首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
Various feeder layers have been extensively applied to support the prolonged growth of human pluripotent stem cells (hPSCs) for in vitro cultures. Among them, mouse embryonic fibroblast (MEF) and mouse fibroblast cell line (SNL) are most commonly used feeder cells for hPSCs culture. However, these feeder layers from animal usually cause immunogenic contaminations, which compromises the potential of hPSCs in clinical applications. In the present study, we tested human umbilical cord mesenchymal stem cells (hUC-MSCs) as a potent xeno-free feeder system for maintaining human induced pluripotent stem cells (hiPSCs). The hUC-MSCs showed characteristics of MSCs in xeno-free culture condition. On the mitomycin-treated hUC-MSCs feeder, hiPSCs maintained the features of undifferentiated human embryonic stem cells (hESCs), such as low efficiency of spontaneous differentiation, stable expression of stemness markers, maintenance of normal karyotypes, in vitro pluripotency and in vivo ability to form teratomas, even after a prolonged culture of more than 30 passages. Our study indicates that the xeno-free culture system may be a good candidate for growth and expansion of hiPSCs as the stepping stone for stem cell research to further develop better and safer stem cells.  相似文献   

3.
Various types of human cells have been tested as feeder cells for the undifferentiated growth of human embryonic stem cells (hESCs) in vitro. We report here the successful culture of two hESC lines (H1 and H9) on human umbilical cord blood (UCB)-derived fibroblast-like cells. These cells permit the long-term continuous growth of undifferentiated and pluripotent hESCs. The cultured hESCs had normal karyotypes, expressed OCT-4, SSEA-4, TRA-1-60, and TRA-1-81, formed cystic embryonic body in vitro and teratomas in vivo after injected into immunodeficient mice. The wide availability of clinical-grade human UCB makes it a promising source of support cells for the growth of hESC for use in cell therapies.  相似文献   

4.
5.
目的:以转染碱性成纤维细胞生长因子(bFGF)的人胎肝基质细胞株(FLSC)培养人胚胎干细胞(hESC),寻找更加安全、有效的体外培养扩增方法。方法:通过ELISA方法定量检测转基因的人FLSC条件培养基中bFGF的分泌量;以商业化的mTeSR1无血清无饲养层培养基、常规小鼠胚胎成纤维细胞(MEF)条件培养基,以及转染bFGF的人FLSC条件培养基(bFGF/FLSC-CM)分别培养扩增H9细胞。通过观察hESC形态、免疫荧光染色、流式细胞检测及RT-PCR,检测hESC全能性标志物的表达。结果:ELISA方法检测bFGF/FLSC-CM中bFGF因子的分泌量为(770.09±17.28)pg/mL,而MEF-CM中bFGF因子的分泌量为(55.59±0.61)pg/mL,两者存在显著差异(P0.01);在3种培养体系下,免疫荧光检测hESC全能性标志Oct-4、Tra-1-81抗体的表达均呈阳性,流式检测细胞表面阶段特异性胚胎抗原4(SSEA-4)抗体阳性细胞的比例均在99%左右;RT-PCR检测到hESC特异的转录因子Oct-4、Nanog、Sox-2的表达。结论:以转染bFGF的人FLSC条件培养基可以有效扩增hESC,可为临床应用提供一种安全、高效、低成本的无饲养层培养方法。  相似文献   

6.
Various types of feeder cells have been adopted for the culture of human embryonic stem cells (hESCs) to improve their attachment and provide them with stemness-supporting factors. However, feeder cells differ in their capacity to support the growth of undifferentiated hESCs. Here, we compared the expression and secretion of four well-established regulators of hESC pluripotency and/or differentiation among five lines of human foreskin fibroblasts and primary mouse embryonic fibroblasts throughout a standard hESC culture procedure. We found that human and mouse feeder cells secreted comparable levels of TGF beta 1. However, mouse feeder cells secreted larger quantities of activin A than human feeder cells. Conversely, FGF-2, which was produced by human feeder cells, could not be detected in culture media from mouse feeder cells. The quantity of BMP-4 was at about the level of detectability in media from all feeder cell types, although BMP-4 dimers were present in all feeder cells. Production of TGF beta 1, activin A, and FGF-2 varied considerably among the human-derived feeder cell lines. Low- and high-producing human feeder cells as well as mouse feeder cells were evaluated for their ability to support the undifferentiated growth of hESCs. We found that a significantly lower proportion of hESCs maintained on human feeder cell types expressed SSEA3, an undifferentiated cell marker. Moreover, SSEA3 expression and thus the pluripotent hESC compartment could be partially rescued by addition of activin A. Cumulatively, these results suggest that the ability of a feeder layer to promote the undifferentiated growth of hESCs is attributable to its characteristic growth factor production.  相似文献   

