首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Yeast t-SNARE Involved in Endocytosis   总被引:15,自引:10,他引:5       下载免费PDF全文
The ORF YOL018c (TLG2) of Saccharomyces cerevisiae encodes a protein that belongs to the syntaxin protein family. The proteins of this family, t-SNAREs, are present on target organelles and are thought to participate in the specific interaction between vesicles and acceptor membranes in intracellular membrane trafficking. TLG2 is not an essential gene, and its deletion does not cause defects in the secretory pathway. However, its deletion in cells lacking the vacuolar ATPase subunit Vma2p leads to loss of viability, suggesting that Tlg2p is involved in endocytosis. In tlg2Δ cells, internalization was normal for two endocytic markers, the pheromone α-factor and the plasma membrane uracil permease. In contrast, degradation of α-factor and uracil permease was delayed in tlg2Δ cells. Internalization of positively charged Nanogold shows that the endocytic pathway is perturbed in the mutant, which accumulates Nanogold in primary endocytic vesicles and shows a greatly reduced complement of early endosomes. These results strongly suggest that Tlg2p is a t-SNARE involved in early endosome biogenesis.  相似文献   

2.
3.
Tor2 is an activator of the Rom2/Rho1 pathway that regulates α-factor internalization. Since the recruitment of endocytic proteins such as actin-binding proteins and the amphiphysins precedes the internalization of α-factor, we hypothesized that loss of Tor function leads to an alteration in the dynamics of the endocytic proteins. We report here that endocytic proteins, Abp1 and Rvs167, are less recruited to endocytic sites not only in tor2 but also tor1 mutants. Furthermore, we found that the endocytic proteins Rvs167 and Sjl2 are completely mistargeted to the cytoplasm in tor1Δtor2 ts double mutant cells. We also demonstrate here that the efficiency of endocytic internalization or scission in all tor mutants was drastically decreased. In agreement with the Sjl2 mislocalization, we found that in tor1Δtor2 ts double mutant cells, as well as other tor mutant cells, the overall PIP2 level was dramatically increased. Finally, the cell wall chitin content in tor2 ts and tor1Δtor2ts mutant cells was also significantly increased. Taken together, both functional Tor proteins, Tor1 and Tor2, are essentially required for proper endocytic protein dynamics at the early stage of endocytosis.  相似文献   

4.
The FIGL-1 (fidgetin like-1) protein is a homolog of fidgetin, a protein whose mutation leads to multiple developmental defects. The FIGL-1 protein contains an AAA (ATPase associated with various activities) domain and belongs to the AAA superfamily. However, the biological functions and developmental implications of this protein remain unknown. Here, we show that the AAA domain of the Caenorhabditis elegans FIGL-1 protein (CeFIGL-1-AAA), in clear contrast to homologous AAA domains, has an unusually high ATPase activity and forms a hexamer in solution. By determining the crystal structure of CeFIGL-1-AAA, we found that the loop linking helices α9 and α10 folds into the short helix α9a, which has an acidic surface and interacts with a positively charged surface of the neighboring subunit. Disruption of this charge interaction by mutagenesis diminishes both the ATPase activity and oligomerization capacity of the protein. Interestingly, the acidic residues in helix α9a of CeFIGL-1-AAA are not conserved in other homologous AAA domains that have relatively low ATPase activities. These results demonstrate that the sequence of CeFIGL-1-AAA has adapted to establish an intersubunit charge interaction, which contributes to its strong oligomerization and ATPase activity. These unique properties of CeFIGL-1-AAA distinguish it from other homologous proteins, suggesting that CeFIGL-1 may have a distinct biological function.  相似文献   

5.
C. elegans coelomocytes are macrophage-like scavenger cells that provide an excellent in vivo system for the study of clathrin-mediated endocytosis. Using this in vivo system, several genes involved in coelomocyte endocytosis have been identified previously. However, the detailed mechanism of endocytic pathway is still unknown. Here, we report a new function of calcineurin, an evolutionarily conserved Ca2+/calmodulin-dependent Ser/Thr protein phosphatase, in coelomocyte endocytosis. We found that calcineurin mutants show defective coelomocyte endocytosis. Genetic analysis suggests that calcineurin and a GTPase, dynamin (DYN-1), may function upstream of an orphan receptor, CUP-4, to regulate endocytosis. Therefore, we propose a model in which calcineurin may regulate coelomocyte endocytosis via DYN-1 and CUP-4 in C. elegans.  相似文献   

