首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha−1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y−1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y−1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y−1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.  相似文献   

3.
4.
5.
中国森林生态系统中植物固定大气碳的潜力   总被引:82,自引:2,他引:82  
1 前 言在引起全球温室效应的痕量气体中 ,尤以含C气体的作用最为显著。CO2 和CH4两种含碳气体的贡献将达到 75 %[1] 。而且 ,在大气中这两种气体的浓度正在不断增加[2 ] 。为了弄清大气中这些含碳痕量气体的来源和归宿 ,首先应该搞清楚全球主要碳库的现有贮量及其潜力。森林是全球陆地生态系统中的最大有机碳库 ,它贮有1 1 4 6PgC ,占整个陆地碳库的 5 6%[3] 。而且更重要的是森林生态系统具有较高的碳贮存密度(carbondensity ,即与别的土地利用方式相比 ,单位面积内可以贮存更多量的有机碳 )。据研究 ,森林生态系…  相似文献   

6.
7.
8.
The precise and accurate quantitative evaluation of the temporal and spatial pattern of carbon (C) storage in forest ecosystems is critical for understanding the role of forests in the global terrestrial C cycle and is essential for formulating forest management policies to combat climate change. In this study, we examined the C dynamics of forest ecosystems in Shaanxi, northwest China, based on four forest inventories (1989–1993, 1994–1998, 1999–2003, and 2004–2008) and field-sampling measurements (2012). The results indicate that the total C storage of forest ecosystems in Shaanxi increased by approximately 29.3%, from 611.72 Tg in 1993 to 790.75 Tg in 2008, partially as a result of ecological restoration projects. The spatial pattern of C storage in forest ecosystems mainly exhibited a latitude-zonal distribution across the province, increasing from north (high latitude) to south (low latitude) generally, which signifies the effect of environmental conditions, chiefly water and heat related factors, on forest growth and C sequestration. In addition, different data sources and estimation methods had a significant effect on the results obtained, with the C stocks in 2008 being considerably overestimated (864.55 Tg) and slightly underestimated (778.07 Tg) when measured using the mean C density method and integrated method, respectively. Overall, our results demonstrated that the forest ecosystem in Shaanxi acted as a C sink over the last few decades. However, further studies should be carried out with a focus on adaption of plants to environmental factors along with forest management for vegetation restoration to maximize the C sequestration potential and to better cope with climate change.  相似文献   

9.
中国森林植被碳库的动态变化及其意义   总被引:120,自引:0,他引:120  
利用1949年至1998年间7次森林资源清查资料,结合使用森林生物量实测资料,采用改良的生物量换算因子法,推算了中国50年来森林碳库和平均碳密度的变化,分析了中国森林植被的CO2源汇功能,结果表明,70年代中期以前,主要由于森林砍伐等人为作用,中国森林碳库和碳密度都是减少的,碳储量减少了0.62PgC(Pg=10^15g),年均减少约0.024PgC。之后,呈增加趋势。在最近的20多年中,森林碳库由70年代末期的4.38PgC增加到1998年的4.75PgC,共增加0.37PgC,年平均增加0.022PgC。这种增加主要由人工造林增加所致。20多年来,由于人工林增加导致碳汇增加0.45PgC,年平均增加吸收0.021PgC/a。人工林的平均碳密度也显增加,共增加了约一倍。这除了人工成林增多外,气温上升和CO2浓度施肥也可能是促进森林生长的重要因子。  相似文献   

10.
我国森林生态系统碳储量和碳平衡的研究方法及进展   总被引:30,自引:0,他引:30  
森林在全球碳循环中起着十分重要的作用。从现存生物量的角度出发,综述了我国森林生态系统碳储量和碳平衡研究采用的主要方法及手段,以及在该领域的研究现状,并从实际情况出发探讨我国未来研究的发展趋势和亟待解决的一些问题。  相似文献   

11.
Measuring Fine Root Turnover in Forest Ecosystems   总被引:13,自引:1,他引:12  
Development of direct and indirect methods for measuring root turnover and the status of knowledge on fine root turnover in forest ecosystems are discussed. While soil and ingrowth cores give estimates of standing root biomass and relative growth, respectively, minirhizotrons provide estimates of median root longevity (turnover time) i.e., the time by which 50% of the roots are dead. Advanced minirhizotron and carbon tracer studies combined with demographic statistical methods and new models hold the promise of improving our fundamental understanding of the factors controlling root turnover. Using minirhizotron data, fine root turnover (y−1) can be estimated in two ways: as the ratio of annual root length production to average live root length observed and as the inverse of median root longevity. Fine root production and mortality can be estimated by combining data from minirhizotrons and soil cores, provided that these data are based on roots of the same diameter class (e.g., < 1 mm in diameter) and changes in the same time steps. Fluxes of carbon and nutrients via fine root mortality can then be estimated by multiplying the amount of carbon and nutrients in fine root biomass by fine root turnover. It is suggested that the minirhizotron method is suitable for estimating median fine root longevity. In comparison to the minirhizotron method, the radio carbon technique favor larger fine roots that are less dynamics. We need to reconcile and improve both methods to develop a more complete understanding of root turnover.  相似文献   

