首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Mycobacterium tuberculosis has the potential to escape various cellular defense mechanisms for its survival which include various oxidative stress responses, inhibition of phagosome-lysosomes fusion and alterations in cell death mechanisms of host macrophages that are crucial for its infectivity and dissemination. Diabetic patients are more susceptible to developing tuberculosis because of impairement of innate immunity and prevailing higher glucose levels. Our earlier observations have demonstrated alterations in the protein profile of M. tuberculosis exposed to concurrent high glucose and tuberculosis conditions suggesting a crosstalk between host and pathogen under high glucose conditions. Since high glucose environment plays crucial role in the interaction of mycobacterium with host macrophages which provide a niche for the survival of M. tuberculosis, it is important to understand various interactive mechanisms under such conditions. Initial phagocytosis and containment of M. tuberculosis by macrophages, mode of macrophage cell death, respiratory burst responses, Mycobacterium and lysosomal co-localization were studied in M. tuberculosis H37Rv infected cells in the presence of varied concentrations of glucose in order to mimic diabetes like conditions. It was observed that initial attachment, phagocytosis and later containment were less effective under high glucose conditions in comparison to normal glucose. Mycobacterium infected cells showed more necrosis than apoptosis as cell death mechanism during the course of infection under high glucose concentrations. Co-localization and respiratory burst assay also indicated evasion strategies adopted by M. tuberculosis under such conditions. This study by using THP1 macrophage model of tuberculosis and high glucose conditions showed immune evasion strategies adapted during co-pathogenesis of tuberculosis and diabetes.  相似文献   

2.

Background

Non-tuberculous mycobacteria recovered from respiratory tract specimens are emerging confounder organisms for the laboratory diagnosis of tuberculosis worldwide. There is an urgent need for new techniques to rapidly identify mycobacteria isolated in clinical practice. Matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS) has previously been proven to effectively identify mycobacteria grown in high-concentration inocula from collections. However, a thorough evaluation of its use in routine laboratory practice has not been performed.

Methodology

We set up an original protocol for the MALDI-TOF MS identification of heat-inactivated mycobacteria after dissociation in Tween-20, mechanical breaking of the cell wall and protein extraction with formic acid and acetonitrile. By applying this protocol to as few as 105 colony-forming units of reference isolates of Mycobacterium tuberculosis, Mycobacterium avium, and 20 other Mycobacterium species, we obtained species-specific mass spectra for the creation of a local database. Using this database, our protocol enabled the identification by MALDI-TOF MS of 87 M. tuberculosis, 25 M. avium and 12 non-tuberculosis clinical isolates with identification scores ≥2 within 2.5 hours.

Conclusions

Our data indicate that MALDI-TOF MS can be used as a first-line method for the routine identification of heat-inactivated mycobacteria. MALDI-TOF MS is an attractive method for implementation in clinical microbiology laboratories in both developed and developing countries.  相似文献   

3.
The FASTPlaqueTB assay is an established diagnostic aid for the rapid detection of Mycobacterium tuberculosis from human sputum samples. Using the FASTPlaqueTB assay reagents, viable Mycobacterium avium subsp. paratuberculosis cells were detected as phage plaques in just 24 h. The bacteriophage used does not infect M. avium subsp. paratuberculosis alone, so to add specificity to this assay, a PCR-based identification method was introduced to amplify M. avium subsp. paratuberculosis-specific sequences from the DNA of the mycobacterial cell detected by the phage. To give further diagnostic information, a multiplex PCR method was developed to allow simultaneous amplification of either M. avium subsp. paratuberculosis or M. tuberculosis complex-specific sequences from plaque samples. Combining the plaque PCR technique with the phage-based detection assay allowed the rapid and specific detection of viable M. avium subsp. paratuberculosis in milk samples in just 48 h.  相似文献   

4.
We tested a mycobacteriophage D29-based method for fluoroquinolone susceptibility assessment in clinical isolates of Mycobacterium tuberculosis. The method was incapable of identifying susceptible strains as such, although a slightly different published protocol successfully identified resistant and susceptible strains. Thus, caution is necessary when choosing an “in-house” D29-based protocol for testing of drug resistance.  相似文献   

