共查询到20条相似文献,搜索用时 15 毫秒
1.
Afitap Derya K?prülü Renate Kastner Sebastian Wienerroither Caroline Lassnig Eva Maria Putz Olivia Majer Benjamin Reutterer Veronika Sexl Karl Kuchler Mathias Müller Thomas Decker Wilfried Ellmeier 《PloS one》2013,8(3)
In this study we investigated the role of Bruton''s tyrosine kinase (Btk) in the immune response to the Gram-positive intracellular bacterium Listeria monocytogenes (Lm). In response to Lm infection, Btk was activated in bone marrow-derived macrophages (BMMs) and Btk
−/− BMMs showed enhanced TNF-α, IL-6 and IL-12p40 secretion, while type I interferons were produced at levels similar to wild-type (wt) BMMs. Although Btk-deficient BMMs displayed reduced phagocytosis of E. coli fragments, there was no difference between wt and Btk
−/− BMMs in the uptake of Lm upon infection. Moreover, there was no difference in the response to heat-killed Lm between wt and Btk
−/− BMMs, suggesting a role for Btk in signaling pathways that are induced by intracellular Lm. Finally, Btk
−/− mice displayed enhanced resistance and an increased mean survival time upon Lm infection in comparison to wt mice. This correlated with elevated IFN-γ and IL-12p70 serum levels in Btk
−/− mice at day 1 after infection. Taken together, our data suggest an important regulatory role for Btk in macrophages during Lm infection. 相似文献
2.
William T. Festuccia Philippe Pouliot Inan Bakan David M. Sabatini Mathieu Laplante 《PloS one》2014,9(4)
The phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt) axis plays a central role in attenuating inflammation upon macrophage stimulation with toll-like receptor (TLR) ligands. The mechanistic target of rapamycin complex 2 (mTORC2) relays signal from PI3K to Akt but its role in modulating inflammation in vivo has never been investigated. To evaluate the role of mTORC2 in the regulation of inflammation in vivo, we have generated a mouse model lacking Rictor, an essential mTORC2 component, in myeloid cells. Primary macrophages isolated from myeloid-specific Rictor null mice exhibited an exaggerated response to TLRs ligands, and expressed high levels of M1 genes and lower levels of M2 markers. To determine whether the loss of Rictor similarly affected inflammation in vivo, mice were either fed a high fat diet, a situation promoting chronic but low-grade inflammation, or were injected with lipopolysaccharide (LPS), which mimics an acute, severe septic inflammatory condition. Although high fat feeding contributed to promote obesity, inflammation, macrophage infiltration in adipose tissue and systemic insulin resistance, we did not observe a significant impact of Rictor loss on these parameters. However, mice lacking Rictor exhibited a higher sensitivity to sceptic shock when injected with LPS. Altogether, these results indicate that mTORC2 is a key negative regulator of macrophages TLR signalling and that its role in modulating inflammation is particularly important in the context of severe inflammatory challenges. These observations suggest that approaches aimed at modulating mTORC2 activity may represent a possible therapeutic approach for diseases linked to excessive inflammation. 相似文献
3.
