首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although diabetes normally causes an elevation of cholesterol biosynthesis and induces hypercholesterolemia in animals and human, the mechanism linking diabetes to the dysregulation of cholesterol biosynthesis in the liver is not fully understood. As liver peroxisomal β-oxidation is induced in the diabetic state and peroxisomal oxidation of fatty acids generates free acetate, we hypothesized that peroxisomal β-oxidation might play a role in liver cholesterol biosynthesis in diabetes. Here, we used erucic acid, a specific substrate for peroxisomal β-oxidation, and 10,12-tricosadiynoic acid, a specific inhibitor for peroxisomal β-oxidation, to specifically induce and suppress peroxisomal β-oxidation. Our results suggested that induction of peroxisomal β-oxidation increased liver cholesterol biosynthesis in streptozotocin-induced diabetic mice. We found that excessive oxidation of fatty acids by peroxisomes generated considerable free acetate in the liver, which was used as a precursor for cholesterol biosynthesis. In addition, we show that specific inhibition of peroxisomal β-oxidation decreased cholesterol biosynthesis by reducing acetate formation in the liver in diabetic mice, demonstrating a crosstalk between peroxisomal β-oxidation and cholesterol biosynthesis. Based on these results, we propose that induction of peroxisomal β-oxidation serves as a mechanism for a fatty acid-induced upregulation in cholesterol biosynthesis and also plays a role in diabetes-induced hypercholesterolemia.  相似文献   

2.
In the maturing castor bean seed (Ricinus communis), maximum β-oxidation appears at 28 days after flowering and in the germinating seed, 4 days after germination. Highest specific activities for both β-oxidation systems and their component enzymes are associated with cytosomal particles banding at a density of 1.25 g/ml in a sucrose gradient. Substrate specificity studies indicate that of several fatty acids, ricinoleate is oxidized most rapidly by the preparation from the maturing seed (28 days after flowering) while palmitate and linoleate are oxidized most rapidly by extracts obtained from tissue germinated for 4 days. The β-oxidation activities observed in both systems reflect the expression of activity of at least 3 of the component enzymes, crotonase, β-hydroxyacyl dehydrogenase and β-keto-thiolase, which rise and fall co-ordinately. Acyl thiokinase does not appear to play a limiting role in regulating β-oxidation per se under the conditions employed here.  相似文献   

3.
X-linked adrenoleukodystrophy (X-ALD), an inherited peroxisomal disorder, is caused by mutations in the ABCD1 gene encoding the peroxisomal ATP-binding cassette (ABC) transporter ABCD1 (adrenoleukodystrophy protein, ALDP). Biochemically, X-ALD is characterized by an accumulation of very long-chain fatty acids and partially impaired peroxisomal β-oxidation. In this study, we used primary human fibroblasts from X-ALD and Zellweger syndrome patients to investigate the peroxisomal β-oxidation defect. Our results show that the degradation of C26:0-CoA esters is as severely impaired as degradation of unesterified very long-chain fatty acids in X-ALD and is abolished in Zellweger syndrome. Interestingly, the β-oxidation rates for both C26:0-CoA and C22:0-CoA were similarly affected, although C22:0 does not accumulate in patient fibroblasts. Furthermore, we show that the β-oxidation defect in X-ALD is directly caused by ABCD1 dysfunction as blocking ABCD1 function with a specific antibody reduced β-oxidation to levels observed in X-ALD fibroblasts. By quantification of mRNA and protein levels of the peroxisomal ABC transporters and by blocking with specific antibodies, we found that residual β-oxidation activity toward C26:0-CoA in X-ALD fibroblasts is mediated by ABCD3, although the efficacy of ABCD3 appeared to be much lower than that of ABCD1. Finally, using isolated peroxisomes, we show that β-oxidation of C26:0-CoA is independent of additional CoA but requires a cytosolic factor of >10-kDa molecular mass that is resistant to N-ethylmaleimide and heat inactivation. In conclusion, our findings in human cells suggest that, in contrast to yeast cells, very long-chain acyl-CoA esters are transported into peroxisomes by ABCD1 independently of additional synthetase activity.  相似文献   

