首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Consistent individual differences in behaviour have been well documented in a variety of animal taxa, but surprisingly little is known about the fitness and life-history consequences of such individual variation. In wild salmonids, the timing of fry emergence from gravel spawning nests has been suggested to be coupled with individual behavioural traits. Here, we further investigate the link between timing of spawning nest emergence and behaviour of Atlantic salmon (Salmo salar), test effects of social rearing environment on behavioural traits in fish with different emergence times, and assess whether behavioural traits measured in the laboratory predict growth, survival, and migration status in the wild. Atlantic salmon fry were sorted with respect to emergence time from artificial spawning nest into three groups: early, intermediate, and late. These emergence groups were hatchery-reared separately or in co-culture for four months to test effects of social rearing environment on behavioural traits. Twenty fish from each of the six treatment groups were then subjected to three individual-based behavioural tests: basal locomotor activity, boldness, and escape response. Following behavioural characterization, the fish were released into a near-natural experimental stream. Results showed differences in escape behaviour between emergence groups in a net restraining test, but the social rearing environment did not affect individual behavioural expression. Emergence time and social environment had no significant effects on survival, growth, and migration status in the stream, although migration propensity was 1.4 to 1.9 times higher for early emerging individuals that were reared separately. In addition, despite individuals showing considerable variation in behaviour across treatment groups, this was not translated into differences in growth, survival, and migration status. Hence, our study adds to the view that fitness (i.e., growth and survival) and life-history predictions from laboratory measures of behaviour should be made with caution and ideally tested in nature.  相似文献   

2.
Temperature variations are known to modulate aging and life-history traits in poikilotherms as different as worms, flies and fish. In invertebrates, temperature affects lifespan by modulating the slope of age-dependent acceleration in death rate, which is thought to reflect the rate of age-related damage accumulation. Here, we studied the effects of temperature on aging kinetics, aging-related behavioural deficits, and age-associated histological markers of senescence in the short-lived fish Nothobranchius furzeri. This species shows a maximum captive lifespan of only 3 months, which is tied with acceleration in growth and expression of aging biomarkers. These biological peculiarities make it a very convenient animal model for testing the effects of experimental manipulations on life-history traits in vertebrates. Here, we show that (i) lowering temperature from 25 degrees C to 22 degrees C increases both median and maximum lifespan; (ii) life extension is due to reduction in the slope of the age-dependent acceleration in death rate; (iii) lowering temperature from 25 degrees C to 22 degrees C retards the onset of age-related locomotor and learning deficits; and (iv) lowering temperature from 25 degrees C to 22 degrees C reduces the accumulation of the age-related marker lipofuscin. We conclude that lowering water temperature is a simple experimental manipulation which retards the rate of age-related damage accumulation in this short-lived species.  相似文献   

3.
Despite the diversity of mammalian life histories, persistent patterns of covariation have been identified, such as the ‘fast–slow’ axis of life-history covariation. Smaller species generally exhibit ‘faster’ life histories, developing and reproducing rapidly, but dying young. Hormonal mechanisms with pleiotropic effects may mediate such broad patterns of life-history variation. Insulin-like growth factor 1 (IGF-1) is one such mechanism because heightened IGF-1 activity is related to traits associated with faster life histories, such as increased growth and reproduction, but decreased lifespan. Using comparative methods, we show that among 41 mammalian species, increased plasma IGF-1 concentrations are associated with fast life histories and altricial reproductive patterns. Interspecific path analyses show that the effects of IGF-1 on these broad patterns of life-history variation are through its direct effects on some individual life-history traits (adult body size, growth rate, basal metabolic rate) and through its indirect effects on the remaining life-history traits. Our results suggest that the role of IGF-1 as a mechanism mediating life-history variation is conserved over the evolutionary time period defining mammalian diversification, that hormone–trait linkages can evolve as a unit, and that suites of life-history traits could be adjusted in response to selection through changes in plasma IGF-1.  相似文献   