5.
Mycobacterium tuberculosis and Mycobacterium bovis are pathogenic bacterial species in the genus Mycobacterium and the causative agents of most cases of tuberculosis (TB). Detection of M. tuberculosis and M. bovis using conventional culture- and biochemical-based assays is time-consuming and laborious. Therefore, a simple and sensitive method for rapid detection has been anxiously awaited. In the present study, a visual loop-mediated isothermal amplification (LAMP) assay was designed from the rimM (encoding 16S rRNA-processing protein) gene sequence and used to rapidly detect M. tuberculosis and M. bovis from clinical samples in South China. The visual LAMP reaction was performed by adding calcein and manganous ion, allowing the results to be read by simple visual observation of color change in a closed-tube system, and which takes less than 1 h at 65 °C. The assay correctly identified 84 M. tuberculosis isolates, 3 M. bovis strains and 1 M. bovis BCG samples, but did not detect 51 non-tuberculous mycobacteria (NTM) isolates and 8 other bacterial species. Sensitivity of this assay for detection of genomic DNA was 1 pg. Specific amplification was confirmed by the ladder-like pattern of gel electrophoresis and restriction enzyme HhaI digestion. The assay successfully detected M. tuberculosis and M. bovis not only in pure bacterial culture but also in clinical samples of sputum, pleural fluid and blood. The speed, specificity, sensitivity of the rimM LAMP, the lack of a need for expensive equipment, and the visual readout show great potential for clinical detection of M. tuberculosis and M. bovis.  相似文献   

6.
This is the first report on the purification and characterization of an anaplerotic enzyme from a Mycobacterium. The anaplerotic reactions play important roles in the biochemical differentiation of mycobacteria into non-replicating stages. We have purified and characterized a pyruvate carboxylase (PYC) from Mycobacterium smegmatis and cloned and sequenced its gene. We have developed a very rapid and efficient purification protocol that provided PYC with very high specific activities (up to 150 U/mg) that remained essentially unchanged over a month. The enzyme was found to be a homomultimer of 121 kDa subunits, mildly thermophilic, absolutely dependent on acyl-CoAs for activity and inhibited by ADP, by excess Mg2+, Co2+, and Mn2+, by aspartate, but not by glutamate and α-ketoglutarate. Supplementation of minimal growth medium with aspartate did not lower the cellular PYC level, rather doubled it; with glutamate the level remained unchanged. These observations would not fit the idea that the M. smegmatis enzyme fulfills a straightforward anaplerotic function; in a closely related organism, Corynebacterium glutamicum, PYC is the major anaplerotic enzyme. Growth on glucose provided 2-fold higher cellular PYC level than that observed with glycerol. The PYCs of M. smegmatis and Mycobacterium tuberculosis were highly homologous to each other. In M. smegmatis, M. tuberculosis and M. lepra, pyc was flanked by a putative methylase and a putative integral membrane protein genes in an identical operon-like arrangement. Thus, M. smegmatis could serve as a model for studying PYC-related physiological aspects of mycobacteria. Also, the ease of purification and the extraordinary stability could make the M. smegmatis enzyme a model for studying the structure–function relationships of PYCs in general. It should be noted that no crystal structure is available for this enzyme of paramount importance in all three domains of life, archaea, bacteria, and eukarya.  相似文献   

7.
The present study was aimed at the development and evaluation of a DNA electrochemical biosensor for Mycobacterium sp. genomic DNA detection in a clinical specimen using a signal amplifier as dual-labeled AuNPs. The DNA electrochemical biosensors were fabricated using a sandwich detection strategy involving two kinds of DNA probes specific to Mycobacterium sp. genomic DNA. The probes of enzyme ALP and the detector probe both conjugated on the AuNPs and subsequently hybridized with target DNA immobilized in a SAM/ITO electrode followed by characterization with CV, EIS, and DPV analysis using the electroactive species para-nitrophenol generated by ALP through hydrolysis of para-nitrophenol phosphate. The effect of enhanced sensitivity was obtained due to the AuNPs carrying numerous ALPs per hybridization and a detection limit of 1.25 ng/ml genomic DNA was determined under optimized conditions. The dual-labeled AuNP-facilitated electrochemical sensor was also evaluated by clinical sputum samples, showing a higher sensitivity and specificity and the outcome was in agreement with the PCR analysis. In conclusion, the developed electrochemical sensor demonstrated unique sensitivity and specificity for both genomic DNA and sputum samples and can be employed as a regular diagnostics tool for Mycobacterium sp. monitoring in clinical samples.  相似文献   