4.
Lipids from callus cultures and suspension cultures of higher plants constitute 5 to 8% of the dry tissue's weight.The predominant lipid classes are the sterols, steryl esters, steryl glycosides and esterified steryl glycosides. Considerable amounts of a variety of sterylglycolipids, whose structures are not completely elucidated, are also present. Triglycerides and phospholipids occur in small proportions, whereas monogalactosyl diglycerides, digalactosyl diglycerides and sulfoquinovosyl diglycerides are present only in traces, if at all.β-Sitosterol is the predominant constituent sterol, stigmasterol and campesterol as well as a variety of as yet unidentified sterols occur in smaller proportions. The major constituent fatty acids are palmitic, oleic, linoleic and linolenic acids. Saturated very long-chain fatty acids are found in smaller proportions. Unusual fatty acids, such as epoxy acids, which occur in the seed lipids of certain plants, are not found in tissue cultures derived from these plants. Clucose and traces of galactose are the only sugars obtained by acid hydrolysis of the glycolipids occurring in plant tissue cultures.  相似文献   

5.
Phytosterols and cholesterol metabolism   总被引:9,自引:0,他引:9  
PURPOSE OF REVIEW: Phytosterols are plant sterols structurally similar to cholesterol that act in the intestine to lower cholesterol absorption. Because they have very low systemic absorption and are already present in healthy diets, increasing the intake of phytosterols may be a practical way to reduce coronary heart disease with minimum risk. RECENT FINDINGS: Phytosterols displace cholesterol from intestinal micelles, reducing the pool of absorbable cholesterol, but they are also rapidly taken up by enterocytes and increase expression of the adenosine triphosphate-binding cassette A1 sterol transporter. Phytosterol esters dissolved in food fat reduce LDL-cholesterol by 10% at a maximum effective dose of 2 g/day. However, this work probably understates the true effectiveness of phytosterols because it does not account for those naturally present in baseline diets. Single meal studies show that phytosterols in intact foods are bioactive at doses as low as 150 mg. The potential effectiveness of phytosterols has been improved in several ways. Individuals most likely to respond have been identified as having high cholesterol absorption and low cholesterol biosynthesis. Phytosterols can be emulsified with lecithin and delivered in non-fat or low-fat foods and beverages, and the amount of fat in fat-based preparations can be reduced substantially with the retention of bioactivity. SUMMARY: Phytosterols effectively reduce LDL-cholesterol when given as supplements, and the smaller amounts in natural foods also appear to be important. Future work will focus on the better delivery of phytosterols in natural foods and supplements and on further defining the mechanisms of action.  相似文献   

6.
Phytosterols (plant sterols) are triterpenes that are important structural components of plant membranes, and free phytosterols serve to stabilize phospholipid bilayers in plant cell membranes just as cholesterol does in animal cell membranes. Most phytosterols contain 28 or 29 carbons and one or two carbon–carbon double bonds, typically one in the sterol nucleus and sometimes a second in the alkyl side chain. Phytostanols are a fully-saturated subgroup of phytosterols (contain no double bonds). Phytostanols occur in trace levels in many plant species and they occur in high levels in tissues of only in a few cereal species. Phytosterols can be converted to phytostanols by chemical hydrogenation. More than 200 different types of phytosterols have been reported in plant species. In addition to the free form, phytosterols occur as four types of “conjugates,” in which the 3β-OH group is esterified to a fatty acid or a hydroxycinnamic acid, or glycosylated with a hexose (usually glucose) or a 6-fatty-acyl hexose. The most popular methods for phytosterol analysis involve hydrolysis of the esters (and sometimes the glycosides) and capillary GLC of the total phytosterols, either in the free form or as TMS or acetylated derivatives. Several alternative methods have been reported for analysis of free phytosterols and intact phytosteryl conjugates. Phytosterols and phytostanols have received much attention in the last five years because of their cholesterol-lowering properties. Early phytosterol-enriched products contained free phytosterols and relatively large dosages were required to significantly lower serum cholesterol. In the last several years two spreads, one containing phytostanyl fatty-acid esters and the other phytosteryl fatty-acid esters, have been commercialized and were shown to significantly lower serum cholesterol at dosages of 1–3 g per day. The popularity of these products has caused the medical and biochemical community to focus much attention on phytosterols and consequently research activity on phytosterols has increased dramatically.  相似文献   