4.
High-quality developmental environments often improve individual performance into adulthood, but allocating toward early life traits, such as growth, development rate and reproduction, may lead to trade-offs with late-life performance. It is, therefore, uncertain how a rich developmental environment will affect the ageing process (senescence), particularly in wild insects. To investigate the effects of early life environmental quality on insect life-history traits, including senescence, we reared larval antler flies (Protopiophila litigata) on four diets of varying nutrient concentration, then recorded survival and mating success of adult males released in the wild. Declining diet quality was associated with slower development, but had no effect on other life-history traits once development time was accounted for. Fast-developing males were larger and lived longer, but experienced more rapid senescence in survival and lower average mating rate compared to slow developers. Ultimately, larval diet, development time and body size did not predict lifetime mating success. Thus, a rich environment led to a mixture of apparent benefits and costs, mediated by development time. Our results indicate that ‘silver spoon'' effects can be complex and that development time mediates the response of adult life-history traits to early life environmental quality.  相似文献   

5.
Synopsis The cost of reproduction is a central concept in theories of life-history evolution. One way to empirically examine the tradeoff between current reproduction and future reproductive prospects is to use natural intraspecific variation in life-history traits. However, this approach is complicated by the sensitivity of life-history traits to variation in the level of resources. We report here an attempt to measure the cost of increasing reproductive activity in populations of female bluehead wrasse,Thalassoma bifasciatum, a coral-reef fish. All of the significant correlations of fecundity and growth rate were positive, in contradiction to the tradeoff predicted by the cost concept. In one of two regions studied, the populations with relatively high mean growth rate had a relatively large mean fecundity. The trait means were also positively associated over time: in months of rapid growth, female reproductive activity was high. Even after removing the effects of habitat and time period in a comparison of individual traits, no growth cost to reproduction appears. Variation in the abundance of resources over space and time is likely to interfere with the measurement of the cost of reproduction in many natural systems.  相似文献   

6.
The short favorable period of time available for the growth in seasonal environments could constrain the resources allocation between growth and other life-history traits, and the short-term fitness benefits of increased growth rate may prevail over other functions. Accelerated growth rates have been associated with long-term deleterious consequences (e.g., decreased lifespan), and recently oxidative stress (the imbalance between pro-oxidants generation and antioxidant defenses) has been suggested as a mediator of these effects. Here, we examined the impact of elevation on growth rate and self-maintenance parameters (resting metabolism, oxidative damage, and antioxidant defenses) of coal tit chicks (Periparus ater). We predicted that the shorter favorable season at the higher-elevation site could lead to a reallocation of resources towards growth at the expense of self-maintenance processes. We found that chicks at high elevation grew significantly faster in terms of body mass and body size. Chicks from the high-elevation site presented higher resting metabolism, higher oxidative damage level, but similar antioxidant defenses, compared to low-elevation chicks. Interestingly, the chicks exhibiting the better antioxidant defenses at 7 days were also those with the highest resting metabolic rate, and the chicks that grew at the faster rate within the high-elevation site were those with the highest levels of oxidative damage on DNA. Our study supports the idea that increasing elevation leads to a higher growth rate in coal tit chicks, possibly in response to a shorter favorable season. In accordance with life-history theory, a bigger investment in growth was done at the expense of body maintenance, at least in terms of oxidative stress.  相似文献   

7.
Life-history theory predicts the occurrence of variation in the life-history traits of fish populations under different environmental conditions; however, most studies have focused on such variation between geographically separated populations. We compared breeding characteristics and life-history traits of the Japanese fluvial sculpin (Cottus pollux), a bottom-dwelling nest-holding fish, between two adjacent sites sub-divided by a weir along a stream course in central Japan. Males in the area with a lower abundance of nest sites reached sexual maturity at an earlier age and had a shorter life span than males in the area with sufficient nest abundance. Size-dependent male reproduction was found only in areas with a shortage of nest sites, supporting the assumption of competitive exclusion among males for nests. Females matured at the same age in both sites with no differences in age-specific growth rates and mortality. Our results provide evidence for life-history variation in age and size at maturity and age-specific mortality schedule of males in nest-holding fishes in a single stream population via different sexual selection regimes related to differences in nest abundance between sites.  相似文献   

