrosis factor alpha (TNFα) in human endothelial cells. Superoxide release and intracellular reactive oxygen species (ROS) production from NADPH oxidase was measured with lucigenin-enhanced chemiluminescence and 2′,7′-dichlorodihydrofluorescein diacetate, respectively. Expression of NADPH oxidase subunits and intracellular cell adhesion molecule (ICAM-1) and vascular cell adhesion molecule (VCAM-1) were determined by real-time PCR and Western blot analysis. Promoter activity of nuclear factor kappa B (NFκB) was measured by luciferase activity assay. TNFα stimulated NADPH-dependent superoxide release, total ROS formation and expression of ICAM-1and VCAM-1. Pre-treatment with N-terminal peptide of annexin-1 (Ac2-26, 0.5–1.5 µM) reduced all these effects, and the inhibition was blocked by the FPRL-1 antagonist WRW4. Furthermore, TNFα-induced NFκB promoter activity was attenuated by both Ac2-26 and NADPH oxidase inhibitor diphenyliodonium (DPI). Surprisingly, Nox4 gene expression was reduced by TNFα whilst expression of Nox2, p22phox and p67phox remained unchanged. Inhibition of NADPH oxidase activity by either dominant negative Rac1 (N17Rac1) or DPI significantly attenuated TNFα-induced ICAM-1and VCAM-1 expression. Ac2-26 failed to suppress further TNFα-induced expression of ICAM-1 and VCAM-1 in N17Rac1-transfected cells. Thus, Ac2-26 peptide inhibits TNFα-activated, Rac1-dependent NADPH oxidase derived ROS formation, attenuates NFκB pathways and ICAM-1 and VCAM-1 expression in endothelial cells. This suggests that Ac2-26 peptide blocks NADPH oxidase activity and has anti-inflammatory properties in the vasculature which contributes to modulate in reperfusion injury inflammation and vascular disease.  相似文献   

16.
Nuclear Factor-Kappa B [NFκB] activation triggers the elevation of various pro-angiogenic factors that contribute to the development and progression of diabetic vasculopathies. It has been demonstrated that vascular endothelial growth factor [VEGF] activates NFκB signaling pathway. Under the ischemic microenvironments, hypoxia-inducible factor-1 [HIF-1] upregulates the expression of several proangiogenic mediators, which play crucial roles in ocular pathologies. Whereas YC-1, a soluble guanylyl cyclase [sGC] agonist, inhibits HIF-1 and NFκB signaling pathways in various cell and animal models. Throughout this investigation, we examined the molecular link between VEGF and NFκB under a hypoxia-independent microenvironment in human retinal microvascular endothelial cells [hRMVECs]. Our data indicate that VEGF promoted retinal neovasculogenesis via NFκB activation, enhancement of its DNA-binding activity, and upregulating NFκB/p65, SDF-1, CXCR4, FAK, αVβ3, α5β1, EPO, ET-1, and MMP-9 expression. Conversely, YC-1 impaired the activation of NFκB and its downstream signaling pathways, via attenuating IκB kinase phosphorylation, degradation and activation, and thus suppressing p65 phosphorylation, nuclear translocation, and inhibiting NFκB-DNA binding activity. We report for the first time that the nexus between VEGF and NFκB is implicated in coordinating a scheme that upregulates several pro-angiogenic molecules, which promotes retinal neovasculogenesis. Our data may suggest the potential use of YC-1 to attenuate the deleterious effects that are associated with hypoxia/ischemia-independent retinal vasculopathies.  相似文献   