12.
模拟大气氮沉降对中国森林生态系统影响的研究进展   总被引:3,自引:0,他引:3  
人类活动加剧了活性氮的生产和排放,并导致氮沉降日益增加并全球化。目前,人类活动对全球氮循环的干扰已经超出了地球系统安全运行的界限。中国已成为全球氮沉降的高发区域,高氮沉降已经威胁到生态系统的健康和安全,并成为生态文明建设过程中亟待理清和解决的热点问题。对国际上和中国森林生态系统模拟氮沉降研究的概况进行了综述,并从生物学和非生物学两大过程重点阐述模拟氮沉降增加对中国主要森林生态系统影响的研究进展。中国自2000年以后才开始重视大气氮沉降产生的生态环境问题,中国科学院华南植物园在国内森林生态系统模拟氮沉降试验研究上做出了开创性的贡献。模拟氮沉降研究表明,持续高氮输入将会显著改变森林生态系统的结构和功能,并威胁生态系统的健康发展,特别是处于氮沉降热点区域的中国中南部。森林生态系统的氮沉降效应依赖于系统的氮状态、土地利用历史、气候特征、林型和林龄等。最后,对未来的研究提出了一些建议,包括加强长期跟踪研究和不同气候带站点之间的联网研究,特别是在森林生态系统对长期氮沉降响应与适应的过程机制、地下碳氮吸存潜力研究、以及与其他全球变化因子的耦合研究等方面,以期为森林生态系统的可持续发展提供理论基础和管理依据。  相似文献   

13.
Increases in fire impacts over many regions of the world have led to large-scale investments in fire-suppression efforts. There is increasing recognition that biomass extraction for energy purposes may become an important forest-management practice in fire-prone ecosystems. However, at present, very few studies have explicitly assessed biomass extraction as a fuel treatment at landscape scale. Here, we use a landscape fire-succession model in Catalonia (NE Spain) to quantitatively evaluate the potential effects of a biomass extraction-based strategy on essential fire-regime attributes after considering different levels of fire suppression, biomass extraction intensity, and spatial allocation of such efforts. Our simulations indicated that the effectiveness (area suppressed in relation to expected area to burn) at suppressing wildfires was determined by extraction intensity, spatial allocation of the extraction effort, and the fire-suppression levels involved. Indeed, the highest suppressed-area values were found with lower harvesting intensities, especially under high fire-suppression capabilities and strategies focused on bioenergy goals (figures close to 0.7). However, the leverage (area suppressed in relation to managed area) was higher when the treatments were based on the fire-prevention strategy and focused on high-fire-risk areas (up to 0.45) than with treatment designed for energy reasons (lower than 0.15). We conclude that biomass extraction for energy purposes has the potential to induce changes in fire regimes and can therefore be considered a cost-effective landscape-level fuel-reduction treatment. However, our results suggest that large-scale biomass extraction may be needed if significant changes in fire regimes are to be expected.  相似文献   

14.
Xishuangbanna is a region located at the northern edge of tropical Asia. Biomass estimates of its tropical rain forest have not been published in English literature. We estimated forest biomass and its allocation patterns in five 0.185–1.0 ha plots in tropical seasonal rain forests of Xishuangbanna. Forest biomass ranged from 362.1 to 692.6 Mg/ha. Biomass of trees with diameter at 1.3 m breast height (DBH) ≥ 5 cm accounted for 98.2 percent of the rain forest biomass, followed by shrubs (0.9%), woody lianas (0.8%), and herbs (0.2%). Biomass allocation to different tree components was 68.4–70.0 percent to stems, 19.8–21.8 percent to roots, 7.4–10.6 percent to branches, and 0.7–1.3 percent to leaves. Biomass allocation to the tree sublayers was 55.3–62.2 percent to the A layer (upper layer), 30.6–37.1 percent to the B layer (middle), and 2.7–7.6 percent to the C layer (lower). Biomass of Pometia tomentosa, a dominant species, accounted for 19.7–21.1 percent of the total tree biomass. The average density of large trees (DBH ≥100 cm) was 9.4 stems/ha on two small plots and 3.5 stems/ha on two large plots, illustrating the potential to overestimate biomass on a landscape scale if only small plots are sampled. Biomass estimations are similar to typical tropical rain forests in Southeast Asia and the Neotropics.  相似文献   