8.
Wild-type flies of 12 Drosophila species and semispecies were examined to determine whether correlation patterns between early- and late-life fitness characters predicted for individuals within a population by the antagonistic-pleiotropy hypothesis are reflected in comparisons of related species and semispecies that are known to differ in lifespan. Our goal was to determine whether the hypothesis is relevant to the evolution of life-history differences beyond the population level. Two fitness traits, egg production and percentage mating success, were observed at three ages: onset of reproductive age, one week later, and one month later. Age-dependent patterns of these traits do not consistently conform to predictions of the hypothesis. Species or semispecies that show reproductive vitality early in life need not be short-lived, and long lifespan need not be accompanied by a cost in early reproductive vitality, as measured by mating success and egg production. The two fitness traits can show different age-dependent patterns in the same species or semispecies. Potential explanations for the frequent inconsistency of the data with predictions of the hypothesis are discussed. Results support the idea that the hypothesis is only relevant to the evolution of life-history differences among individuals in the same breeding population confronted by the same environmental constraints.  相似文献   

9.
Optimal investment into life-history traits depends on the environmental conditions that organisms are likely to experience during their life. Evolutionary theory tells us that optimal investment in reproduction versus maintenance is likely to shape the pattern of age-associated decline in performance, also known as aging. The currency that is traded against different vital functions is, however, still debated. Here, we took advantage of a phenotypic manipulation of individual quality in early life to explore (1) long-term consequences on life-history trajectories, and (2) the possible physiological mechanism underlying the life-history adjustments. We manipulated phenotypic quality of a cohort of captive zebra finches (Taeniopygia guttata) by assigning breeding pairs to either an enlarged or a reduced brood. Nestlings raised in enlarged broods were in poorer condition than nestlings raised in reduced broods. Interestingly, the effect of environmental conditions experienced during early life extended to the age at first reproduction. Birds from enlarged broods delayed reproduction. Birds that delayed reproduction produced less offspring but lived longer, although neither fecundity nor longevity were directly affected by the experimental brood size. Using the framework of the life-table response experiment modeling, we also explored the effect of early environmental condition on population growth rate and aging. Birds raised in reduced broods tended to have a higher population growth rate, and a steeper decrease of reproductive value with age than birds reared in enlarged broods. Metabolic resources necessary to fight off the damaging effect of reactive oxygen species (ROS) could be the mechanism underlying the observed results, as (1) birds that engaged in a higher number of breeding events had a weaker red blood cell resistance to oxidative stress, (2) red blood cell resistance to oxidative stress predicted short-term mortality (but not longevity), and (3) was related with a parabolic function to age. Overall, these results highlight that early condition can have long-term effects on life-history trajectories by affecting key life-history traits such as age at first reproduction, and suggest that the trade-off between reproduction and self-maintenance might be mediated by the cumulative deleterious effect of ROS.  相似文献   

10.
Capsule Annual breeding success was relatively constant and is shown to be related to clutch size and growth rate and to be positively affected by rain during egg-laying and advanced chick-rearing phase.

Aims To provide the first long-term data on breeding success of Black-headed Gulls in the Wadden Sea, to analyse its intrinsic and environmental co-variates, and to re-assess the significance of the severe winter 1995/96 on reproduction.

MethodsIn a relatively small colony at the Wadden Sea coast, clutches were selected randomly and enclosed to determine clutch size, egg biometrics, hatching and breeding success, and chick development in 1991 and from 1994 to 1997. Weather data (temperature, rain, wind) were related to life-history traits (clutch size, egg volume, chick development) and reproductive success.

Results Mean annual breeding success was 0.7 fledglings per pair. In 1996, breeding success tended to be lower and chick growth rate was significantly lower. Hatching success was lower in small clutches, chick mortality increased with decreasing chick growth rate. Rain during the egg-laying phase increased clutch size and decreased clutch predation. Rain during the early post-natal phase impaired chick growth. Rain during the phase of linear growth affected chick growth and fledging success positively and brood predation negatively.