17.
We reported that microRNA-30c (miR-30c) plays a key role in radiation-induced human cell damage through an apoptotic pathway. Herein we further evaluated radiation-induced miR-30 expression and mechanisms of delta-tocotrienol (DT3), a radiation countermeasure candidate, for regulating miR-30 in a mouse model and human hematopoietic CD34+ cells. CD2F1 mice were exposed to 0 (control) or 7–12.5 Gy total-body gamma-radiation, and CD34+ cells were irradiated with 0, 2 or 4 Gy of radiation. Single doses of DT3 (75 mg/kg, subcutaneous injection for mice or 2 μM for CD34+ cell culture) were administrated 24 h before irradiation and animal survival was monitored for 30 days. Mouse bone marrow (BM), jejunum, kidney, liver and serum as well as CD34+ cells were collected at 1, 4, 8, 24, 48 or 72 h after irradiation to determine apoptotic markers, pro-inflammatory cytokines interleukin (IL)-1β and IL-6, miR-30, and stress response protein expression. Our results showed that radiation-induced IL-1β release and cell damage are pathological states that lead to an early expression and secretion of miR-30b and miR-30c in mouse tissues and serum and in human CD34+ cells. DT3 suppressed IL-1β and miR-30 expression, protected against radiation-induced apoptosis in mouse and human cells, and increased survival of irradiated mice. Furthermore, an anti-IL-1β antibody downregulated radiation-induced NFκBp65 phosphorylation, inhibited miR-30 expression and protected CD34+ cells from radiation exposure. Knockdown of NFκBp65 by small interfering RNA (siRNA) significantly suppressed radiation-induced miR-30 expression in CD34+ cells. Our data suggest that DT3 protects human and mouse cells from radiation damage may through suppression of IL-1β-induced NFκB/miR-30 signaling.  相似文献   

18.
Lipocalin 2 (Lcn2) has been recently characterized as a new adipokine having a role in innate immunity and energy metabolism. Nonetheless, the metabolic regulation of Lcn2 production in adipocytes has not been comprehensively studied. To better understand the Lcn2 biology, we investigated the regulation of Lcn2 expression in adipose tissue in response to metabolic stress in mice as well as the control of Lcn2 expression and secretion by cytokines and nutrients in 3T3-L1 adipocytes. Our results showed that the mRNA expression of Lcn2 was upregulated in white and brown adipose tissues as well as liver during fasting and cold stress in mice. Among pro-inflammatory cytokines TNFα, IL-1β, and IL-6, IL-1β showed most profound effect on Lcn2 expression and secretion in 3T3-L1 adipocytes. Insulin stimulated Lcn2 expression and secretion in a dose-dependent manner; this insulin effect was significantly abolished in the presence of low concentration of glucose. Moreover, insulin-stimulated Lcn2 expression and secretion was also attenuated when glucose was replaced by 3-O-methyl-d-glucose or by blocking NFκB pathway activation. Additionally, we showed that palmitate and oleate induced Lcn2 expression and secretion more significantly than EPA, while phytanic acid reduced Lcn2 production. Our results demonstrated that Lcn2 production in adipocytes is highly responsive to metabolic stress, cytokines, and nutrient signals, suggesting an important role of Lcn2 in adipocyte metabolism and inflammation.  相似文献   

19.
Signal transduction via NFκB and MAP kinase cascades is a universal response initiated upon pathogen recognition by Toll-like receptors (TLRs). How activation of these divergent signaling pathways is integrated to dictate distinct immune responses to diverse pathogens is still incompletely understood. Herein, contrary to current perception, we demonstrate that a signaling pathway defined by the inhibitor of κB kinase β (IKKβ), MAP3 kinase tumor progression locus 2 (Tpl2/MAP3K8), and MAP kinase ERK is differentially activated by TLRs. TLRs 2, 4, and 7 directly activate this inflammatory axis, inducing immediate ERK phosphorylation and early TNFα secretion. In addition to TLR adaptor proteins, IKKβ-Tpl2-ERK activation by TLR4 is regulated by the TLR4 co-receptor CD14 and the tyrosine kinase Syk. Signals from TLRs 3 and 9 do not initiate early activation of IKKβ-Tpl2-ERK pathway but instead induce delayed, NADPH-oxidase-dependent ERK phosphorylation and TNFα secretion via autocrine reactive oxygen species signaling. Unexpectedly, Tpl2 is an essential regulator of ROS production during TLR signaling. Overall, our study reveals distinct mechanisms activating a common inflammatory signaling cascade and delineates differences in MyD88-dependent signaling between endosomal TLRs 7 and 9. These findings further confirm the importance of Tpl2 in innate host defense mechanisms and also enhance our understanding of how the immune system tailors pathogen-specific gene expression patterns.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号