7.
Human embryonic stem cells (hESCs) are typically cultured on fibroblast feeder cells or in fibroblast conditioned medium supplemented with fibroblast growth factor 2 (FGF2, also known as bFGF). FGF signaling appears to be important for hESC self-renewal and is required to enable the culture of hESCs in an undifferentiated state. In this study, we generated a transgenic fibroblast feeder line stably expressing a secretable FGF4 signal peptide tagged hFGF2 (4SP-hFGF2). The expression of this transgene functionally replaced the requirement for exogenous FGF2 when using these cells as feeders for the maintenance of hESCs. Under these conditions, hESCs maintained the typical marker of pluripotency assessed after long term culture, while still retaining the capacity for differentiation to all three germ layers. This transgene could be applied to mass produce 4SP-hFGF2 protein, serving to be an economical and effective strategy for culturing pluripotent stem cells as feeder cells.  相似文献   

8.
Human embryonic stem cells (hESCs) are pluripotent cells that have indefinite replicative potential and the ability to differentiate into derivatives of all three germ layers. hESCs are conventionally grown on mitotically inactivated mouse embryonic fibroblasts (MEFs) or feeder cells of human origin. In addition, feeder-free culture systems can be used to support hESCs, in which the adhesive substrate plays a key role in the regulation of stem cell self-renewal or differentiation. Extracellular matrix (ECM) components define the microenvironment of the niche for many types of stem cells, but their role in the maintenance of hESCs remains poorly understood. We used a proteomic approach to characterize in detail the composition and interaction networks of ECMs that support the growth of self-renewing hESCs. Whereas many ECM components were produced by supportive and unsupportive MEF and human placental stromal fibroblast feeder cells, some proteins were only expressed in supportive ECM, suggestive of a role in the maintenance of pluripotency. We show that identified candidate molecules can support attachment and self-renewal of hESCs alone (fibrillin-1) or in combination with fibronectin (perlecan, fibulin-2), in the absence of feeder cells. Together, these data highlight the importance of specific ECM interactions in the regulation of hESC phenotype and provide a resource for future studies of hESC self-renewal.  相似文献   

9.
10.
目的:研究比较三种经典饲养层体系使用的成纤维细胞中Wnt基因的表达,及其对共培养的人胚胎干细胞的影响。方法:PCR验证19种Wnt基因在三种不同来源饲养层细胞中的表达情况,q PCR验证各组共培养人胚胎干细胞的Wnt/β-Catenin信号通路相关基因表达水平,流式检测其在不同密度饲养层条件下的增殖分化情况。结果:在全部19种Wnt基因(Wnt1,Wnt2,Wnt2b,Wnt3,Wnt3a,Wnt4,Wnt5a,Wnt5b,Wnt6,Wnt7a,Wnt7b,Wnt8a,Wnt8b,Wnt9a,Wnt9b,Wnt10a,Wnt10b,Wnt11,Wnt16)的表达检测中,昆明白小鼠来源饲养层细胞表达其中的16种,ICR小鼠来源饲养层细胞表达其中的10种,人成纤维细胞来源饲养层细胞表达其中的10种;增加饲养层细胞密度能够不同程度活化Wnt/β-Catenin信号通路下游基因的表达,并激活人胚胎干细胞中的负反馈机制;高密度小鼠饲养层条件促进人胚胎干细胞的分化,高密度人饲养层条件促进人胚胎干细胞的增殖和分化。结论:不同经典饲养层体系提供的Wnt环境不同,其培养的人胚胎干细胞状态也有差异。  相似文献   