Conclusions Breeding success of Black-headed Gulls breeding in the Wadden Sea is relatively constant between years, probably due to the use of terrestrial and marine feeding habitats. Rain may increase the availability of intertidal and terrestrial prey and thus may affect time budgets and food provisioning of parents positively. Lower breeding success in 1996 might have been caused by a relatively dry breeding season and possibly by the preceding severe winter.  相似文献   

11.
The strength of sexual selection may vary between species, among populations and within populations over time. While there is growing evidence that sexual selection may vary between years, less is known about variation in sexual selection within a season. Here, we investigate within‐season variation in sexual selection in male two‐spotted gobies (Gobiusculus flavescens). This marine fish experiences a seasonal change in the operational sex ratio from male‐ to female‐biased, resulting in a dramatic decrease in male mating competition over the breeding season. We therefore expected stronger sexual selection on males early in the season. We sampled nests and nest‐holding males early and late in the breeding season and used microsatellite markers to determine male mating and reproductive success. We first analysed sexual selection associated with the acquisition of nests by comparing nest‐holding males to population samples. Among nest‐holders, we calculated the potential strength of sexual selection and selection on phenotypic traits. We found remarkable within‐season variation in sexual selection. Selection on male body size related to nest acquisition changed from positive to negative over the season. The opportunity for sexual selection among nest‐holders was significantly greater early in the season rather than late in the season, partly due to more unmated males. Overall, our study documents a within‐season change in sexual selection that corresponds with a predictable change in the operational sex ratio. We suggest that many species may experience within‐season changes in sexual selection and that such dynamics are important for understanding how sexual selection operates in the wild.  相似文献   

12.
We have yet to understand fully how conditions during different periods of development interact to influence life-history structure. Can the negative effects of poor juvenile nutrition be overcome by a good adult diet, or are life-history strategies set by early experience? Here, we tested the influence and interaction of different nutritional quality during juvenile and sexual development on female resource allocation physiology, life history and courtship behaviour in the cockroach, Nauphoeta cinerea. Nymphs were raised on either a good-quality or poor-quality diet. After adult eclosion, females were either switched to the opposite diet or remained on their original diet. We assessed mating behaviour and lifetime reproductive success for half of the females from each treatment. We evaluated reproductive investment, somatic investment and resource reallocation from reproduction to the soma via oocyte apoptosis in the remaining females. We found that poor juvenile conditions resulted in a fat phenotype with slow juvenile growth and short reproductive lifespan that could not be retrieved with a change in diet. Good juvenile conditions resulted in the converse, but again fixed, phenotype in adulthood. Thus, juvenile nutrition sets adult patterns of resource allocation.  相似文献   

13.
Ectotherms are sensitive to changes in ambient temperature that impact their physiology and development. To compensate for the effects of variation in temperature, ectotherms exhibit short or long-term physiological plasticity. An extensive body of literature exists towards understanding these effects and the solutions ectotherms have evolved. However, to what extent rearing temperature during early life stages impacts the behaviour expressed in adulthood is less clearly understood. In the present study, we aimed to examine the effects of developmental temperature on life-history traits and mating call features in a tropical field cricket, Acanthogryllus asiaticus. We raised A. asiaticus at two different developmental conditions: 25 °C and 30 °C. We found developmental time and adult lifespan of individuals reared at 30 °C to be shorter than those reared at 25 °C. Increased developmental temperature influenced various body size parameters differentially. Males raised at 30 °C were found to be larger and heavier than those raised at 25 °C, making A. asiaticus an exception to the temperature-size rule. We found a significant effect of change in immediate ambient temperature on different call features of both field-caught and lab-bred individuals. Developmental temperature also affected mating call features wherein individuals raised at higher temperature produced faster calls with a higher peak frequency compared to those raised at lower temperature. In addition, an interactive effect of both developmental and immediate temperature was found on mating call features. Our study highlights the importance of understanding how environmental temperature shapes life-history and sexual communication in crickets.  相似文献   

