首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plant pathogens employ effectors as molecular weapons to manipulate host immunity and facilitate colonization. Fusarium oxysporum f. sp. cubense is the agent of wilt disease in banana plantlets and four races of the pathogen have been identified based on the cultivar specificity. A total of 9 SIX genes have been detected in the genome of Foc TR4 and 6 genes detected in Foc1. Among these SIX genes, SIX2 and SIX8 are only detected in Foc TR4, not identified in Foc1. Expression profiles analysis revealed that SIX genes of Foc TR4 are highly induced after inoculation to Cavendish banana plantlets. Virulence analysis of the SIX2 and SIX8 knock-out mutants showed that SIX8 is required for the virulence of Foc TR4 while SIX2 has no obvious functions. Over expression of SIX8-FLAG proteins in the SIX8 knock-out mutant partly restored the virulence. Western blot analysis suggested that SIX8 could be secreted into the extracellular space and a signal peptide resided the N-terminal polypeptide sequence. This study provides some clues for further research on mechanism of SIX8 in regulating virulence of Foc TR4.  相似文献   

2.
The production of monoclonal antibodies (mab) to Fusarium oxysporum f.sp. cubense (Foc ) race 4 is described. Heat-killed conidia of this fungus were toxic to female Balb/c mice, but this toxic reaction was not found with fractionated hyphal walls. A simple and reproducible enzyme immunoassay using a standard 9 cm polystyrene Petri dish as a solid phase was devised for screening culture supernatant fluids. Sixteen stable hybridoma clones secreting mabs of the IgM class were isolated by fusing splenic lymphocytes from immunized female Balb/c mice with P3-NSl-Ag4-l mouse myeloma cells. Monoclonal antibodies produced by eight of the 16 hybridoma clones were selected and the specificity of the mabs was determined by an indirect immunofluorescence test. Of the eight mabs, only one displayed an exceptionally high degree of specificity to the thick-walled chlamydospores of Foc race 4. This specific reactivity allowed differentiation of Foc race 4 from other races.  相似文献   

3.
农杆菌介导的香蕉枯萎病菌4号生理小种转化体系的优化   总被引:3,自引:0,他引:3  
香蕉枯萎病是世界范围内香蕉种植区最为严重的病害之一,严重威胁和影响着香蕉产业的发展.本文针对香蕉枯萎病病原菌的4号生理小种,建立了农杆菌介导的转化体系,确定了影响转化效率主要因子的优化体系是:农杆菌在IM培养基诱导前农杆菌OD_(600)为0.15、农杆菌经IM液体培养基诱导的时间为7 h、乙酰丁香酮(AS)浓度为150 μmol/L、Focr4孢子浓度为1×10~6个/mL、共培养时间为48 h、培养温度为25℃、诱导培养基pH值为5.5.在此条件下,转化效率能达到700~800个转化子/10~6个香蕉枯萎病菌孢子.PCR验证表明外源的T-DNA已经成功随机地整合到该病原菌基因组中.目前,应用该转化体系已获得2 300多个转化子,为后续克隆相关致病基因打下了良好基础.  相似文献   

4.
【背景】香蕉枯萎病菌4号生理小种(镰刀菌)是香蕉产业的致命威胁。已有研究表明土壤pH值越高,香蕉枯萎病发病率越低,但是现有pH值对镰刀菌影响的研究大都是用强酸强碱调节pH值,pH值没有缓冲体系保护,而且尚未检测试验终点时介质的pH值。此外,关于pH值对香蕉枯萎病菌4号生理小种(Foc4)影响的研究尚不系统,难以用于指导生产实践。【目的】为系统地了解土壤酸碱度对Foc4生长的影响。【方法】在pH 3.0-11.0之间设定9个pH值梯度,模拟酸性到碱性土壤pH值条件,于室内培养条件下系统研究pH值对Foc4生长、产孢、孢子萌发的影响及其生长过程对环境pH值的影响。【结果】弱酸性至中性环境(pH 5.0-7.0)最适宜于香蕉枯萎病菌的生长、产孢和孢子萌发。弱碱性处理(pH8.0和pH9.0)孢子平均萌发率较弱酸性环境处理(pH5.0和pH6.0)下降了73.1%。与pH 6.0酸性处理相比,pH 8.0和pH 9.0处理的产孢量分别下降了52.3%和68.1%。【结论】香蕉枯萎病菌Foc4生长和萌发过程会产酸,但是在缓冲体系液体培养基中,除了pH 9.0和pH10.0处理终点培养液pH值分别下降了0.34和0.27个单位外,其它处理起始和终点的pH值无差异。说明在缓冲体系液体培养基中的研究结果可以反映环境pH值对Foc4生长和萌发的影响。在作物可以生长的pH值范围内(pH5.0-9.0),碱性和微碱性条件(pH8.0-9.0)能明显抑制Foc4生长、产孢和孢子萌发。  相似文献   