11.
Human embryonic stem cells (hESCs) are self-renewing pluripotent cells that can differentiate into specialized cells and hold great promise as models for human development and disease studies, cell-replacement therapies, drug discovery and in vitro cytotoxicity tests. The culture and differentiation of these cells are both complex and expensive, so it is essential to extreme aseptic conditions. hESCs are susceptible to Mycoplasma sp. infection, which is hard to detect and alters stem cell-associated properties. The purpose of this work was to evaluate the efficacy and cytotoxic effect of PlasmocinTM and ciprofloxacin (specific antibiotics used for Mycoplasma sp. eradication) on hESCs. Mycoplasma sp. infected HUES-5 884 (H5 884, stable hESCs H5-brachyury promoter-GFP line) cells were effectively cured with a 14 days PlasmocinTM 25 µg/ml treatment (curative treatment) while maintaining stemness characteristic features. Furthermore, cured H5 884 cells exhibit the same karyotype as the parental H5 line and expressed GFP, through up-regulation of brachyury promoter, at day 4 of differentiation onset. Moreover, H5 cells treated with ciprofloxacin 10 µg/ml for 14 days (mimic of curative treatment) and H5 and WA09 (H9) hESCs treated with PlasmocinTM 5 µg/ml (prophylactic treatment) for 5 passages retained hESCs features, as judged by the expression of stemness-related genes (TRA1-60, TRA1-81, SSEA-4, Oct-4, Nanog) at mRNA and protein levels. In addition, the presence of specific markers of the three germ layers (brachyury, Nkx2.5 and cTnT: mesoderm; AFP: endoderm; nestin and Pax-6: ectoderm) was verified in in vitro differentiated antibiotic-treated hESCs. In conclusion, we found that PlasmocinTM and ciprofloxacin do not affect hESCs stemness and pluripotency nor cell viability. However, curative treatments slightly diminished cell growth rate. This cytotoxic effect was reversible as cells regained normal growth rate upon antibiotic withdrawal.  相似文献   

12.
It has been recently reported that the regulatory circuitry formed by OCT4, miR-302, and NR2F2 controls both pluripotency and neural differentiation of human embryonic stem cells (hESCs). We show here that JMJD1C, a histone 3 lysine 9 (H3K9) demethylase expressed in hESCs, directly interacts with this circuitry. hESCs with stable knockdown of JMJD1C remain pluripotent while having reduced miR-302 expression, decreased BMP signaling, and enhanced TGFβ signaling. JMJD1C binds to the miR-302 promoter and reduces H3K9 methylation. Withdrawal of basic fibroblast growth factor (bFGF) from the culture induces neural differentiation of the knockdown, but not the control, cells within 3 days, accompanied by elevated NR2F2 expression. This can be attenuated with miR-302 mimics or an H3K9 methytransferase inhibitor. Together, our findings suggest that JMJD1C represses neural differentiation of hESCs at least partially by epigenetically sustaining miR-302 expression and that JMJD1C knockdown is sufficient to trigger neural differentiation upon withdrawal of exogenous bFGF.  相似文献   

13.
Dopaminergic (DA) neurons in the substantia nigra pars compacta (also known as A9 DA neurons) are the specific cell type that is lost in Parkinson’s disease (PD). There is great interest in deriving A9 DA neurons from human pluripotent stem cells (hPSCs) for regenerative cell replacement therapy for PD. During neural development, A9 DA neurons originate from the floor plate (FP) precursors located at the ventral midline of the central nervous system. Here, we optimized the culture conditions for the stepwise differentiation of hPSCs to A9 DA neurons, which mimics embryonic DA neuron development. In our protocol, we first describe the efficient generation of FP precursor cells from hPSCs using a small molecule method, and then convert the FP cells to A9 DA neurons, which could be maintained in vitro for several months. This efficient, repeatable and controllable protocol works well in human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) from normal persons and PD patients, in which one could derive A9 DA neurons to perform in vitro disease modeling and drug screening and in vivo cell transplantation therapy for PD.  相似文献   

14.
Human induced pluripotent stem cells (hiPSCs) are a type of pluripotent stem cells artificially derived from an adult somatic cell (typically human fibroblast) by forced expression of specific genes. In recent years, different feeders like inactivated mouse embryonic fibroblasts (MEFs), human dermal fibroblasts (HDFs), and feeder free system have commonly been used for supporting the culture of stem cells in undifferentiated state. In the present work, the culture of hiPSCs and their characterizations on BD Matrigel (feeder-and serum-free system), MEF and HDF feeders using cell culture methods and molecular techniques were evaluated and compared. The isolated HDFs from foreskin samples were reprogrammed to hiPSCs using gene delivery system. Then, the pluripotency ability of hiPSCs cultured on each layer was determined by teratoma formation and immunohistochemical staining. After EBs generation the expression level of three germ layers genes were evaluated by Q-real-time PCR. Also, the cytogenetic stability of hiPSCs cultured on each condition was analyzed by karyotyping and comet assay. Then, the presence of pluripotency antigens were confirmed by Immunocytochemistry (ICC) test and alkaline phosphatase staining. This study were showed culturing of hiPSCs on BD Matrigel, MEF and HDF feeders had normal morphology and could maintain in undifferentiated state for prolonged expansion. The hiPSCs cultured in each system had normal karyotype without any chromosomal abnormalities and the DNA lesions were not observed by comet assay. Moreover, up-regulation in three germ layers genes in cultured hiPSCs on each layer (same to ESCs) compare to normal HDFs were observed (p < 0.05). The findings of the present work were showed in stem cells culturing especially hiPSCs both MEF and HDF feeders as well as feeder free system like Matrigel are proper despite benefits and disadvantages. Although, MEFs is suitable for supporting of stem cell culturing but it can animal pathogens transferring and inducing immune response. Furthermore, HDFs have homologous source with hiPSCs and can be used as feeder instead of MEF but in therapeutic approaches the cells contamination is a problem. So, this study were suggested feeder free culturing of hiPSCs on Matrigel in supplemented media (without using MEF conditioned medium) resolves these problems and could prepare easy applications of hiPSCs in therapeutic approaches of regenerative medicine such as stem-cell therapy and somatic cell nuclear in further researches.  相似文献   