6.
Aip1p cooperates with actin-depolymerizing factor (ADF)/cofilin to disassemble actin filaments in vitro and in vivo, and is proposed to cap actin filament barbed ends. We address the synergies between Aip1p and the capping protein heterodimer Acp1p/Acp2p during clathrin-mediated endocytosis in fission yeast. Using quantitative microscopy and new methods we have developed for data alignment and analysis, we show that heterodimeric capping protein can replace Aip1p, but Aip1p cannot replace capping protein in endocytic patches. Our quantitative analysis reveals that the actin meshwork is organized radially and is compacted by the cross-linker fimbrin before the endocytic vesicle is released from the plasma membrane. Capping protein and Aip1p help maintain the high density of actin filaments in meshwork by keeping actin filaments close enough for cross-linking. Our experiments also reveal new cellular functions for Acp1p and Acp2p independent of their capping activity. We identified two independent pathways that control polarization of endocytic sites, one depending on acp2+ and aip1+ during interphase and the other independent of acp1+, acp2+, and aip1+ during mitosis.  相似文献   

7.
Endocytosis is a well-conserved process by which cells invaginate small portions of the plasma membrane to create vesicles containing extracellular and transmembrane cargo proteins. Dozens of proteins and hundreds of specific binding interactions are needed to coordinate and regulate these events. Saccharomyces cerevisiae is a powerful model system with which to study clathrin-mediated endocytosis (CME). Pan1 is believed to be a scaffolding protein due to its interactions with numerous proteins that act throughout the endocytic process. Previous research characterized many Pan1 binding interactions, but due to Pan1''s essential nature, the exact mechanisms of Pan1''s function in endocytosis have been difficult to define. We created a novel Pan1-degron allele, Pan1-AID, in which Pan1 can be specifically and efficiently degraded in <1 h upon addition of the plant hormone auxin. The loss of Pan1 caused a delay in endocytic progression and weakened connections between the coat/actin machinery and the membrane, leading to arrest in CME. In addition, we determined a critical role for the central region of Pan1 in endocytosis and viability. The regions important for endocytosis and viability can be separated, suggesting that Pan1 may have a distinct role in the cell that is essential for viability.  相似文献   

8.
Juvenile neuronal ceroid lipofuscinosis (JNCL, Batten disease) is the most common progressive neurodegenerative disorder of childhood. CLN3, the transmembrane protein underlying JNCL, is proposed to participate in multiple cellular events including membrane trafficking and cytoskeletal functions. We demonstrate here that CLN3 interacts with the plasma membrane-associated cytoskeletal and endocytic fodrin and the associated Na+, K+ ATPase. The ion pumping activity of Na+, K+ ATPase was unchanged in Cln3−/− mouse primary neurons. However, the immunostaining pattern of fodrin appeared abnormal in JNCL fibroblasts and Cln3−/− mouse brains suggesting disturbances in the fodrin cytoskeleton. Furthermore, the basal subcellular distribution as well as ouabain-induced endocytosis of neuron-specific Na+, K+ ATPase were remarkably affected in Cln3−/− mouse primary neurons. These data suggest that CLN3 is involved in the regulation of plasma membrane fodrin cytoskeleton and consequently, the plasma membrane association of Na+, K+ ATPase. Most of the processes regulated by multifunctional fodrin and Na+, K+ ATPase are also affected in JNCL and Cln3-deficiency implicating that dysregulation of fodrin cytoskeleton and non-pumping functions of Na+, K+ ATPase may play a role in the neuronal degeneration in JNCL.  相似文献   

9.
The clathrin heavy chain is a fundamental element in endocytosis and therefore, in the internalization of several cell-surface receptors through which cells interact with their environment. Here we show that the only non-lethal mutant allele of the clathrin heavy chain identified to date in metazoans, the Drosophila Chc4, involves the substitution of a residue at the knee region of the molecule that impairs clathrin-dependent endocytosis. We have investigated the consequences of this endocytic defect in Drosophila retinal development and found that it produces an inhibition of programmed cell death in the retinal lattice, followed by widespread death of interommatidial pigment cells once retinal development has been completed. Through genetic interactions and transgenic analyses, we show that Chc4 phenotypes are caused by a Notch receptor gain-of-function, providing a dramatic example of the importance of Notch down-regulation by endocytosis. An increase in Notch signaling is also observed in Drosophila wings in response to the mutant clathrin, suggesting that Notch levels are controlled by clathrin-dependent endocytosis. We discuss the implications of these findings for current models on eye-development and for the role of endocytosis in Notch signaling.  相似文献   

10.
11.
Clathrin-mediated endocytosis is a highly conserved intracellular trafficking pathway that depends on dynamic protein–protein interactions between up to 60 different proteins. However, little is known about the spatio-temporal regulation of these interactions. Using fluorescence (cross)-correlation spectroscopy in yeast, we tested 41 previously reported interactions in vivo and found 16 to exist in the cytoplasm. These detected cytoplasmic interactions included the self-interaction of Ede1, homolog of mammalian Eps15. Ede1 is the crucial scaffold for the organization of the early stages of endocytosis. We show that oligomerization of Ede1 through its central coiled coil domain is necessary for its localization to the endocytic site and we link the oligomerization of Ede1 to its function in locally concentrating endocytic adaptors and organizing the endocytic machinery. Our study sheds light on the importance of the regulation of protein–protein interactions in the cytoplasm for the assembly of the endocytic machinery in vivo.  相似文献   