8.
We examined the ability of recombinant guinea pig IL-8 (CXCL8) to activate neutrophils upon infection with virulent Mycobacterium tuberculosis. Using a Transwell insert culture system, contact-independent cell cultures were studied in which rgpIL-8-treated neutrophils were infected with virulent M. tuberculosis in the upper well, and AM were cultured in the lower well. IL-1β and TNF-α mRNA expression was significantly upregulated by AM. Neutralizing anti-rgpTNF-α polyclonal antibody abrogated the response of AM to supernatants from the rgpIL-8-treated, infected neutrophils, while an anti-rgpIL-8 polyclonal antibody had no effect. This suggests that TNF-α produced by rgpIL-8 treated, infected neutrophils may play an important role in the activation of AM in the early response of the host against M. tuberculosis infection. Significant induction of apoptosis in M. tuberculosis-infected neutrophils was observed as compared to the uninfected neutrophils. Feeding of infected, apoptotic neutrophils to AM induced a significant up-regulation of TNF-α and IL-1β mRNA compared to AM exposed to staurosporine-treated apoptotic neutrophils. Suppressed intracellular mycobacterial growth was also seen in AM fed with infected, apoptotic neutrophils as compared to the AM infected with M. tuberculosis H37Rv alone. Taken together, these data suggest that neutrophil–macrophage interactions may contribute to host defense against M. tuberculosis infection.  相似文献   

9.
Rapid detection of drug-resistant Mycobacterium tuberculosis is critical to the effective early treatment and prevention of the transmission of tuberculosis. However, conventional drug susceptibility tests for M. tuberculosis require up to several weeks. In the present study, the One Label Extension genotyping method was adapted for rapid detection of drug resistance-associated sequence variations in six genes of M. tuberculosis, viz. rpoB, rpsL, rrs, embB, katG, or inhA. The method utilizes polymerase chain reaction amplified fragments of the drug resistant genes as reaction templates, and proceeds with template-directed primer extension incorporating a fluorescence-labeled nucleotide, which is then measured by fluorescence polarization. A total of 121 M. tuberculosis isolates from clinical sputum specimens were examined by this genotyping method and verified by direct sequencing of polymerase chain reaction amplicons harboring previously reported mutational sites associated with M. tuberculosis drug resistance. Based on phenotyping results obtained from microbiology-based drug susceptibility tests, the sensitivity, specificity, and test efficiency estimated for One Label Extension assays were respectively 83.9 %, 95.5 %, and 92.4 % with ropB in rifampin resistance, 67.3 %, 97.1 %, and 84.3 % with rpsL and rrs in streptomycin resistance, 60.0 %, 96.0 %, and 91.4 % with embB in ethambutol resistance, 68.4 %, 94.9 %, and 86.3 % with inhA and katG in isoniazid resistance, and 74.1 %, 98.9 %, and 93.2 % in multiple drug resistance defined as resistance to at least both isoniazid and rifampin. In conclusion, examination of clinical sputum specimens by One Label Extension based genotyping provides a valid method for the rapid molecular detection of drug-resistant M. tuberculosis.  相似文献   

10.
Rapid and accurate identification of mycobacteria isolates from primary culture is important due to timely and appropriate antibiotic therapy. Conventional methods for identification of Mycobacterium species based on biochemical tests needs several weeks and may remain inconclusive. In this study, a novel multiplex real-time PCR was developed for rapid identification of Mycobacterium genus, Mycobacterium tuberculosis complex (MTC) and the most common non-tuberculosis mycobacteria species including M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and the M. gordonae in three reaction tubes but under same PCR condition. Genetic targets for primer designing included the 16S rDNA gene, the dnaJ gene, the gyrB gene and internal transcribed spacer (ITS). Multiplex real-time PCR was setup with reference Mycobacterium strains and was subsequently tested with 66 clinical isolates. Results of multiplex real-time PCR were analyzed with melting curves and melting temperature (T m) of Mycobacterium genus, MTC, and each of non-tuberculosis Mycobacterium species were determined. Multiplex real-time PCR results were compared with amplification and sequencing of 16S-23S rDNA ITS for identification of Mycobacterium species. Sensitivity and specificity of designed primers were each 100?% for MTC, M. abscessus, M. fortuitum, M. avium complex, M. kansasii, and M. gordonae. Sensitivity and specificity of designed primer for genus Mycobacterium was 96 and 100?%, respectively. According to the obtained results, we conclude that this multiplex real-time PCR with melting curve analysis and these novel primers can be used for rapid and accurate identification of genus Mycobacterium, MTC, and the most common non-tuberculosis Mycobacterium species.  相似文献   