Lipopolysaccharide (LPS) is the major pathogen-associated molecular pattern of Gram-negative bacterial infections, and includes smooth (S-LPS) and rough (R-LPS) chemotypes. Upon activation by LPS through CD14, TLR4/MD-2 heterodimers sequentially induce two waves of intracellular signaling for macrophage activation: the MyD88-dependent pathway from the plasma membrane and, following internalization, the TRIF-dependent pathway from endosomes. We sought to better define the role of scavenger receptors CD36 and CD204/SR-A as accessory LPS receptors that can contribute to pro-inflammatory and microbicidal activation of macrophages. We have found that CD36 differently regulates activation of mouse macrophages by S-LPS versus R-LPS. The ability of CD36 to substitute for CD14 in loading R-LPS, but not S-LPS onto TLR4/MD-2 allows CD14-independent macrophage responses to R-LPS. Conversely, S-LPS, but not R-LPS effectively stimulates CD14 binding to CD36, which favors S-LPS transfer from CD14 onto TLR4/MD-2 under conditions of low CD14 occupancy with S-LPS in serum-free medium. In contrast, in the presence of serum, CD36 reduces S-LPS binding to TLR4/MD-2 and the subsequent MyD88-dependent signaling, by mediating internalization of S-LPS/CD14 complexes. Additionally, CD36 positively regulates activation of TRIF-dependent signaling by both S-LPS and R-LPS, by promoting TLR4/MD-2 endocytosis. In contrast, we have found that SR-A does not function as a S-LPS receptor. Thus, by co-operating with CD14 in both R- and S-LPS loading onto TLR4/MD-2, CD36 can enhance the sensitivity of tissue-resident macrophages in detecting infections by Gram-negative bacteria. However, in later phases, following influx of serum to the infection site, the CD36-mediated negative regulation of MyD88-dependent branch of S-LPS-induced TLR4 signaling might constitute a mechanism to prevent an excessive inflammatory response, while preserving the adjuvant effect of S-LPS for adaptive immunity. 相似文献
4.
5.
Yan-Cun Liu Xian-Biao Zou Yan-Fen Chai Yong-Ming Yao 《International journal of biological sciences》2014,10(5):520-529
Diversity and plasticity are two hallmarks of macrophages. M1 macrophages (classically activated macrophages) are pro-inflammatory and have a central role in host defense against infection, while M2 macrophages (alternatively activated macrophages) are associated with responses to anti-inflammatory reactions and tissue remodeling, and they represent two terminals of the full spectrum of macrophage activation. Transformation of different phenotypes of macrophages regulates the initiation, development, and cessation of inflammatory diseases. Here we reviewed the characters and functions of macrophage polarization in infection, atherosclerosis, obesity, tumor, asthma, and sepsis, and proposed that targeting macrophage polarization and skewing their phenotype to adapt to the microenvironment might hold great promise for the treatment of inflammatory diseases. 相似文献
6.
A spontaneous mutation in Bruton's tyrosine kinase (Btk) induces a defect in B-cell development that results in the immunodeficiency diseases X-linked agammaglobulinemia in humans and X-linked immunodeficiency (Xid) in mice. Here we show an unexpected role of Btk in osteoclast formation. When bone marrow cells derived from Xid mice were stimulated with receptor activator of NF-kappaB ligand, an osteoclast differentiation factor, they did not completely differentiate into mature multinucleated osteoclasts. Moreover, we found that the defects appeared to occur at the stage in which mononuclear preosteoclasts fuse to generate multinucleated cells. Supporting this notion, macrophages from Xid mice also failed to form multinucleated foreign body giant cells. The fusion defect of the Xid mutant osteoclasts was caused by decreased expression of nuclear factor of activated T cells c1 (NFATc1), a master regulator of osteoclast differentiation, as well as reduced expression of various osteoclast fusion-related molecules, such as the d2 isoform of vacuolar H(+)-ATPase V0 domain and the dendritic cell-specific transmembrane protein. This deficiency was completely rescued by the introduction of a constitutively active form of NFATc1 into bone marrow-derived macrophages. Our data provide strong evidence that Btk plays a critical role in osteoclast multinucleation by modulating the activity of NFATc1. 相似文献
7.
《Cell metabolism》2019,29(6):1238-1240
8.
9.
巨噬细胞是一群表型和功能均具有高度异质性的免疫细胞。巨噬细胞通过清除并修复受损的细胞和基质来维护组织完整性。巨噬细胞在不同的组织微环境、不同病理条件下,可极化成不同的表型即M1型巨噬细胞(经典活化的巨噬细胞)和M2型巨噬细胞(替代活化的巨噬细胞)。本文将对不同巨噬细胞亚群在抗细菌感染、抗寄生虫感染、哮喘、动脉粥样硬化和肿瘤产生中起到的的保护或致病作用,以及调控巨噬细胞极化的机制进行综述。掌握巨噬细胞极化在不同疾病中的作用以及调控巨噬细胞极化的具体机制,将为疾病的预防、诊断、治疗及药物研发提供新策略。 相似文献
10.