12.
Yor1p, a Saccharomyces cerevisiae plasma membrane ABC-transporter, is associated to oligomycin resistance and to rhodamine B transport. Here, by using the overexpressing strain Superyor [A. Decottignies, A.M. Grant, J.W. Nichols, H. de Wet, D.B. McIntosh, A. Goffeau, ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p, J. Biol. Chem. 273 (1998) 12612-12622], we show that Yor1p also confers resistance to rhodamine 6G and to doxorubicin. In addition, Yor1p protects cells, although weakly, against tetracycline, verapamil, eosin Y and ethidium bromide. The basal ATPase activity of the overexpressed form of Yor1p was studied in membrane preparations. This activity is quenched upon addition of micromolar amounts of vanadate. Vmax and Km values of ∼ 0.8 s− 1 and 50 ± 8 μM are measured. Mutations of essential residues in the nucleotide binding domain 2 reduces the activity to that measured with a Δyor1 strain. ATP hydrolysis is strongly inhibited by the addition of potential substrates of the transporter. Covalent reaction of 8-azido-[α-32P]ATP with Yor1p is not sensitive to the presence of excess oligomycin. Thus, competition of the drug with ATP binding is unlikely. Finally, we inspect possible hypotheses accounting for substrate inhibition, rather than stimulation, of ATP hydrolysis by the membrane preparation.  相似文献   

13.
Energy-dependent endocytosis and the low Ca2+ affinity Ca2+-stimulated ATPase activity of erythrocyte ghosts were inhibited concurrently by two inhibitors, carbonylcyanide-m-chlorophenylhydrazone (CCCP) and N-naphthylmaleimide. The conditions required to observe 50% inhibition of this Ca2+-stimulated ATPase activity with either inhibitor were the same conditions required to observe this level of inhibition of endocytosis. Under these conditions, none of the other ATPase activities measured were inhibited more than 20% by either of these reagents. This concurrence of inhibition of endocytosis and the low-affinity Ca2+-stimulated ATPase and the possible involvement of this ATPase in the mechanism by which endocytosis occurs is discussed.  相似文献   

14.
《Fungal biology》2020,124(7):619-628
Mucor circinelloides is an opportunistic dimorphic pathogen, with the dimorphic process controlled in parts by fermentative and oxidative metabolisms, which lead to yeast or mycelial growth, respectively. Dimorphic transition is important for pathogenesis since the mycelium represents the virulent morphology. We previously reported that the deletion of arl1 or arl2 stimulate anaerobic germination in M. circinelloides, suggesting an augmented fermentative metabolism. In the present study, we demonstrate that the heterokaryon Δarl1(+)(−) and homokaryon Δarl2 strains contain low number of mitochondria, which possibly results in a dysfunctional oxidative metabolism, marked by a low oxygen consumption in glucose and poor growth in glycerol as the unique carbon source. This dysfunction is compensated for by an increase in the glycolysis and fermentation in aerobic conditions, demonstrating growth kinetics similar to that in the wild-type strain. Moreover, as a consequence a high fermentative activity, the Δarl1(+)(−) and Δarl2 strains possibly increased the yeast cell growth during low oxygen concentrations in presence of glucose.To the best of our knowledge, this is the first study to demonstrate the control of members of Arf family on the mitochondrial population in a Mucor species.  相似文献   

15.
During endocytosis in S. cerevisiae, actin polymerization is proposed to provide the driving force for invagination against the effects of turgor pressure. In previous studies, Ysc84 was demonstrated to bind actin through a conserved N-terminal domain. However, full length Ysc84 could only bind actin when its C-terminal SH3 domain also bound to the yeast WASP homologue Las17. Live cell-imaging has revealed that Ysc84 localizes to endocytic sites after Las17/WASP but before other known actin binding proteins, suggesting it is likely to function at an early stage of membrane invagination. While there are homologues of Ysc84 in other organisms, including its human homologue SH3yl-1, little is known of its mode of interaction with actin or how this interaction affects actin filament dynamics. Here we identify key residues involved both in Ysc84 actin and lipid binding, and demonstrate that its actin binding activity is negatively regulated by PI(4,5)P2. Ysc84 mutants defective in their lipid or actin-binding interaction were characterized in vivo. The abilities of Ysc84 to bind Las17 through its C-terminal SH3 domain, or to actin and lipid through the N-terminal domain were all shown to be essential in order to rescue temperature sensitive growth in a strain requiring YSC84 expression. Live cell imaging in strains with fluorescently tagged endocytic reporter proteins revealed distinct phenotypes for the mutants indicating the importance of these interactions for regulating key stages of endocytosis.  相似文献   