15.
The subtropical forest biome occupies about 25% of China, with species diversity only next to tropical forests. Despite the recognized importance of subtropical forest in regional carbon storage and cycling, uncertainties remain regarding the carbon storage of subtropical forests, and few studies have quantified within-site variation of biomass, making it difficult to evaluate the role of these forests in the global and regional carbon cycles. Using data for a 24-ha census plot in east China, we quantify aboveground biomass, characterize its spatial variation among different habitats, and analyse species relative contribution to the total aboveground biomass of different habitats. The average aboveground biomass was 223.0 Mg ha−1 (bootstrapped 95% confidence intervals [217.6, 228.5]) and varied substantially among four topographically defined habitats, from 180.6 Mg ha−1 (bootstrapped 95% CI [167.1, 195.0]) in the upper ridge to 245.9 Mg ha−1 (bootstrapped 95% CI [238.3, 253.8]) in the lower ridge, with upper and lower valley intermediate. In consistent with our expectation, individual species contributed differently to the total aboveground biomass of different habitats, reflecting significant species habitat associations. Different species show differently in habitat preference in terms of biomass contribution. These patterns may be the consequences of ecological strategies difference among different species. Results from this study enhance our ability to evaluate the role of subtropical forests in the regional carbon cycle and provide valuable information to guide the protection and management of subtropical broad-leaved forest for carbon sequestration and carbon storage.  相似文献   

16.
森林生态系统中枯落物分解速率研究方法   总被引:14,自引:3,他引:14  
刘增文 《生态学报》2002,22(6):954-956
林地枯落物分解率是研究森林生态系统养分循环的重要内容之一,传统的尼龙网袋实测法虽然能提供某一具体年份枯落物分解率的准确数据,但因其费时费力且不能反映整个历史时期的平均水平而难以推广,基于林地枯落物积累平衡原理,首次提出了利用枯落物平衡模型推算枯落物分解率的方法(简称平衡法),并将之应用于黄土残塬沟壑区刺槐林地枯落物分解率的计算。这种由平衡法推算所得枯落物分解率能反映林地的历史水平,弥补了尼龙网袋实测法的不足,建议在森林生态系统研究中推广应用。  相似文献   

17.
Rapid Cycling of Organic Nitrogen in Taiga Forest Ecosystems   总被引:8,自引:0,他引:8  
ABSTRACT We examined the dynamics of organic nitrogen (N) turnover in situ across a primary successional sequence in interior Alaska, USA, in an attempt to understand the magnitude of these fluxes in cold, seasonally frozen soils. Through a combination of soil extraction procedures and measurements of 13C-enriched CO2 efflux from soils amended in the field with 13C-labeled amino acids, we were able to trace the fate of this N form. Amino acid turnover in situ at soil temperatures of 10°C or below show that amino acids represent a highly dynamic soil N pool with turnover times of approximately 3–6 h. The rapid turnover of free amino acids is associated with high soil proteolytic activity, which in turn is tightly correlated with soil protein concentration. Moreover, these estimates of soil amino acid turnover in the field correspond well with measurements of amino acid turnover under equivalent temperatures in the laboratory. The gross flux of amino acid-N over the growing season greatly exceeded the annual vegetation N requirement, suggesting that microbial biomass represent a significant sink for this organic N. Depending on the strength of this sink, N flow via free soil amino acids can potentially account for the entire N demand of vegetation in the absence of net N mineralization. These relationships underscore the important biogeochemical role of labile DON fractions in high-latitude forest ecosystems.  相似文献   

18.
在对中国农业生态系统的生物量、生产力研究资料的收集、整理基础上,建立了中国农业生态系统的生物量、生产力数据库,并实现了对该数据库信息的管理,该系统可进行数据录入、修改、系统维护、查询并生成子数据库,与SAS软件结合对提取数据集可作进一步分析、研究.可广泛用于农业生态系统的生物量、生产力研究领域  相似文献   

19.
Ratios between above- and underground phytomass of tree organs were studied for different forest types. The partitioning of phytomass into tree fractions was described using rank distributions characterizing the relationships between the resource volume available for each tree organ and the ranks of biomass fractions. Species-specific parameters of biomass partitioning into tree organs were calculated, and the dependences of these parameters on the forest type and tree size were revealed. Independent verification of the biomass distribution model was performed.  相似文献   

20.
The Forest Health Monitoring (FHM) and Forest Inventory and Analyses (FIA) programs are integrated biological monitoring systems that use nationally standardized methods to evaluate and report on the health and sustainability of forest ecosystems in the United States. Many of the anticipated changes in forest ecosystems from climate change were also issues addressed in sections of FHM's National Technical Report 1991 to 1998. The integrated FHM and FIA monitoring systems are currently establishing baseline conditions (status and change) in most States for many of the expected effects, and are projected to have full implementation for all States and Territories in 2003. These monitoring systems utilize a broad suite of indicators of key ecosystem components and processes that are responsive to many biotic and abiotic stressors, including those anticipated from climate change. These programs will contribute essential information for many decades for many of the anticipated changes in forest ecosystem from increasing carbon dioxide concentrations, changing climatic scenarios, and extreme weather events that are probable in the next 30 to 100 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号