首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Of 150 cultures capable of degrading petroleum at +6°C, 40 strains growing in a liquid mineral nutrient medium containing petroleum (2%) as the sole source of carbon were selected. Of them, 13 cultures displaying a petroleum degradation rate exceeding 25% were selected. Abilities of these cultures and their associations to utilize fuel oil and its components—oils and benzene resins—were studied. A culture exhibiting degradation rates of fuel oil, its oils, benzene resins, and petroleum amounting to 17, 26, 10, and 51%, respectively, was selected. This culture can be used for cleanup of petroleum pollution under cold climatic conditions.  相似文献   

2.
Survival of Campylobacter jejuni at 4 and 20°C was investigated by using cellular integrity, respiratory activity, two-dimensional (2D) protein profile, and intact DNA content as indicators of potential viability of nonculturable cells. Intact DNA content after 116 days, along with cellular integrity and respiring cells, was detected for up to 7 months at 4°C by pulsed-field gel electrophoresis. Most changes in 2D protein profiles involved up- or down-regulation.  相似文献   

3.
Neurodegenerative diseases comprise both hereditary and sporadic conditions characterized by an identifying progressive nervous system dysfunction and distinctive neuopathophysiology. The majority are of non-familial etiology and hence environmental factors and lifestyle play key roles in their pathogenesis. The extensive use of and ever increasing worldwide demand for electricity has stimulated societal and scientific interest on the environmental exposure to low frequency electromagnetic fields (EMFs) on human health. Epidemiological studies suggest a positive association between 50/60-Hz power transmission fields and leukemia or lymphoma development. Consequent to the association between EMFs and induction of oxidative stress, concerns relating to development of neurodegenerative diseases, such as Alzheimer disease (AD), have been voiced as the brain consumes the greatest fraction of oxygen and is particularly vulnerable to oxidative stress. Exposure to extremely low frequency (ELF)-EMFs are reported to alter animal behavior and modulate biological variables, including gene expression, regulation of cell survival, promotion of cellular differentiation, and changes in cerebral blood flow in aged AD transgenic mice. Alterations in inflammatory responses have also been reported, but how these actions impact human health remains unknown. We hence evaluated the effects of an electromagnetic wave (magnetic field intensity 1mT; frequency, 50-Hz) on a well-characterized immortalized neuronal cell model, human SH-SY5Y cells. ELF-EMF exposure elevated the expession of NOS and O2 , which were countered by compensatory changes in antioxidant catylase (CAT) activity and enzymatic kinetic parameters related to CYP-450 and CAT activity. Actions of ELF-EMFs on cytokine gene expression were additionally evaluated and found rapidly modified. Confronted with co-exposure to H2O2-induced oxidative stress, ELF-EMF proved not as well counteracted and resulted in a decline in CAT activity and a rise in O2 levels. Together these studies support the further evaluation of ELF-EMF exposure in cellular and in vivo preclinical models to define mechanisms potentially impacted in humans.  相似文献   

4.
5.
The distribution of xanthophyll cycle pigments (violaxanthin plus antheraxanthin plus zeaxanthin [VAZ]) among photosynthetic pigment-protein complexes was examined in Vinca major before, during, and subsequent to a photoinhibitory treatment at low temperature. Four pigment-protein complexes were isolated: the core of photosystem (PS) II, the major light-harvesting complex (LHC) protein of PSII (LHCII), the minor light-harvesting proteins (CPs) of PSII (CP29, CP26, and CP24), and PSI with its LHC proteins (PSI-LHCI). In isolated thylakoids 80% of VAZ was bound to protein independently of the de-epoxidation state and was found in all complexes. Plants grown outside in natural sunlight had higher levels of VAZ (expressed per chlorophyll), compared with plants grown in low light in the laboratory, and the additional VAZ was mainly bound to the major LHCII complex, apparently in an acid-labile site. The extent of de-epoxidation of VAZ in high light and the rate of reconversion of Z plus A to V following 2.5 h of recovery were greatest in the free-pigment fraction and varied among the pigment-protein complexes. Photoinhibition caused increases in VAZ, particularly in low-light-acclimated leaves. The data suggest that the photoinhibitory treatment caused an enrichment in VAZ bound to the minor CPs caused by de novo synthesis of the pigments and/or a redistribution of VAZ from the major LHCII complex.  相似文献   

6.
The temperature limits of the order-disorder transition, and the Arrhenius activation energy of succinate oxidase activity for mitochondria of Jerusalem artichoke (Helianthus tuberosus L.) tubers were determined from the initiation to the termination of dormancy. The temperature limits for the transition at the initiation of dormancy were 25 and 3 C. These changed to 9 and −5 C at mid-dormancy and returned to 25 and 2 C at the termination of dormancy. The Arrhenius activation energy measured in the temperature range above the transition was 35 kilojoules per mole at middormancy and decreased to 17 kilojoules per mole at the termination of dormancy when sprouting was evident. The coincidence of the changes in membrane structure and function with dormancy suggests that artichokes possess a mechanism for regulating membrane lipid structure so that cellular integrity of tuber tissue is maintained even when the tubers are exposed to low temperatures.  相似文献   