16.
Clathrin‐mediated endocytosis is a fundamental transport pathway that depends on numerous protein‐protein interactions. Testing the importance of the adaptor protein‐clathrin interaction for coat formation and progression of endocytosis in vivo has been difficult due to experimental constrains. Here, we addressed this question using the yeast clathrin adaptor Sla1, which is unique in showing a cargo endocytosis defect upon substitution of 3 amino acids in its clathrin‐binding motif (sla1AAA) that disrupt clathrin binding. Live‐cell imaging showed an impaired Sla1‐clathrin interaction causes reduced clathrin levels but increased Sla1 levels at endocytic sites. Moreover, the rate of Sla1 recruitment was reduced indicating proper dynamics of both clathrin and Sla1 depend on their interaction. sla1AAA cells showed a delay in progression through the various stages of endocytosis. The Arp2/3‐dependent actin polymerization machinery was present for significantly longer time before actin polymerization ensued, revealing a link between coat formation and activation of actin polymerization. Ultimately, in sla1AAA cells a larger than normal actin network was formed, dramatically higher levels of various machinery proteins other than clathrin were recruited, and the membrane profile of endocytic invaginations was longer. Thus, the Sla1‐clathrin interaction is important for coat formation, regulation of endocytic progression and membrane bending.   相似文献   

17.
Vacuolar proton pumps acidify several intracellular membrane compartments in the endocytic pathway. We have examined the distribution of the vacuolar H+ ATPase in LLC-PK1 cells and the structure of the biosynthetically labeled enzyme in membrane fractions enriched for endosomes or lysosomes. LLC-PK1 cells were allowed to internalize cytochrome c-coated colloidal gold as a marker for endocytic compartments. Proton pumps were identified in these cells by staining the cells with a monoclonal antibody against the vacuolar pump detected with either immunogold or immunoperoxidase techniques. H+ ATPase labeling was seen on structures resembling endosomes and lysosomes, but not on Golgi or plasma membrane. To examine the structure of the H+ ATPase in these compartments, we labeled LLCPK1 cells for 24 h with [35S]methionine and used a Percoll gradient to obtain fractions enriched for endosomes or lysosomes. H+ ATPase immunoprecipitated from both fractions with monoclonal anti-H+ ATPase antibodies had labeled polypeptides of 70, 56, and 31 kDa. On two-dimensional gels, a comparison of the H+ ATPase from the endosomal and lysosomal fractions revealed that the 70-, 56-, and 31-kDa subunits were similar in both fractions. The results show that the vacuolar H+ ATPase in these cells is distributed primarily in endosomes and lysosomes and that the structure of the enzyme is similar in both compartments.  相似文献   

18.
19.
end4–1 was isolated as a temperature-sensitive endocytosis mutant. We cloned and sequenced END4 and found that it is identical to SLA2/MOP2. This gene is required for growth at high temperature, viability in the absence of Abp1p, polarization of the cortical actin cytoskeleton, and endocytosis. We used a mutational analysis of END4 to correlate in vivo functions with regions of End4p and we found that two regions of End4p participate in endocytosis but that the talin-like domain of End4p is dispensable. The N-terminal domain of End4p is required for growth at high temperature, endocytosis, and actin organization. A central coiled-coil domain of End4p is necessary for formation of a soluble sedimentable complex. Furthermore, this domain has an endocytic function that is redundant with the function(s) of ABP1 and SRV2. The endocytic function of Abp1p depends on its SH3 domain. In addition we have isolated a recessive negative allele of SRV2 that is defective for endocytosis. Combined biochemical, functional, and genetic analysis lead us to propose that End4p may mediate endocytosis through interaction with other actin-associated proteins, perhaps Rvs167p, a protein essential for endocytosis.  相似文献   

20.
Yeast and other walled cells possess high internal turgor pressure that allows them to grow and survive in the environment. This turgor pressure, however, may oppose the invagination of the plasma membrane needed for endocytosis. Here we study the effects of turgor pressure on endocytosis in the fission yeast Schizosaccharomyces pombe by time-lapse imaging of individual endocytic sites. Decreasing effective turgor pressure by addition of sorbitol to the media significantly accelerates early steps in the endocytic process before actin assembly and membrane ingression but does not affect the velocity or depth of ingression of the endocytic pit in wild-type cells. Sorbitol also rescues endocytic ingression defects of certain endocytic mutants and of cells treated with a low dose of the actin inhibitor latrunculin A. Endocytosis proceeds after removal of the cell wall, suggesting that the cell wall does not contribute mechanically to this process. These studies suggest that endocytosis is governed by a mechanical balance between local actin-dependent inward forces and opposing forces from high internal turgor pressure on the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号