5.
6.
香蕉枯萎病菌4号生理小种致病相关基因foABC1的分离   总被引:2,自引:0,他引:2  
通过对香蕉枯萎病菌4号小种致病突变体B1233的进一步研究,分离了被突变的致病相关基因foABC1,同源性分析及保守结构预测该基因编码一类ABC转运蛋白,其功能可能同稻瘟病菌的ABC转运蛋白一样,负责真菌毒素的泵出,或是像其他真菌的ABC转运蛋白,在病原菌侵染寄主植物时能忍耐植物因防卫反应所释放的植保素或抗毒素类物质。  相似文献   

7.
8.
Virulence of 31 Kenyan isolates of Fusarium oxysporum obtained from bananas showing symptoms of Panama disease was tested against the differential banana cvs Bluggoe, Gros Michel, Dwarf Cavendish, and two other local cvs Muraru and Wang'ae. Seventeen isolates were assigned to either race 1 or race 2 of F. oxysporum f.sp. cubense (FOC). Race 4 was not apparent in this sample of 31 isolates from Kenya as none were pathogenic to cv. Cavendish, and no wilted Cavendish have been observed in field surveys in Kenya. Races could not be assigned to 12 isolates as they were virulent on more than one differential cultivar, and two were apparently not pathogenic. All isolates assigned to races 1 and 2 belonged to the VCG bridging complex 0124/5/8/20, but some other isolates belonging to this VCG complex could not be assigned to race. All five isolates assigned to VCG 01212 could not be assigned to known races. Considerable variability thus exists within FOC isolates within this region. Local cultivars of banana showed differential resistance to the pathogen. The interaction of cultivars and isolates on the level of disease was significant. Overall, cv. Wang'ae was the most susceptible to most of the isolates tested, regardless of their race, and could therefore be used as a reference cultivar in pathogenicity tests of isolates of FOC in the East African region. Of the cultivars tested that are widely grown on smallholder farms in Kenya, Muraru was the least susceptible.  相似文献   

9.
The biocontrol activities of cells and cell-free extracts of Streptomyces griseus was tested against Fusarium oxysporum f.sp. cubense tropical race 4 (FOC race 4) in a sterile soil environment. They were first formulated in sodium alginate, kaolin clay and in alginate–kaolin combination, prior to introducing into sterile soil inoculated with 6 log10 cfu FOC race 4 g?1 soil. Results revealed that bioformulated cells of S. griseus, irrespective of the materials used, were generally more effective in inhibiting growth of FOC race 4 when compared to non-formulated cells of S. griseus. Kaolin was the most suitable inert material as formulation of S. griseus with kaolin effectively suppressed FOC race 4, with only 5.40 log10 cfu g?1 of FOC race 4 recovered after 20 days. Kaolin formulations also allowed good cell recovery post-formulation. Alginate was less desirable as poorer control was demonstrated, with 6.12 and 6.16 log10 cfu g?1 of FOC race 4 recovered from soils treated with alginate only and alginate–kaolin formulated S. griseus, respectively. Bioformulations did not benefit cell-free extracts at all. Our study suggests formulation of cells of S. griseus is more beneficial than cell-free extracts and kaolin is the preferred material for formulation.  相似文献   