15.
Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), collectively termed human pluripotent stem cells (hPSCs), are typically derived and maintained in adherent and semi-defined culture conditions. Recently a number of groups, including Chen et al., 2012, have demonstrated that hESCs can now be expanded efficiently and maintain pluripotency over long-term passaging as aggregates in a serum-free defined suspension culture system, permitting the preparation of scalable cGMP derived hPSC cultures for cell banking, high throughput research programs and clinical applications. In this short commentary we describe the utility and potential future uses of suspension culture systems for hPSCs.  相似文献   

16.

Background

The growth of stem cells in in vitro conditions requires optimal balance between signals mediating cell survival, proliferation, and self-renewal. For clinical application of stem cells, the use of completely defined conditions and elimination of all animal-derived materials from the establishment, culture, and differentiation processes is desirable.

Methodology/Principal Findings

Here, we report the development of a fully defined xeno-free medium (RegES), capable of supporting the expansion of human embryonic stem cells (hESC), induced pluripotent stem cells (iPSC) and adipose stem cells (ASC). We describe the use of the xeno-free medium in the derivation and long-term (>80 passages) culture of three pluripotent karyotypically normal hESC lines: Regea 06/015, Regea 07/046, and Regea 08/013. Cardiomyocytes and neural cells differentiated from these cells exhibit features characteristic to these cell types. The same formulation of the xeno-free medium is capable of supporting the undifferentiated growth of iPSCs on human feeder cells. The characteristics of the pluripotent hESC and iPSC lines are comparable to lines derived and cultured in standard undefined culture conditions. In the culture of ASCs, the xeno-free medium provided significantly higher proliferation rates than ASCs cultured in medium containing allogeneic human serum (HS), while maintaining the differentiation potential and characteristic surface marker expression profile of ASCs, although significant differences in the surface marker expression of ASCs cultured in HS and RegES media were revealed.

Conclusion/Significance

Our results demonstrate that human ESCs, iPSCs and ASCs can be maintained in the same defined xeno-free medium formulation for a prolonged period of time while maintaining their characteristics, demonstrating the applicability of the simplified xeno-free medium formulation for the production of clinical-grade stem cells. The basic xeno-free formulation described herein has the potential to be further optimized for specific applications relating to establishment, expansion and differentiation of various stem cell types.  相似文献   

17.
心脏毒性是药物研发失败的主要原因之一,也是临床前安全评价研究的难题之一。人胚胎干细胞和诱导型人多能干细胞均具有无限增殖、自我更新和多向分化的特性,为体外心脏毒性筛选实验提供了细胞资源。人胚胎干细胞和诱导型人多能干细胞诱导分化的心肌细胞相似,具有相同的形态结构,且随着培养时间的推移,功能性心、Na^+、Ca^2+通道密度逐渐增加、心肌特异性基因ANF、α—MHC、MLC-2α的表达量增加,具有相似的动作电位时程和收缩性等特点,相当于幼稚型心肌细胞。将它们应用于已知作用药物的心脏毒性筛选,检测心肌细胞离子通道、动作电位、心脏损伤标志物、收缩功能的变化,获得与临床相似的结果。因此,建立人胚胎干细胞和诱导型人多能干细胞诱导分化心肌细胞的体外评价模型,大大减少了药物研发的时间和成本,克服了种属间的差异,推动了心脏毒性体外评价方法的发展。  相似文献   