11.
He Z  Li S  Zhou X 《Current microbiology》2011,63(5):426-432
Mycobacterium tuberculosis is a facultative intracellular pathogen that has evolved the ability to survive and multiply within human macrophages. The enhanced intracellular survival (eis) gene (Rv2416c) from M. tuberculosis has been identified as a potential factor that can enhance the intracellular survival of Mycobacterium smegmatis in the macrophage cell line. However, the time requirements for intracellular survival testing of Mycobacterium using classical methodologies are still too long. In this study, we used M. smegmatis mc2155 that contains eis to develop and study a rapid method to test intracellular survival using flow cytometry. We demonstrated the success of this technique, which required only a few hours. This assay is rapid, accurate, and reproducible, and it would be valuable for the rapid detection of intracellular survival of mycobacteria.  相似文献   

12.

Background

Recombinant antibodies are powerful tools in engineering of novel diagnostics. Due to the small size and stable nature of llama antibody domains selected antibodies can serve as a detection reagent in multiplexed and sensitive assays for M. tuberculosis.

Methodology/Principal Findings

Antibodies for Mycobacterium tuberculosis (M. tb) recognition were raised in Alpaca, and, by phage display, recombinant variable domains of heavy-chain antibodies (VHH) binding to M. tuberculosis antigens were isolated. Two phage display selection strategies were followed: one direct selection using semi-purified protein antigen, and a depletion strategy with lysates, aiming to avoid cross-reaction to other mycobacteria. Both panning methods selected a set of binders with widely differing complementarity determining regions. Selected recombinant VHHs were produced in E. coli and shown to bind immobilized lysate in direct Enzymelinked Immunosorbent Assay (ELISA) tests and soluble antigen by surface plasmon resonance (SPR) analysis. All tested VHHs were specific for tuberculosis-causing mycobacteria (M. tuberculosis, M. bovis) and exclusively recognized an immunodominant 16 kDa heat shock protein (hsp). The highest affinity VHH had a dissociation constant (KD) of 4×10−10 M.

Conclusions/Significance

A broad set of different llama antibodies specific for 16 kDa heat shock protein of M. tuberculosis is available. This protein is highly stable and abundant in M. tuberculosis. The VHH that detect this protein are applied in a robust SPR sensor for identification of tuberculosis-causing mycobacteria.  相似文献   

13.
Molecular methods for bacterial pathogen identification are gaining increased importance in routine clinical diagnostic laboratories. Achieving reliable results using DNA based technologies is strongly dependent on pre-analytical processes including isolation of target cells and their DNA of high quality and purity. In this study a fast and semi-automated method was established for bacterial DNA isolation from whole blood samples and compared to different commercially available kits: Looxster, MolYsis kit, SeptiFast DNA isolation method and standard EasyMAG protocol. The newly established, semi-automated method utilises the EasyMAG device combined with pre-processing steps comprising human cell lysis, centrifugation and bacterial pellet resuspension. Quality of DNA was assessed by a universal PCR targeting the 16S rRNA gene and subsequent microarray hybridisation. The DNA extractions were amplified using two different PCR-mastermixes, to allow comparison of a commercial mastermix with a guaranteed bacterial DNA free PCR mastermix. The modified semi-automated EasyMAG protocol and the Looxster kit gave the most sensitive results. After hybridisation a detection limit of 101 to 102 bacterial cells per mL whole blood was achieved depending on the isolation method and microbial species lysed. Human DNA present in the isolated DNA suspension did not interfere with PCR and did not lead to non-specific hybridisation events.  相似文献   