10.
由尖孢镰孢菌古巴专化型Fusarium oxysporum f. sp. cubense, Foc引起的香蕉枯萎病是香蕉生产上的毁灭性病害,自1996年以来已对我国华南地区香蕉生产造成了严重危害。传统上香蕉枯萎病菌生理小种的鉴定主要采用人工接种鉴别寄主尔后测定病菌致病性的方法,但实验周期长,且受季节影响。以来自澳大利亚的香蕉枯萎病菌生理小种1号(BW1)、2号(Race 2)、3号(Race 3)以及亚热带4号(BW4)为对照,对分离自我国华南地区主要香蕉产区(广东、广西、海南、福建等省区)的14株香蕉枯萎病菌的单孢菌株进行致病性测定,并结合热带4号小种(TR4)和亚热带4号小种(ST4)的分子特异检测方法,确定其生理小种类型;同时,利用ITS、TEF-1α、IGS、histone H3、β-tubulin等 5个主要用于镰孢菌系统发育学研究的基因,研究不同地区不同来源的Foc菌株之间的亲缘关系及其与非病原尖孢镰孢菌的关系,并评价这5个基因在香蕉枯萎病菌生理小种鉴定上的应用价值。研究结果表明:(1)来源于我国华南地区的4号小种主要为热带4号小种;(2)TEF-1α、IGS、histone H3等3个基因片段能够将Foc中不同生理小种的菌株划分成不同的系统发育谱系,与致病性测定的结果具有对应关系,也能较好地反映尖孢镰孢菌种内菌株的亲缘关系,可用于香蕉枯萎病菌生理小种鉴定;(3)我国Foc 1号生理小种的遗传多样性高于4号生理小种,Foc 1号生理小种的菌系与来自香蕉果实上的非病原尖孢镰孢菌的亲缘关系比其与Foc 4号生理小种的菌系的亲缘关系更近。  相似文献   

11.
12.
《Biological Control》2013,67(3):204-208
The antifungal activity of viable cells of Streptomyces griseus (St 4) and its cell-free extracts were investigated against the pathogenic Fusarium oxysporum f. sp. cubense race 4 (FOC race 4), causal agent of wilt disease in bananas. Results from in vitro and soil assays showed cells and cell-free extracts of S. griseus were able to inhibit FOC race 4 with varying degree of success. Antifungal activity was attributed to chitinase and β-1,3-glucanase, detected in both cells and cell-free extracts, which caused lysis of fungal cell wall and inhibited sporulation. Interestingly, β-1,3-glucanase and chitinase activities were significantly higher in cell-free extracts compared to cells, with 8.30 and 5.43 against 7.96 and 4.95 U mL−1, respectively. Application to soil however, showed inoculation using S. griseus cells were more effective in suppressing growth of FOC race 4 than crude extracts, with 6 log10 CFU of FOC race 4 g−1 soil enumerated compared to 7 log10 CFU of FOC race 4 g−1 soil after 20 days. To summarize, this study has shown that cell-free extracts of S. griseus have antifungal properties but may not be suitable for soil application in its current form (liquid suspension). Further investigations on bioformulation may address this limitation.  相似文献   

13.
14.
香蕉枯萎菌基因组DNA提取方法的研究   总被引:3,自引:0,他引:3  
以香蕉枯萎菌菌株为试验材料,在SDS~CTAB法和高盐沉淀法等基础上加以改进,对两种提纯香蕉枯萎菌基因组DNA的方法进行了比较研究。结果表明:高盐沉淀法是适合于香蕉枯萎菌基因组DNA提取的方法。该方法提取的DNA OD260/OD280的比值为1.841,DNA产量为0.81mgDNA/g菌丝体。基因组DNA经琼脂糖凝胶电泳得到一条带型较宽且清晰的DNA谱带,基本无DNA碎带;将提取的DNA直接用于PCR扩增,得到带多而且清晰、整齐、基本无拖尾的RAPD图谱。  相似文献   

15.
尖孢镰刀菌古巴专化型Fusarium oxysporum f.sp.cubense是威胁香蕉生产的重要土传病原真菌,其中4号生理小种(Foc4)能感染几乎所有的栽培品系.Argonaute蛋白(AGO)介导的RISC复合体在RNAi干扰中起到重要作用.Foc4含有两个进化上高度保守的AGO蛋白,本研究利用同源重组技术获...  相似文献   

16.
尖镰孢古巴专化型4号小种Fusarium oxysporum f. sp. cubense race 4(Focr4)是引起毁灭性土传病害香蕉枯萎病的危害性最大的小种,至今其致病机理尚不清楚。对已获得的野生型菌株Focr4-193-6经基因T-DNA插入引起致病性严重减弱的突变体Focr4-1562及其插入失活基因的敲除子△Focr4-1562的生物学表型进行了研究。玻璃纸穿透试验、活体叶片接种及根部接种致病性测定的结果表明,插入突变体和敲除子不能穿透玻璃纸生长,叶片接种和根部接种未见有明显病斑和球茎维管  相似文献   