Zhong-Hua Li Natalya G. Dulyaninova Reniqua P. House Steven C. Almo Anne R. Bresnick 《Molecular biology of the cell》2010,21(15):2598-2610
S100A4, a member of the S100 family of Ca2+-binding proteins, is directly involved in tumor metastasis. In addition to its expression in tumor cells, S100A4 is expressed in normal cells and tissues, including fibroblasts and cells of the immune system. To examine the contribution of S100A4 to normal physiology, we established S100A4-deficient mice by gene targeting. Homozygous S100A4−/− mice are fertile, grow normally and exhibit no overt abnormalities; however, the loss of S100A4 results in impaired recruitment of macrophages to sites of inflammation in vivo. Consistent with these observations, primary bone marrow macrophages (BMMs) derived from S100A4−/− mice display defects in chemotactic motility in vitro. S100A4−/− BMMs form unstable protrusions, overassemble myosin-IIA, and exhibit altered colony-stimulating factor-1 receptor signaling. These studies establish S100A4 as a regulator of physiological macrophage motility and demonstrate that S100A4 mediates macrophage recruitment and chemotaxis in vivo. 相似文献
11.
12.
The effects of the lipopolysaccharide (LPS) of Proteus mirabilis on the production of thiobarbituric acid reactive substances (TBARS) and the generation of superoxide radicals (O2?) by pig blood platelets were studied in vitro. The effect of LPS on TBARS formation in platelets was dependent on the concentration of endotoxin. LPS at concentrations above 0.1 μg/108 platelets caused the production of TBARS concomitant with the generation of superoxide radicals. The responses of platelets to LPS suggest that endotoxin, like thrombin (a strong platelets agonist), stimulates an enzymatic cascade of platelet arachidonate via cyclooxygenase and produces thromboxane A2 (TXA2) concomitant with malonyldialdehyde (MDA). 相似文献
13.
巨噬细胞极化是根据周围刺激环境做出表型调节的一个过程.一般极化为2个表型,分别为经典激活的M1巨噬细胞和替代激活的M2巨噬细胞.简而言之,M1巨噬细胞的特征是促炎和抗肿瘤;M2巨噬细胞是抗炎和促肿瘤.巨噬细胞极化被认为是人体生理和病理的关键调节器,其发挥作用的有效性依赖于关键因子的协调表达,而这些关键因子的表达在转录后... 相似文献
14.
15.
16.
17.
18.
To investigate whether carrimycin (CAM) affects the occurrence and development of melanoma by regulating the polarization of macrophages, and the following related cell biology assays were used to examine its function. Methods: The effect of CAM on macrophage polarization was detected by real-time quantitative polymerase chain reaction (Q-RT-PCR) and Western blot. Flow cytometry and Cell Counting Kit-8 were used to detect the effect of CAM on mouse macrophages in vitro and in vivo phagocytosis and proliferation. Cell line-derived xenograft model was constructed via B16-F10 to evaluate the anti-tumor effect of CAM on melanoma. Results: In the mRNA level, CAM could up-regulate the levels of TNF-α and iNOS in M1 and down-regulate the level of Arg-1 in M2. In the protein level, CAM can increase the expression of p-STAT1 and decrease the expression of p-STAT3. In the cell line-derived xenograft model, these data shown that the occurrence and CAM development of melanoma was inhibited after CAM treatment, the tumor inhibition rate was 41.6%, and promoted the increase of the number of M1 macrophages (P<0.05). Conclusion: CAM promotes the increase in the number of M1 macrophages in vivo and inhibits the progression of melanoma, suggesting that CAM may achieve anti-tumor effects by inducing the polarization of macrophages to M1. 相似文献
19.