7.
To further an improved understanding of the mechanisms used by bacterial cells to survive extreme exposure to ionizing radiation (IR), we broadly screened nonessential Escherichia coli genes for those involved in IR resistance by using transposon-directed insertion sequencing (TraDIS). Forty-six genes were identified, most of which become essential upon heavy IR exposure. Most of these were subjected to direct validation. The results reinforced the notion that survival after high doses of ionizing radiation does not depend on a single mechanism or process, but instead is multifaceted. Many identified genes affect either DNA repair or the cellular response to oxidative damage. However, contributions by genes involved in cell wall structure/function, cell division, and intermediary metabolism were also evident. About half of the identified genes have not previously been associated with IR resistance or recovery from IR exposure, including eight genes of unknown function.  相似文献   

8.
9.
10.
Analysis of food samples for E. coli O157:H7 using the standard U.S. Food and Drug Administration procedure is frequently complicated by overgrowth of nontarget microorganisms. A new procedure was developed for enrichment of enterohemorrhagic E. coli (EHEC) which utilizes exposure to pH 2.00 for 2 h. This procedure yielded larger populations of EHEC than the standard method by factors ranging from 2.7 to 7.7 and, when age-stressed cultures were used, by factors ranging from 2.7 to 11.5. Cultures of competing enterics were more effectively inhibited by the new enrichment protocol as well.  相似文献   

11.
Two groups of male and female subjects aged 36–50 years were examined prior to and after short-term exposure to extreme temperatures. One group was exposed to heating in a sauna, and the other was exposed to cooling in ice-cold water. In both cases, the changes in some indices of thermoregulation and blood circulation approximated critical values. It is therefore concluded that, in adults, such procedures are stressful and dangerous for health.  相似文献   

12.
Krylova  A. E.  Chaplygina  A. V.  Vekshin  N. L. 《Biophysics》2020,65(1):58-62
Biophysics - Abstract—A spectroscopic study of the manner in which exposure to elevated temperature or intense UV radiation leads to the occurrence of lipofuscin debris in the bodies and...  相似文献   

13.
14.
15.
Accumulation of Free Proline at Low Temperatures   总被引:3,自引:0,他引:3  
The accumulation of free proline in the first leaves of barley, Hordeum distichum L., and wheat, Triticum aestivum L., in response to a range of low temperatures was examined with 10-day-old plants. In barley (cv. Prior) no proline accumulated at 8°C or above, but in wheat (cv. Gabo) proline accumulated at 12°C and lower temperatures. In barley, the first leaf survived for 29 days following transfer to 5°C and continued to accumulate proline throughout this period. In contrast, the first leaves of plants maintained at 20°C survived for 13 days only and accumulated no proline. Proline accumulation at low temperature was shown to be light-dependent, both in intact plants and excised leaf sections, and the light requirement could not be replaced by supplying leaf segments with precursors of proline. Proline accumulation in response to water stress was not light-dependent at 20°C but was at 5°C. Inter-specific and intra-specific variation in the extent of accumulation in response to low temperature was also examined. Considerable variation was encountered but there was no clear relationship with geographical distribution or chilling sensitivity for the species and no correlation with accumulation in response to water stress in the cultivars of barley examined.  相似文献   

16.
Chilling of leaves of cucumber (Cucumis sativus L.) at 5?C inmoderate light for 5 h caused almost complete suppression ofphotosynthetic oxygen evolution in the leaves. Comparison ofelectron transport activities determined in the presence andabsence of an uncoupler, methylamine, indicated that thylakoidsprepared from such treated leaves were uncoupled without anysignificant changes in the capacity for electron transport.Immunoblotting revealed that the amount of coupling factor 1(CF1) associated with membranes was reduced by the chillingtreatment in the light. Thylakoids prepared from leaves thathad been chilled in moderate light for 5 h and then re-warmedfor 1 h were coupled and capable of synthesising ATP. However,the capacity of leaf photosynthesis was not restored by therewarming. These results indicate that the thylakoids are uncoupledby the dissociation of some CF1 complexes from the thylakoidmembranes during the chilling treatment of leaves in the lightand that thylakoids are recoupled by reassociation of CF1 duringthe subsequent rewarming of the treated leaves at 25?C. It alsoappears that chilling in the light causes irreversible damageto reaction(s) other than those involved in electron transportand photophosphorylation. 1 Present address: Department of Biological Science, Facultyof Science, Himeji Institute of Technology, Kamigori, Ako-gun,Hyogo, 678-12 Japan (Received July 1, 1991; Accepted October 4, 1991)  相似文献   