7.
Consumption of plant sterols or stanols (collectively referred to as phytosterols) and their esters results in decreased low-density lipoprotein cholesterol, which is associated with decreased atherosclerotic risk. The mechanisms by which phytosterols impart their effects, however, are incompletely characterized. The objective of the present study is to determine if pancreatic cholesterol esterase (PCE; EC 3.1.1.13), the enzyme primarily responsible for cholesterol ester hydrolysis in the digestive tract, is capable of hydrolyzing various phytosterol esters and to compare the rates of sterol ester hydrolysis in vitro. We found that PCE hydrolyzes palmitate, oleate and stearate esters of cholesterol, stigmasterol, stigmastanol and sitosterol. Furthermore, we found that the rate of hydrolysis was dependent on both the sterol and the fatty acid moieties in the following order of rates of hydrolysis: cholesterol>(sitosterol=stigmastanol)>stigmasterol; oleate>(palmitate=stearate). The addition of free phytosterols to the system did not change hydrolytic activity of PCE, while addition of palmitate, oleate or stearate increased activity. Thus, PCE may play an important but discriminatory role in vivo in the liberation of free phytosterols to compete with cholesterol for micellar solubilization and absorption.  相似文献   

8.
Lipid droplets (LDs) are intracellular organelles that dynamically regulate lipids and energy homeostasis in the cell. LDs can grow through either local lipid synthesis or LD fusion. However, how lipids involving in LD fusion for LD growth is largely unknown. Here, we show that genetic mutation of acox-3 (acyl-CoA oxidase), maoc-1 (enoyl-CoA hydratase), dhs-28 (3-hydroxylacyl-CoA dehydrogenase), and daf-22 (3-ketoacyl-CoA thiolase), all involved in the peroxisomal β-oxidation pathway in Caenorhabditis elegans, led to rapid fusion of adjacent LDs to form giant LDs (gLDs). Mechanistically, we show that dysfunction of peroxisomal β-oxidation results in the accumulation of long-chain fatty acid-CoA and phosphocholine, which may activate the sterol-binding protein 1/sterol regulatory element–binding protein to promote gLD formation. Furthermore, we found that inactivation of either FAT-2 (delta-12 desaturase) or FAT-3 and FAT-1 (delta-15 desaturase and delta-6 desaturase, respectively) to block the biosynthesis of polyunsaturated fatty acids (PUFAs) with three or more double bonds (n≥3-PUFAs) fully repressed the formation of gLDs; in contrast, dietary supplementation of n≥3-PUFAs or phosphocholine bearing these PUFAs led to recovery of the formation of gLDs in peroxisomal β-oxidation–defective worms lacking PUFA biosynthesis. Thus, we conclude that n≥3-PUFAs, distinct from other well-known lipids and proteins, promote rapid LD fusion leading to LD growth.  相似文献   

9.
Sterols from free sterol and steryl ester fractions from Heterodera zeae and from total lipids of Zea mays roots were analyzed by gas-liquid chromatography (GLC) and by GLC-mass spectrometry. The major free sterols of H. zeae were 24-ethylcholesterol (54.4% of total free sterol), 24-ethylcholesta-5,22-dien-3β-ol (13.3%), 24-methylcholesterol (12.5%), and cholesterol (7.2%). The same four sterols comprised 34.6%, 7.2%, 30.3%, and 18.6%, respectively, of the esterified sterols of H. zeae. Corn root sterols included 46.6% 24-ethylcholesta-5,22-dien-3β-ol, 16.7% methylcholesterol, 16.4% cycloartenol, 12.7% 24-ethylcholesterol, and 0.5% cholesterol. The sterol 24-composition of H. zeae differed greatly from that of the only other cyst nematode previously investigated, Globodera solanacearum.  相似文献   