14.
Mycobacterium tuberculosis is a Gram positive, acid-fast bacteria belonging to genus Mycobacterium, is the leading causative agent of most cases of tuberculosis. The pathogenicity of the bacteria is enhanced by its developed DNA repair mechanism which consists of machineries such as nucleotide excision repair. Nucleotide excision repair consists of excinuclease protein UvrABC endonuclease, multi-enzymatic complex which carries out repair of damaged DNA in sequential manner. UvrC protein is a part of this complex and thus helps to repair the damaged DNA of M. tuberculosis. Hence, structural bioinformatics study of UvrC protein from M. tuberculosis was carried out using homology modeling and molecular docking techniques. Assessment of the reliability of the homology model was carried out by predicting its secondary structure along with its model validation. The predicted structure was docked with the ATP and the interacting amino acid residues of UvrC protein with the ATP were found to be TRP539, PHE89, GLU536, ILE402 and ARG575. The binding of UvrC protein with the DNA showed two different domains. The residues from domain I of the protein VAL526, THR524 and LEU521 interact with the DNA whereas, amino acids interacting from the domain II of the UvrC protein included ARG597, GLU595, GLY594 and GLY592 residues. This predicted model could be useful to design new inhibitors of UvrC enzyme to prevent pathogenesis of Mycobacterium and so the tuberculosis.  相似文献   

15.
Mycobacterium is gram positive, slow growing, disease causing Actinobacteria. Beside potential pathogenic species, Mycobacterium also contains opportunistic pathogens as well as free living non-pathogenic species. Disease related various analyses on Mycobacterium tuberculosis are very widespread. However, genomic study of overall Mycobacterium species for understanding the selection pressure on genes as well as evolution of the organism is still illusive. MLSA and 16s rDNA based analysis has been generated for 241 Mycobacterium strains and a detailed analysis of codon and amino acid usage bias of mycobacterial genes, their functional analysis have been done. Further the evolutionary features of M. avium complex also have been revealed. Mycobacterial genes are moderately GC rich showed higher expression level in PPs and significant negative correlation with biosynthetic cost of proteins. Translational selection pressure was observed in mycobacterial genes. MAC showed close relationship with NPs and higher evolutionary rate in MAC revealed their constant evolving nature.  相似文献   

16.
A microplate-based rapid, inexpensive and robust technique is developed by using tetrazolium salt 2, 3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT) and menadione to determine the viability of Mycobacterium tuberculosis, Mycobacterium bovis BCG and Mycobacterium smegmatis bacilli in microplate format. In general, XTT reduction is an extremely slow process which takes almost 24 h to produce a detectable signal. Menadione could drastically induce this reduction to an almost equal extent within a few minutes in a dose dependent manner. The reduction of XTT is directly proportional to the cell concentration in the presence of menadione. The standardized protocol used 200 μM of XTT and 60 μM of menadione in 250 μl of cell suspension grown either in aerobic or anaerobic conditions. The cell suspension of M. bovis BCG and M. tuberculosis were incubated for 40 min before reading the optical density at 470 nm whereas M. smegmatis was incubated for 20 min. Calculated Signal/Noise (S/N) ratios obtained by applying this protocol were 5.4, 6.4 and 9.4 using M. bovis BCG, M. tuberculosis and M. smegmatis respectively. The calculated Z′ factors were > 0.8 for all mycobacterium bacilli indicating the robustness of the XTT Reduction Menadione Assay (XRMA) for rapid screening of inhibitors. The assay protocol was validated by applying 10 standard anti-tubercular agents on M. tuberculosis, M. bovis BCG and M. smegmatis. The Minimum Inhibitory Concentration (MIC) values were found to be similar to reported values from Colony Forming Unit (CFU) and REMA (resazurin microplate assay) assays. Altogether, XRMA is providing a novel anti-tubercular screening protocol which could be useful in high throughput screening programs against different physiological stages of the bacilli.  相似文献   