Koji Ohashi Jennifer L. Parker Noriyuki Ouchi Akiko Higuchi Joseph A. Vita Noyan Gokce Anette Amstrup Pedersen Christoph Kalthoff S?ren Tullin Anette Sams Ross Summer Kenneth Walsh 《The Journal of biological chemistry》2010,285(9):6153-6160
It is established that the adipocyte-derived cytokine adiponectin protects against cardiovascular and metabolic diseases, but the effect of this adipokine on macrophage polarization, an important mediator of disease progression, has never been assessed. We hypothesized that adiponectin modulates macrophage polarization from that resembling a classically activated M1 phenotype to that resembling alternatively-activated M2 cells. Peritoneal macrophages and the stromal vascular fraction (SVF) cells of adipose tissue isolated from adiponectin knock-out mice displayed increased M1 markers, including tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1 and decreased M2 markers, including arginase-1, macrophage galactose N-acetyl-galactosamine specific lectin-1, and interleukin-10. The systemic delivery of adenovirus expressing adiponectin significantly augmented arginase-1 expression in peritoneal macrophages and SVF cells in both wild-type and adiponectin knock-out mice. In culture, the treatment of macrophages with recombinant adiponectin protein led to an increase in the levels of M2 markers and a reduction of reactive oxygen species and reactive oxygen species-related gene expression. Adiponectin also stimulated the expression of M2 markers and attenuated the expression of M1 markers in human monocyte-derived macrophages and SVF cells isolated from human adipose tissue. These data show that adiponectin functions as a regulator of macrophage polarization, and they indicate that conditions of high adiponectin expression may deter metabolic and cardiovascular disease progression by favoring an anti-inflammatory phenotype in macrophages. 相似文献
20.
Xing Jun Li Charles B Goodwin Sarah C. Nabinger Briana M. Richine Zhenyun Yang Helmut Hanenberg Hiroshi Ohnishi Takashi Matozaki Gen-Sheng Feng Rebecca J. Chan 《The Journal of biological chemistry》2015,290(7):3894-3909
Macrophages are vital to innate immunity and express pattern recognition receptors and integrins for the rapid detection of invading pathogens. Stimulation of Dectin-1 and complement receptor 3 (CR3) activates Erk- and Akt-dependent production of reactive oxygen species (ROS). Shp2, a protein-tyrosine phosphatase encoded by Ptpn11, promotes activation of Ras-Erk and PI3K-Akt and is crucial for hematopoietic cell function; however, no studies have examined Shp2 function in particulate-stimulated ROS production. Maximal Dectin-1-stimulated ROS production corresponded kinetically to maximal Shp2 and Erk phosphorylation. Bone marrow-derived macrophages (BMMs) from mice with a conditionally deleted allele of Ptpn11 (Shp2flox/flox;Mx1Cre+) produced significantly lower ROS levels compared with control BMMs. Although YFP-tagged phosphatase dead Shp2-C463A was strongly recruited to the early phagosome, its expression inhibited Dectin-1- and CR3-stimulated phospho-Erk and ROS levels, placing Shp2 phosphatase function and Erk activation upstream of ROS production. Further, BMMs expressing gain of function Shp2-D61Y or Shp2-E76K and peritoneal exudate macrophages from Shp2D61Y/+;Mx1Cre+ mice produced significantly elevated levels of Dectin-1- and CR3-stimulated ROS, which was reduced by pharmacologic inhibition of Erk. SIRPα (signal regulatory protein α) is a myeloid inhibitory immunoreceptor that requires tyrosine phosphorylation to exert its inhibitory effect. YFP-Shp2C463A-expressing cells have elevated phospho-SIRPα levels and an increased Shp2-SIRPα interaction compared with YFP-WT Shp2-expressing cells. Collectively, these findings indicate that Shp2 phosphatase function positively regulates Dectin-1- and CR3-stimulated ROS production in macrophages by dephosphorylating and thus mitigating the inhibitory function of SIRPα and by promoting Erk activation. 相似文献