10.
Very long acyl-CoA dehydrogenase (VLCAD) deficiency is a genetic pediatric disorder presenting with a spectrum of phenotypes that remains for the most part untreatable. Here, we present a novel strategy for the correction of VLCAD deficiency by increasing mutant VLCAD enzymatic activity. Treatment of VLCAD-deficient fibroblasts, which express distinct mutant VLCAD protein and exhibit deficient fatty acid β-oxidation, with S-nitroso-N-acetylcysteine induced site-specific S-nitrosylation of VLCAD mutants at cysteine residue 237. Cysteine 237 S-nitrosylation was associated with an 8–17-fold increase in VLCAD-specific activity and concomitant correction of acylcarnitine profile and β-oxidation capacity, two hallmarks of the disorder. Overall, this study provides biochemical evidence for a potential therapeutic modality to correct β-oxidation deficiencies.  相似文献   

11.
The effect of a plant sterol, beta-sitosterol (SI), and a plant stanol, sitostanol (SS), on the solubilization of cholesterol (CH) by model dietary mixed micelles was examined under in vitro conditions with the use of gas chromatography, isothermal titration calorimetry, NMR spectroscopy and cryogenic transmission electron microscopy techniques. Free SI and SS were shown to reduce the concentration of CH in dietary mixed micelles via a dynamic competition mechanism. CH, SI and SS affect the microstructure of lipid vesicles and influence the process of amphiphilic self-assembly of nutrients in the gut with the formation of dietary mixed micelles in a similar manner. Therefore, substitution of CH by phytosterols and phytostanols in the diet does not lead to the notable changes in the mechanism of dietary mixed micelle formation and does not affect the process of the intestinal transport of nutrients and drugs via the micellar diffusion mechanism. Our experimental findings demonstrate that the introduction of plant sterols and plant stanols into the diet is clearly beneficial for the reduction of the intestinal uptake of cholesterol. Due to the limited capacity of dietary mixed micelles to embody hydrophobic sterol/stanol molecules, the micellar concentration of cholesterol is reduced and hence, its transport towards the intestinal brush border membrane decreases.  相似文献   

12.
Cancer cells frequently undergo metabolic reprogramming to support tumorigenicity and malignancy, which is recognized as a hallmark of cancer. In addition to glycolysis and glutaminolysis, alterations in fatty acid (FA) metabolism have received increasing concerns in the past few years. Recently, accumulating evidence has shown that fatty acid β-oxidation (FAO) is abnormally activated in various tumors, which is associated with the machinery of proliferation, stemness, metastasis, and radiochemotherapeutic resistance of cancer cells. Acyl-CoA synthetases 3 (ACSL3) belongs to a family of enzymes responsible for converting free long-chain FAs into fatty acyl-CoA esters, which act as substrates both for lipid synthesis and FAO.Here, we demonstrate that transforming growth factor beta 1 (TGFβ1) induces the up-regulation of ACSL3 through sterol regulatory element-binding protein 1 (SREBP1) signaling to promote energy metabolic reprogramming in colorectal carcinoma (CRC) cells. ACSL3 mediates the epithelial mesenchymal transition (EMT) and metastasis of CRC cells by activation of FAO pathway to produce ATP and reduced nicotinamide adenine dinucleotide phosphate (NADPH), which sustain redox homeostasis and fuel cancer cells for invasion and distal metastasis. Thus, targeting ACSL3 and FAO metabolic pathways might be exploited for therapeutic gain for CRC and other FAs- addicted cancers.  相似文献   