14.
Steroid hormones have similar functions across vertebrates, but circulating concentrations can vary dramatically among species. We examined the hypothesis that variation in titres of corticosterone (Cort) and testosterone (T) is related to life-history traits of avian species. We predicted that Cort would reach higher levels under stress in species with higher annual adult survival rates since Cort is thought to promote physiological and behavioural responses that reduce risk to the individual. Conversely, we predicted that peak T during the breeding season would be higher in short-lived species with high mating effort as this hormone is known to promote male fecundity traits. We quantified circulating hormone concentrations and key life-history traits (annual adult survival rate, breeding season length, body mass) in males of free-living bird species during the breeding season at a temperate site (northern USA) and a tropical site (central Panama). We analysed our original data by themselves, and also combined with published data on passerine birds to enhance sample size. In both approaches, variation in baseline Cort (Cort0) among species was inversely related to breeding season length and body mass. Stress-induced corticosterone (MaxCort) also varied inversely with body mass and, as predicted, also varied positively with annual adult survival rates. Furthermore, species from drier and colder environments exhibited lower MaxCort than mesic and tropical species; T was lowest in species from tropical environments. These findings suggest that Cort0, MaxCort and T modulate key vertebrate life-history responses to the environment, with Cort0 supporting energetically demanding processes, MaxCort promoting survival and T being related to mating success.  相似文献   

15.
Synopsis Marine fish species with planktonic larval stages experience high and variable pre-adult mortality, and in accordance with general life-history theory have evolved iteroparity to reduce the uncertainty in reproductive success of individuals. In this paper we use a Monte Carlo model to explore the influence of spawning style and adult survival of clupeoids on the spawning success of individual fish during their life span, when early stage survival is determined according to different spectra of environmental variability. In these simulations the variation in reproductive success was governed first by the number of batches of eggs spawned by each adult fish over its lifespan (as determined by its pattern of spawning and the adult survival rate), and secondly by the patterning of environmental variability affecting early stage survival. We consider that the life history styles of the clupeoids are based on co-evolved traits in which the different patterns of iteroparity represent different solutions for coping with the variable nature of early-stage survival. When these life history traits are compared on time scales appropriate to each species, they are therefore unlikely to provide the correlation between brood strength variation and the life span of adults proposed in Murphy's (1968) contribution to this aspect of life history theory.  相似文献   

16.
Inter-seasonal events are believed to connect and affect reproductive performance (RP) in animals. However, much remains unknown about such carry-over effects (COEs), in particular how behaviour patterns during highly mobile life-history stages, such as migration, affect RP. To address this question, we measured at-sea behaviour in a long-lived migratory seabird, the Manx shearwater (Puffinus puffinus) and obtained data for individual migration cycles over 5 years, by tracking with geolocator/immersion loggers, along with 6 years of RP data. We found that individual breeding and non-breeding phenology correlated with subsequent RP, with birds hyperactive during winter more likely to fail to reproduce. Furthermore, parental investment during one year influenced breeding success during the next, a COE reflecting the trade-off between current and future RP. Our results suggest that different life-history stages interact to influence RP in the next breeding season, so that behaviour patterns during winter may be important determinants of variation in subsequent fitness among individuals.  相似文献   

17.
Herring (Clupea harengus) and sprat (Sprattus sprattus) are the key prey resources of common terns (Sterna hirundo) breeding in the Wadden Sea. Breeding success of the terns has been below average since 2002, coinciding with exceptionally low herring recruitment and sprat abundance. Time series of herring and sprat abundance in the North Sea and in the Wadden Sea were analyzed to explain long-term breeding success and chick development at two common tern breeding colonies. North Sea herring recruitment and sprat abundance in the Wadden Sea explained the largest part of common tern breeding success, both as single variables and in a multiple regression approach. Breeding success showed stronger correlations with herring recruitment indices derived from the North Sea region compared to the Wadden Sea. Also, herring and sprat abundance data explained more variability in breeding success than of more directly responding measures such as growth rate and maximum weight of chicks. Despite spatial and temporal incoherences between fish surveys and the common tern breeding season, breeding success of common terns reflected the abundance of their key prey fish beyond their foraging range and breeding season. We argue that the ecological connectivity between large- and small-scale herring abundance and the responsiveness of common tern breeding success is strong enough to establish a fish–seabird indicator system to be potentially valuable in monitoring and conservation.  相似文献   