17.
This study was aimed to rapidly identify and differentiate two main pathogens of the Mycobacterium tuberculosis complex: Mycobacterium tuberculosis subsp. tuberculosis and Mycobacterium bovis by a modified loop-mediated isothermal amplification (LAMP) assay. The reaction results could be evaluated by naked eye with two optimized closed tube detection methods as follows: adding the modified fluorescence dye in advance into the reaction mix so as to observe the color changes or putting a tinfoil in the tube and adding the SYBR Green I dye on it, then making the dye drop into the bottom of the tube by centrifuge after reaction. The results showed that the two groups of primers used jointly in this assay could successfully identify and differentiate Mycobacterium tuberculosis subsp. tuberculosis and Mycobacterium tuberculosis bovis. Sensitivity test displayed that the modified LAMP assay with the closed tube system could determine the minimal template concentration of 1 copy/μl, which was more sensitive than that of routine PCR. The advantages of this LAMP method for detection of the Mycobacterium tuberculosis complex included high specificity, high sensitivity, simplicity, and superiority in avoidance of aerosol contamination. The modified LAMP assay would provide a potential for clinical diagnosis and therapy of tuberculosis in the developing countries and the resource-limited areas.  相似文献   

18.

Background

The LightCycler® Mycobacterium Detection Kit based on real-time PCR technology for the detection of Mycobacterium tuberculosis, Mycobacterium avium and Mycobacterium kansasii was recently developed. This study evaluated its analytical sensitivity, specificity and reproducibility.

Methodology/Principal Findings

Plasmid standards were prepared and used to determine the limit of detection. The assay was also performed against organisms other than mycobacteria, other mycobacterial strains and interfering substances to exclude cross-reactivity and interference. Reference standards were prepared and tested to assess the assay''s reproducibility. All PCR assays were performed using the LightCycler® 2.0 Instrument. The detection limit for M. tuberculosis was 28 copies per microlitre. Neither cross-reactivity nor interference occurred with non-mycobacterial organisms and substances tested. Overall reproducibility for consecutive measurements, run-to-run, lot-to-lot, day-to-day and laboratory-to-laboratory achieved a coefficient of variance of less than two percent.

Significance

The LightCycler® Mycobacterium Detection kit has shown to be a robust and accurate assay with the potential to be used as a rapid TB diagnostic test.  相似文献   

19.
20.
Mycobacterium tuberculosis, the etiologic agent of human tuberculosis, has an extraordinary ability to survive against environmental stresses including antibiotics. Although stress tolerance of M. tuberculosis is one of the likely contributors to the 6-month long chemotherapy of tuberculosis 1, the molecular mechanisms underlying this characteristic phenotype of the pathogen remain unclear. Many microbial species have evolved to survive in stressful environments by self-assembling in highly organized, surface attached, and matrix encapsulated structures called biofilms 2-4. Growth in communities appears to be a preferred survival strategy of microbes, and is achieved through genetic components that regulate surface attachment, intercellular communications, and synthesis of extracellular polymeric substances (EPS) 5,6. The tolerance to environmental stress is likely facilitated by EPS, and perhaps by the physiological adaptation of individual bacilli to heterogeneous microenvironments within the complex architecture of biofilms 7.In a series of recent papers we established that M. tuberculosis and Mycobacterium smegmatis have a strong propensity to grow in organized multicellular structures, called biofilms, which can tolerate more than 50 times the minimal inhibitory concentrations of the anti-tuberculosis drugs isoniazid and rifampicin 8-10. M. tuberculosis, however, intriguingly requires specific conditions to form mature biofilms, in particular 9:1 ratio of headspace: media as well as limited exchange of air with the atmosphere 9. Requirements of specialized environmental conditions could possibly be linked to the fact that M. tuberculosis is an obligate human pathogen and thus has adapted to tissue environments. In this publication we demonstrate methods for culturing M. tuberculosis biofilms in a bottle and a 12-well plate format, which is convenient for bacteriological as well as genetic studies. We have described the protocol for an attenuated strain of M. tuberculosis, mc27000, with deletion in the two loci, panCD and RD1, that are critical for in vivo growth of the pathogen 9. This strain can be safely used in a BSL-2 containment for understanding the basic biology of the tuberculosis pathogen thus avoiding the requirement of an expensive BSL-3 facility. The method can be extended, with appropriate modification in media, to grow biofilm of other culturable mycobacterial species.Overall, a uniform protocol of culturing mycobacterial biofilms will help the investigators interested in studying the basic resilient characteristics of mycobacteria. In addition, a clear and concise method of growing mycobacterial biofilms will also help the clinical and pharmaceutical investigators to test the efficacy of a potential drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号