13.
Sterol glycosyltransferases regulate the properties of sterols by catalyzing the transfer of carbohydrate molecules to the sterol moiety for the synthesis of steryl glycosides and acyl steryl glycosides. We have analyzed the functional role of TTG15/UGT80B1 gene of Arabidopsis thaliana in freeze/thaw and heat shock stress using T-DNA insertional sgt knockout mutants. Quantitative study of spatial as well as temporal gene expression showed tissue-specific and dynamic expression patterns throughout the growth stages. Comparative responses of Col-0, TTG15/UGT80B1 knockout mutant and p35S:TTG15/UGT80B1 restored lines were analyzed under heat and freeze stress conditions. Heat tolerance was determined by survival of plants at 42°C for 3 h, MDA analysis and chlorophyll fluorescence image (CFI) analysis. Freezing tolerance was determined by survival of the plants at -1°C temperature in non-acclimatized (NA) and cold acclimatized (CA) conditions and also by CFI analysis, which revealed that, p35S:TTG15/UGT80B1 restored plants were more adapted to freeze stress than TTG15/UGT80B1 knockout mutant under CA condition. HPLC analysis of the plants showed reduced sterol glycoside in mutant seedlings as compared to other genotypes. Following CA condition, both β-sitosterol and sitosterol glycoside quantity was more in Col-0 and p35S:TTG15/UGT80B1 restored lines, whereas it was significantly less in TTG15/UGT80B1 knockout mutants. From these results, it may be concluded that due to low content of free sterols and sterol glycosides, the physiology of mutant plants was more affected during both, the chilling and heat stress.  相似文献   

14.
The mitochondrial β-oxidation system is one of the central metabolic pathways of energy metabolism in mammals. Enzyme defects in this pathway cause fatty acid oxidation disorders. To elucidate the role of 2,4-dienoyl-CoA reductase (DECR) as an auxiliary enzyme in the mitochondrial β-oxidation of unsaturated fatty acids, we created a DECR–deficient mouse line. In Decr−/− mice, the mitochondrial β-oxidation of unsaturated fatty acids with double bonds is expected to halt at the level of trans-2, cis/trans-4-dienoyl-CoA intermediates. In line with this expectation, fasted Decr−/− mice displayed increased serum acylcarnitines, especially decadienoylcarnitine, a product of the incomplete oxidation of linoleic acid (C18:2), urinary excretion of unsaturated dicarboxylic acids, and hepatic steatosis, wherein unsaturated fatty acids accumulate in liver triacylglycerols. Metabolically challenged Decr−/− mice turned on ketogenesis, but unexpectedly developed hypoglycemia. Induced expression of peroxisomal β-oxidation and microsomal ω-oxidation enzymes reflect the increased lipid load, whereas reduced mRNA levels of PGC-1α and CREB, as well as enzymes in the gluconeogenetic pathway, can contribute to stress-induced hypoglycemia. Furthermore, the thermogenic response was perturbed, as demonstrated by intolerance to acute cold exposure. This study highlights the necessity of DECR and the breakdown of unsaturated fatty acids in the transition of intermediary metabolism from the fed to the fasted state.  相似文献   

15.
1. Oestradiol-17β induces livers of Xenopus laevis (South African clawed toad) to synthesize and secrete into the serum large quantities of the egg-yolk-protein precursor, vitellogenin. The peak of this response occurs 9–16 days after hormone treatment [Dolphin, Ansari, Lazier, Munday & Akhtar (1971) Biochem. J. 124, 751–758]. It is now shown that 6 days after hormone treatment a 120–160-fold stimulation of the synthesis of cholesterol and fatty acid compared with control values occurred. 2. A cell-free system, derived from Xenopus liver, which synthesizes squalene and fatty acid is described. By using this system, several hundredfold stimulation of incorporation of [14C]acetate into squalene was recorded 6 days after the administration of oestradiol-17β, compared with a 3–4-fold stimulation of incorporation of [3H]mevalonate compared with control values. It is argued that oestradiol-17β must affect enzyme(s) catalysing step(s) between acetate and mevalonate in the biosynthetic pathway to cholesterol. 3. In incubation of liver slices in vitro, most of the lipid and cholesterol synthesized in response to the steroid hormone was associated with those subcellular fractions that contained membranes. Moreover, pulse-labelling experiments in vivo showed that 70% of this lipid and cholesterol was retained in the liver. The remainder appeared in the serum, where it was equally distributed between vitellogenin and vitellogenin-free serum. 4. G.l.c. analyses of the cholesterol content of liver microsomal fractions of Xenopus laevis indicated that the cholesterol content was at least 50% higher in microsomal fractions obtained from livers that had been exposed to oestradiol-17β. Meanwhile, g.l.c. analysis of the lipid moiety of secreted vitellogenin showed that up to 35% of its lipid was cholesterol.  相似文献   

