首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence.  相似文献   

2.
Ding JR  Liao W  Zhang Z  Mantini D  Xu Q  Wu GR  Lu G  Chen H 《PloS one》2011,6(10):e26596
Exploring topological properties of human brain network has become an exciting topic in neuroscience research. Large-scale structural and functional brain networks both exhibit a small-world topology, which is evidence for global and local parallel information processing. Meanwhile, resting state networks (RSNs) underlying specific biological functions have provided insights into how intrinsic functional architecture influences cognitive and perceptual information processing. However, topological properties of single RSNs remain poorly understood. Here, we have two hypotheses: i) each RSN also has optimized small-world architecture; ii) topological properties of RSNs related to perceptual and higher cognitive processes are different. To test these hypotheses, we investigated the topological properties of the default-mode, dorsal attention, central-executive, somato-motor, visual and auditory networks derived from resting-state functional magnetic resonance imaging (fMRI). We found small-world topology in each RSN. Furthermore, small-world properties of cognitive networks were higher than those of perceptual networks. Our findings are the first to demonstrate a topological fractionation between perceptual and higher cognitive networks. Our approach may be useful for clinical research, especially for diseases that show selective abnormal connectivity in specific brain networks.  相似文献   

3.
In recent years, graph theoretical analyses of neuroimaging data have increased our understanding of the organization of large-scale structural and functional brain networks. However, tools for pipeline application of graph theory for analyzing topology of brain networks is still lacking. In this report, we describe the development of a graph-analysis toolbox (GAT) that facilitates analysis and comparison of structural and functional network brain networks. GAT provides a graphical user interface (GUI) that facilitates construction and analysis of brain networks, comparison of regional and global topological properties between networks, analysis of network hub and modules, and analysis of resilience of the networks to random failure and targeted attacks. Area under a curve (AUC) and functional data analyses (FDA), in conjunction with permutation testing, is employed for testing the differences in network topologies; analyses that are less sensitive to the thresholding process. We demonstrated the capabilities of GAT by investigating the differences in the organization of regional gray-matter correlation networks in survivors of acute lymphoblastic leukemia (ALL) and healthy matched Controls (CON). The results revealed an alteration in small-world characteristics of the brain networks in the ALL survivors; an observation that confirm our hypothesis suggesting widespread neurobiological injury in ALL survivors. Along with demonstration of the capabilities of the GAT, this is the first report of altered large-scale structural brain networks in ALL survivors.  相似文献   

4.

Background

Various neuroimaging studies, both structural and functional, have provided support for the proposal that a distributed brain network is likely to be the neural basis of intelligence. The theory of Distributed Intelligent Processing Systems (DIPS), first developed in the field of Artificial Intelligence, was proposed to adequately model distributed neural intelligent processing. In addition, the neural efficiency hypothesis suggests that individuals with higher intelligence display more focused cortical activation during cognitive performance, resulting in lower total brain activation when compared with individuals who have lower intelligence. This may be understood as a property of the DIPS.

Methodology and Principal Findings

In our study, a new EEG brain mapping technique, based on the neural efficiency hypothesis and the notion of the brain as a Distributed Intelligence Processing System, was used to investigate the correlations between IQ evaluated with WAIS (Whechsler Adult Intelligence Scale) and WISC (Wechsler Intelligence Scale for Children), and the brain activity associated with visual and verbal processing, in order to test the validity of a distributed neural basis for intelligence.

Conclusion

The present results support these claims and the neural efficiency hypothesis.  相似文献   

5.
Recent studies have demonstrated developmental changes of functional brain networks derived from functional connectivity using graph theoretical analysis, which has been rapidly translated to studies of brain network organization. However, little is known about sex- and IQ-related differences in the topological organization of functional brain networks during development. In this study, resting-state fMRI (rs-fMRI) was used to map the functional brain networks in 51 healthy children. We then investigated the effects of age, sex, and IQ on economic small-world properties and regional nodal properties of the functional brain networks. At a global level of whole networks, we found significant age-related increases in the small-worldness and local efficiency, significant higher values of the global efficiency in boys compared with girls, and no significant IQ-related difference. Age-related increases in the regional nodal properties were found predominately in the frontal brain regions, whereas the parietal, temporal, and occipital brain regions showed age-related decreases. Significant sex-related differences in the regional nodal properties were found in various brain regions, primarily related to the default mode, language, and vision systems. Positive correlations between IQ and the regional nodal properties were found in several brain regions related to the attention system, whereas negative correlations were found in various brain regions primarily involved in the default mode, emotion, and language systems. Together, our findings of the network topology of the functional brain networks in healthy children and its relationship with age, sex, and IQ bring new insights into the understanding of brain maturation and cognitive development during childhood and adolescence.  相似文献   