17.
香蕉枯萎病是由尖孢镰孢菌古巴专化型Fusarium oxysporum f. sp. cubense(Foc)侵染引起的一种土传真菌病害,已严重威胁香蕉产业的健康发展。该病菌产生的厚垣孢子可在土壤中存活多年,是香蕉枯萎病的初侵染源。本研究通过氨基酸添加试验,证明添加甘氨酸可抑制厚垣孢子的形成;通过对该病菌厚垣孢子形成前期、初期、中期和后期的转录组分析,发现氨基酸合成通路中有93个基因的表达水平在厚垣孢子形成过程中发生了显著变化;In silico 分析表明其中10个基因参与调控真菌的氨基酸合成,11个基因参与调控真菌种的生长发育和产孢,19个基因参与调控真菌种的致病性和毒素产生。由此推测,氨基酸合成通路不仅与尖孢镰孢菌古巴专化型厚垣孢子的形成相关,其有可能参与调控该病菌的致病性。  相似文献   

18.
MicroRNAs (miRNAs) are small non-coding RNAs that regulate protein-coding gene expression primarily found in plants and animals. Fungi produce microRNA-like RNAs (milRNAs) that are structurally similar to miRNAs and functionally important in various biological processes. The fungus Fusarium oxysporum f. sp. cubense (Foc) is the causal agent of Banana Fusarium vascular wilt that threatens global banana production. It remains uncharacterized about the biosynthesis and functions of milRNAs in Foc. In this study, we investigated the biological function of milRNAs contributing to Foc pathogenesis. Within 24 hours post infecting the host, the Argonaute coding gene FoQDE2, and two Dicer coding genes FoDCL1 and FoDCL2, all of which are involved in milRNA biosynthesis, were significantly induced. FoQDE2 deletion mutant exhibited decreased virulence, suggesting the involvement of milRNA biosynthesis in the Foc pathogenesis. By small RNA sequencing, we identified 364 small RNA-producing loci in the Foc genome, 25 of which were significantly down-regulated in the FoQDE2 deletion mutant, from which milR-87 was verified as a FoQDE2-depedent milRNA based on qRT-PCR and Northern blot analysis. Compared to the wild-type, the deletion mutant of milR-87 was significantly reduced in virulence, while overexpression of milR-87 enhanced disease severity, confirming that milR-87 is crucial for Foc virulence in the infection process. We furthermore identified FOIG_15013 (a glycosyl hydrolase-coding gene) as the direct target of milR-87 based on the expression of FOIG_15013-GFP fusion protein. The FOIG_15013 deletion mutant displayed similar phenotypes as the overexpression of milR-87, with a dramatic increase in the growth, conidiation and virulence. Transient expression of FOIG_15013 in Nicotiana benthamiana leaves activates the host defense responses. Collectively, this study documents the involvement of milRNAs in the manifestation of the devastating fungal disease in banana, and demonstrates the importance of milRNAs in the pathogenesis and other biological processes. Further analyses of the biosynthesis and expression regulation of fungal milRNAs may offer a novel strategy to combat devastating fungal diseases.  相似文献   

19.
Abstract

Panama disease of banana (Musa spp) caused by the fungus Fusarium oxysporum f. sp. Cubense (FOC), is a serious constraint both to the commercial production of banana and cultivation for subsistence agriculture. Chemical control is not economically effective and is also hazardous to the environment and human health. Breeding for disease resistance is an alternative strategy, which leads to the development of resistance clones. Field evaluation is the most reliable method of screening for disease resistance, but it is demanding in terms of cost, manpower and space requirements. Another approach of screening hybrids at the sucker's stage (planting material) through biochemical markers has been found to be effective in early identification of resistant hybrids. The resistance mechanisms involving the role of phenol, PAL, oxidative enzymes like peroxidase (PO), polyphenol oxidase (PPO), superoxide dismutase (SOD), catalase and PR-proteins like chitinase, β-1-3 glucanase were studied and they showed relatively higher activity in resistant hybrids than susceptible hybrids. Isozyme analysis of peroxidase (PO) and polyphenol oxidase (PPO) was also carried out in cultivars and hybrids, which revealed the induction of specific isoforms in the resistant hybrids upon challenge inoculation. This could be a useful tool for early identification of F. oxysporum f. sp. cubense resistance banana clones.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号