16.
Properties of the intestinal digestion of the dietary phytosterols, cholesterol and cholestanol, and the mechanisms by which phytosterols inhibit the intestinal absorption of cholesterol in healthy human subjects are poorly known. We have studied the hydrolysis of dietary plant sterol and stanol esters and their subsequent micellar solubilization by determining their concentrations in micellar and oil phases of the jejunal contents. Two liquid formulas with low (formula 1) and high (formula 2) plant stanol concentrations were infused via a nasogastric tube to the descending duodenum of 8 healthy human subjects, and intestinal contents were sampled for gas-liquid chromatographic sterol analysis 60 cm more distally. During the duodenal transit, phytosterol esters were hydrolyzed. This was especially profound for sitostanol, as its esterified fraction per milligram of sitosterol decreased 80% (P < 0.001) in formula 1 and 61% (P < 0.001) in formula 2. Contrary to that, esterified fraction of cholesterol per milligram of sitosterol was increased fourfold (P < 0.001) in formula 1 and almost sixfold (P < 0.001) in formula 2, whereas that of cholestanol remained unchanged. Percentages of esterified sterols and stanols in total intestinal fluid samples were higher after the administration of formula 2 than of formula 1. Esterified cholesterol and stanols accumulated in the oil phase, and free stanols replaced cholesterol in the micellar phase. At high intestinal plant stanol concentrations, cholesterol looses its micellar solubility possibly by replacement of its free fraction in the micellar phase by hydrolyzed plant stanols, which leads to a decreased intestinal absorption of cholesterol.  相似文献   

17.
Fatty acid metabolism is perturbed in atherosclerotic lesions, but whether it affects lesion formation is unknown. To determine whether fatty acid synthesis affects atherosclerosis, we inactivated fatty-acid synthase (FAS) in macrophages of apoE-deficient mice. Serum lipids, body weight, and glucose metabolism were the same in FAS knock-out in macrophages (FASKOM) and control mice, but blood pressure was lower in FASKOM animals. Atherosclerotic extent was decreased 20–40% in different aortic regions of FASKOM as compared with control mice on Western diets. Foam cell formation was diminished in FASKOM as compared with wild type macrophages due to increased apoAI-specific cholesterol efflux and decreased uptake of oxidized low density lipoprotein. Expression of the anti-atherogenic nuclear receptor liver X receptor α (LXRα; Nr1h3) and its downstream targets, including Abca1, were increased in FASKOM macrophages, whereas expression of the potentially pro-atherogenic type B scavenger receptor CD36 was decreased. Peroxisome proliferator-activated receptor α (PPARα) target gene expression was decreased in FASKOM macrophages. PPARα agonist treatment of FASKOM and wild type macrophages normalized PPARα target gene expression as well as Nr1h3 (LXRα). Atherosclerotic lesions were more extensive when apoE null mice were transplanted with LXRα-deficient/FAS-deficient bone marrow as compared with LXRα-replete/FAS-deficient marrow, consistent with anti-atherogenic effects of LXRα in the context of FAS deficiency. These results show that macrophage FAS deficiency decreases atherosclerosis through induction of LXRα and suggest that FAS, which is induced by LXRα, may generate regulatory lipids that cause feedback inhibition of LXRα in macrophages.  相似文献   