18.
Size-selective harvest of fish and crustacean populations has reduced stock numbers, and led to reduced growth rates and earlier maturation. In contrast to the focus on size-selective effects of harvest, here, we test the hypothesis that fishing may select on life-history traits (here, growth rate) via behaviour, even in the absence of size selection. If true, then traditional size-limits used to protect segments of a population cannot fully protect fast growers, because at any given size, fast-growers will be more vulnerable owing to bolder behaviour. We repeatedly measured individual behaviour and growth of 86 crayfish and found that fast-growing individuals were consistently bold and voracious over time, and were subsequently more likely to be harvested in single- and group-trapping trials. In addition, there was some indication that sex had independent effects on behaviour and trappability, whereby females tended to be less active, shyer, slower-growing and less likely to be harvested, but not all these effects were significant. This study represents, to our knowledge, the first across-individual support for this hypothesis, and suggests that behaviour is an important mechanism for fishing selectivity that could potentially lead to evolution of reduced intrinsic growth rates.  相似文献   

19.
Synopsis We compared life-history traits such as fecundity, sex ratio, reproductive cycle, age at sexual maturity, embryonic period, egg size, early growth and morphology in two clonal strains (PAN-RS and DAN) of the mangrove killifish, Rivulus marmoratus, under constant rearing conditions. We found a positive relationship between growth and reproductive effort. Fecundity was significantly higher in the PAN-RS strain than in the DAN strain. The sex ratio was significantly different, with DAN producing more primary males than PAN-RS. Spawning and ovulation cycle did not clearly differ between the strains. PAN-RS showed a significantly higher growth rate than DAN from 0 to 100 days after hatching, however, age at sexual maturity, embryonic period, egg size, and morphometric and meristic characteristics (vertebral and fin-ray counts) did not differ between the two strains. The high fecundity of PAN-RS may provide an increased chance of offspring survival, while the attainment of sexual maturity at a smaller size in DAN may allow them to invest earlier in reproduction to increase breeding success. Variations in the life-history traits of PAN-RS and DAN may be adaptive strategies for life in their natural habitat, which consists of mangrove estuaries with a highly variable environment.  相似文献   

20.
The potentially multivoltine comma butterfly, Polygonia c-album L., hibernates in the adult stage. The adult seasonal morph is demonstrated to be a good indicator of whether an individual has entered reproductive diapause or is developing directly to sexual maturation. This fact, and the assumption that a short development time is not equally important to all categories of individuals, was used to test predictions on variation in life-history traits among categories (morphs and sexes) and environments (temperature and photoperiod) at the level of individuals and to some extent families and populations (the univoltine Stockholm population and the partially bivoltine Oxford population). Individuals developing to adults in a short time were expected to be smaller and lighter as a result of a basic trade-off between the two traits. Development times varied in accordance with predictions, but in most cases this was due to plastic growth and development in both the larval and pupal stages rather than through variation in size or weight, i.e. size was a highly canalized trait. This suggests a relationship between plasticity and canalization and a strong potential for plasticity to shield life-history traits from selection. Individuals regulated development times also within developmental pathways, in response to photoperiods indicating the progression of the season. These and other results suggest that development times are not normally minimized in temperate butterflies unless this is enforced by direct development and protandry. There is thus scope for a high degree of adaptive plasticity in growth- and developmental rates which may devalue the basic trade-offs assumed by life-history theory and account for inconsistencies with its predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号