17.
A fresh 1% solution of KOH in 70% ethanol in 2 hr at 2-4 C restores basophilia to methylated acid mucosubstances satisfactorily without detaching or damaging tissue sections. A 0.5% solution of Ba(OH)2 under the same conditions gives results nearly as good, but NaOH and KMnO4 are unsatisfactory.  相似文献   

18.
The optimal growth of mesophilic methanotrophic bacteria (collection strains of the genera Methylocystis, Methylomonas, Methylosinus, and Methylobacter) occurred within temperature ranges of 31–34°C and 23–25°C. None of the 12 strains studied were able to grow at 1.5 or 4°C. Representatives of six methanotrophic species (strains Mcs. echinoides2, Mm. methanica12, Mb. bovis89, Mcs. pyriformis14, Mb. chroococcum90, and Mb. vinelandii87) could grow at 10°C (with a low specific growth rate). The results obtained suggest that some mesophilic methane-oxidizing bacteria display psychrotolerant (psychrotrophic) but not psychrophilic properties. In general, the Rosso model, which describes bacterial growth rate as a function of temperature, fits the experimental data well, although, for most methanotrophs, with symmetrical approximations for the optimal temperature.  相似文献   

19.
The youngest fully expanded leaves of young plants of tall fescue(Festuca arundinacea Schreb. cv. S 170) were allowed to assimilate14CO2 either (a) at the fifth leaf stage immediately beforetransfer from 17/14?C to 7/4?C (non-acclimated), or (b) aftertransfer from 17/14?C to 7/4?C at the fifth leaf stage, andfurther development in 7/4?C of one or two more leaves (acclimationfor one or two plastochrons). Controls were maintained in 17/14?C and allowed to assimilate 14CO2 at the corresponding (fifth,sixth, or seventh) leaf stages. Allocation of 14C amongst sinksand biochemical fractions was analysed during a subsequent periodof growth at 7/4 ?C (cold) or 17/14 ?C (control). Allocationof assimilate to growing parts of the shoot was less than controlsin the non-acclimated plants transferred to the cold and morethan controls in plants acclimated for one plastochron. Afterthe imbalance induced initially by transfer from 17/14?C to7/4 ?C, acclimation for one or two plastochrons brought theallocation amongst sinks and amongst biochemical fates closerto the balance existing in controls. The main shoot and sidetillers differed in the time during acclimation when they becamemore like the controls. The percentage of assimilate in thesoluble carbohydrate fraction of non-acclimated plants and ofplants acclimated for one plastochron, was higher than in controls.The percentage of assimilate in the cell wall fraction was lowerin non-acclimated plants than in controls but the differencefrom controls after two plastochrons acclimation again was less.During the first plastochron after transfer to cold, diversionof assimilate to a reserve pool in sinks could be a factor limitingcell wall synthesis and growth and this limitation may be relievedwhen the reserve pool is ‘full’. Low temperaturereduced the percentage of assimilate in the protein fractionof growing parts of the shoot and the difference was found evenafter two plastochrons acclimation. Key words: Low temperature, metabolism, tall fescue (Festuca arundinacea Schreb. cv. S. 170)  相似文献   

20.
To examine the effects of chilling of leaves of cucumber (Cucumissativus L.) in moderate light on the coupling state of thylakoidsin situ, changes in fluorescence, changes in light scatteringand flash-induced changes in absorbance at 518 nm were examinedin intact leaves. After chilling of leaves at 5?C in the lightfor 5 h, the non-photochemical quenching of fluorescence, ameasure of energisation of thylakoids, was largely suppressed.The treatment also caused a suppression of light-induced changesin the light scattering by leaves, which depends on the formationof a pH gradient across thylakoid membranes. When thylakoidswere prepared by very gentle methods from the leaves chilledin the light, through a step of preparation of intact chloro-plasts,the transport of electrons from H2O to ferricyanide was uncoupled,being insensitive to an uncoupler, methylamine. These data provide consistent evidence that the thylakoids areuncoupled in situ by the chilling of leaves in the light and,as a consequence of the uncoupling, the energisation of themembranes is suppressed. However, the decay of the flash-inducedchange in absorbance at 518 nm in leaves was not markedly acceleratedby the treatment. The thylakoids isolated from leaves chilledin the light, which were in the uncoupled state, also did notshow a rapid decay, unless an efficient uncoupler such as gramicidinwas added. These results suggest that even a considerable uncouplingof thylakoids, brought about by chilling of leaves in the light,is not sufficient to cause a marked acceleration of the decayof the flash-induced change in absorbance at 518 nm. Therefore,analysis at 518 nm is not always a sensitive method for assessingthe coupling state of thylakoids. (Received July 1, 1991; Accepted October 4, 1991)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号