18.
ETC-1002 (8-hydroxy-2,2,14,14-tetramethylpentadecanedioic acid) is a novel investigational drug being developed for the treatment of dyslipidemia and other cardio-metabolic risk factors. The hypolipidemic, anti-atherosclerotic, anti-obesity, and glucose-lowering properties of ETC-1002, characterized in preclinical disease models, are believed to be due to dual inhibition of sterol and fatty acid synthesis and enhanced mitochondrial long-chain fatty acid β-oxidation. However, the molecular mechanism(s) mediating these activities remained undefined. Studies described here show that ETC-1002 free acid activates AMP-activated protein kinase in a Ca2+/calmodulin-dependent kinase β-independent and liver kinase β 1-dependent manner, without detectable changes in adenylate energy charge. Furthermore, ETC-1002 is shown to rapidly form a CoA thioester in liver, which directly inhibits ATP-citrate lyase. These distinct molecular mechanisms are complementary in their beneficial effects on lipid and carbohydrate metabolism in vitro and in vivo. Consistent with these mechanisms, ETC-1002 treatment reduced circulating proatherogenic lipoproteins, hepatic lipids, and body weight in a hamster model of hyperlipidemia, and it reduced body weight and improved glycemic control in a mouse model of diet-induced obesity. ETC-1002 offers promise as a novel therapeutic approach to improve multiple risk factors associated with metabolic syndrome and benefit patients with cardiovascular disease.  相似文献   

19.
There is some controversy concerning the presence of steryl glycosides and acylated steryl glycosides in eucaryotic algae. These two classes of sterol compounds were investigated in species belonging to the three major groups of eucaryotic algae: green algae (Ulva gigantea, Cladophora rupestris), brown algae (Fucus vesiculosus, Ascophyllum nodosum), and red algae (Rhodymenia palmata, Porphyridium sp.). All these algae contain both steryl glycosides and acylated steryl glycosides. The sterol components of these compounds vary according to the alga but they are always the same as the free sterols of the alga in question. The most common sugar moiety is glucose. In the acylated steryl glycosides, the fatty acid is mainly palmitic acid. The percentage of these compounds (as a percentage of the total sterol content) is often low.  相似文献   

20.
In plasma, iron is normally bound to transferrin, the principal protein in blood responsible for binding and transporting iron throughout the body. However, in conditions of iron overload when the iron-binding capacity of transferrin is exceeded, non–transferrin-bound iron (NTBI) appears in plasma. NTBI is taken up by hepatocytes and other parenchymal cells via NTBI transporters and can cause cellular damage by promoting the generation of reactive oxygen species. However, how NTBI affects endothelial cells, the most proximal cell type exposed to circulating NTBI, has not been explored. We modeled in vitro the effects of systemic iron overload on endothelial cells by treating primary human umbilical vein endothelial cells (HUVECs) with NTBI (ferric ammonium citrate [FAC]). We showed by RNA-Seq that iron loading alters lipid homeostasis in HUVECs by inducing sterol regulatory element-binding protein 2–mediated cholesterol biosynthesis. We also determined that FAC increased the susceptibility of HUVECs to apoptosis induced by tumor necrosis factor-α (TNFα). Moreover, we showed that cholesterol biosynthesis contributes to iron-potentiated apoptosis. Treating HUVECs with a cholesterol chelator hydroxypropyl-β-cyclodextrin demonstrated that depletion of cholesterol was sufficient to rescue HUVECs from TNFα-induced apoptosis, even in the presence of FAC. Finally, we showed that FAC or cholesterol treatment modulated the TNFα pathway by inducing novel proteolytic processing of TNFR1 to a short isoform that localizes to lipid rafts. Our study raises the possibility that iron-mediated toxicity in human iron overload disorders is at least in part dependent on alterations in cholesterol metabolism in endothelial cells, increasing their susceptibility to apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号