18.
Mouse embryonic fibroblasts (MEFs) were used to establish human embryonic stem cells (hESCs) cultures after blastocyst isolation1. This feeder system maintains hESCs from undergoing spontaneous differentiation during cell expansion. However, this co-culture method is labor intensive, requires highly trained personnel, and yields low hESC purity4. Many laboratories have attempted to minimize the number of feeder cells in hESC cultures (i.e. incorporating matrix-coated dishes or other feeder cell types5-8). These modified culture systems have shown some promise, but have not supplanted the standard method for culturing hESCs with mitomycin C-treated mouse embyronic fibroblasts in order to retard unwanted spontaneous differentiation of the hESC cultures. Therefore, the feeder cells used in hESC expansion should be removed during differentiation experiments. Although several techniques are available for purifying the hESC colonies (FACS, MACS, or use of drug resistant vectors) from feeders, these techniques are labor intensive, costly and/or destructive to the hESC. The aim of this project was to invent a method of purification that enables the harvesting of a purer population of hESCs. We have observed that in a confluent hESC culture, the MEF population can be removed using a simple and rapid aspiration of the MEF sheet. This removal is dependent on several factors, including lateral cell-to-cell binding of MEFs that have a lower binding affinity to the styrene culture dish, and the ability of the stem cell colonies to push the fibroblasts outward during the generation of their own "niche". The hESC were then examined for SSEA-4, Oct3/4 and Tra 1-81 expression up to 10 days after MEF removal to ensure maintenance of pluripotency. Moreover, hESC colonies were able to continue growing from into larger formations after MEF removal, providing an additional level of hESC expansion.  相似文献   

19.
Xi J  Wang Y  Zhang P  He L  Nan X  Yue W  Pei X 《PloS one》2010,5(12):e14457
In guiding hES cell technology toward the clinic, one key issue to be addressed is to culture and maintain hES cells much more safely and economically in large scale. In order to avoid using mouse embryonic fibroblasts (MEFs) we isolated human fetal liver stromal cells (hFLSCs) from 14 weeks human fetal liver as new human feeder cells. hFLSCs feeders could maintain hES cells for 15 passages (about 100 days). Basic fibroblast growth factor (bFGF) is known to play an important role in promoting self-renewal of human embryonic stem (hES) cells. So, we established transgenic hFLSCs that stably express bFGF by lentiviral vectors. These transgenic human feeder cells--bFGF-hFLSCs maintained the properties of H9 hES cells without supplementing with any exogenous growth factors. H9 hES cells culturing under these conditions maintained all hES cell features after prolonged culture, including the developmental potential to differentiate into representative tissues of all three embryonic germ layers, unlimited and undifferentiated proliferative ability, and maintenance of normal karyotype. Our results demonstrated that bFGF-hFLSCs feeder cells were central to establishing the signaling network among bFGF, insulin-like growth factor 2 (IGF-2), and transforming growth factor β (TGF-β), thereby providing the framework in which hES cells were instructed to self-renew or to differentiate. We also found that the conditioned medium of bFGF-hFLSCs could maintain the H9 hES cells under feeder-free conditions without supplementing with bFGF. Taken together, bFGF-hFLSCs had great potential as feeders for maintaining pluripotent hES cell lines more safely and economically.  相似文献   

20.
Human embryonic stem cells (hESCs) are hypersensitive to genotoxic stress and display lower survival ability relative to their differentiated progeny. Herein, we attempted to investigate the source of this difference by comparing the DNA damage responses triggered by the topoisomerase I inhibitor camptothecin, in hESCs, human induced pluripotent stem cells (hiPSCs) and hESCs-derived neuroprogenitors (NP). We observed that upon camptothecin exposure pluripotent stem cells underwent apoptosis more swiftly and at a higher rate than differentiated cells. However, the cellular response encompassing ataxia-telangiectasia mutated kinase activation and p53 phosphorylation both on serine 15 as well as on serine 46 resulted very similar among the aforementioned cell types. Importantly, we observed that hESCs and hiPSCs express lower levels of the anti-apoptotic protein Bcl-2 than NP. To assess whether Bcl-2 abundance could account for this differential response we treated cells with ABT-263, WEHI-539 and ABT-199, small molecules that preferentially target the BH3-binding pocket of Bcl-xL and/or Bcl-2 and reduce their ability to sequester pro-apoptotic factors. We found that in the absence of stress stimuli, NP exhibited a higher sensitivity to ABT- 263 and WEHI-539 than hESCs and hiPSCs. Conversely, all tested cell types appeared to be highly resistant to the Bcl-2 specific inhibitor, ABT-199. However, in all cases we determined that ABT-263 or WEHI-539 treatment exacerbated camptothecin-induced apoptosis. Importantly, similar responses were observed after siRNA-mediated down-regulation of Bcl-xL or Bcl-2. Taken together, our results suggest that Bcl-xL contrary to Bcl-2 contributes to ensure cell survival and also functions as a primary suppressor of DNA double-strand brake induced apoptosis both in pluripotent and derived NP cells. The emerging knowledge of the relative dependence of pluripotent and progenitor cells on Bcl-2 and Bcl-xL activities may help to predict cellular responses and potentially manipulate these cells for therapeutic purposes in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号