6.
Recently, much scientific attention has been focused on resting brain activity and its investigation through such methods as the analysis of functional connectivity during rest (the temporal correlation of brain activities in different regions). However, investigation of the magnitude of brain activity during rest has focused on the relative decrease of brain activity during a task, rather than on the absolute resting brain activity. It is thus necessary to investigate the association between cognitive factors and measures of absolute resting brain activity, such as cerebral blood flow (CBF), during rest (rest-CBF). In this study, we examined this association using multiple regression analyses. Rest-CBF was the dependent variable and the independent variables included two essential components of cognitive functions, psychometric general intelligence and creativity. CBF was measured using arterial spin labeling and there were three analyses for rest-CBF; namely mean gray matter rest-CBF, mean white matter rest-CBF, and regional rest-CBF. The results showed that mean gray and white matter rest-CBF were significantly and positively correlated with individual psychometric intelligence. Furthermore, mean white matter rest-CBF was significantly and positively correlated with creativity. After correcting the effect of mean gray matter rest-CBF the significant and positive correlation between regional rest-CBF in the perisylvian anatomical cluster that includes the left superior temporal gyrus and insula and individual psychometric intelligence was found. Also, regional rest-CBF in the precuneus was significantly and negatively correlated with individual creativity. Significance of these results of regional rest-CBF did not change when the effect of regional gray matter density was corrected. The findings showed mean and regional rest-CBF in healthy young subjects to be correlated with cognitive functions. The findings also suggest that, even in young cognitively intact subjects, resting brain activity (possibly underlain by default cognitive activity or metabolic demand from developed brain structures) is associated with cognitive functions.  相似文献   

7.
Variation in cognitive ability arises from subtle differences in underlying neural architecture. Understanding and predicting individual variability in cognition from the differences in brain networks requires harnessing the unique variance captured by different neuroimaging modalities. Here we adopted a multi-level machine learning approach that combines diffusion, functional, and structural MRI data from the Human Connectome Project (N = 1050) to provide unitary prediction models of various cognitive abilities: global cognitive function, fluid intelligence, crystallized intelligence, impulsivity, spatial orientation, verbal episodic memory and sustained attention. Out-of-sample predictions of each cognitive score were first generated using a sparsity-constrained principal component regression on individual neuroimaging modalities. These individual predictions were then aggregated and submitted to a LASSO estimator that removed redundant variability across channels. This stacked prediction led to a significant improvement in accuracy, relative to the best single modality predictions (approximately 1% to more than 3% boost in variance explained), across a majority of the cognitive abilities tested. Further analysis found that diffusion and brain surface properties contribute the most to the predictive power. Our findings establish a lower bound to predict individual differences in cognition using multiple neuroimaging measures of brain architecture, both structural and functional, quantify the relative predictive power of the different imaging modalities, and reveal how each modality provides unique and complementary information about individual differences in cognitive function.  相似文献   

8.
Cognitive dysfunction affects half of MS patients. Although brain atrophy generally yields the most robust MRI correlations with cognition, significant variance in cognition between individual MS patients remains unexplained. Recently, markers of cognitive reserve such as premorbid intelligence have emerged as important predictors of neuropsychological performance in MS. In the present study, we aimed to extend the cognitive reserve construct by examining the potential contribution of occupational attainment to cognitive decline in MS patients. Brain atrophy, estimated premorbid IQ, and occupational attainment were assessed in 72 MS patients. The Minimal Assessment of Cognitive Functioning in MS was used to evaluate indices of information processing speed, memory, and executive function. Results showed that occupational attainment was a significant predictor of information processing speed, memory, and executive function in hierarchical linear regressions after accounting for brain atrophy and premorbid IQ. These data suggest that MS patients with low occupational attainment fare worse cognitively than those with high occupational attainment after controlling for brain atrophy and premorbid IQ. Occupation, like premorbid IQ, therefore may make an independent contribution to cognitive outcome in MS. Information regarding an individual''s occupation is easily acquired and may serve as a useful proxy for cognitive reserve in clinical settings.  相似文献   

9.
The mechanisms by which aging and other processes can affect the structure and function of brain networks are important to understanding normal age-related cognitive decline. Advancing age is known to be associated with various disease processes, including clinically asymptomatic vascular and inflammation processes that contribute to white matter structural alteration and potential injury. The effects of these processes on the function of distributed cognitive networks, however, are poorly understood. We hypothesized that the extent of magnetic resonance imaging white matter hyperintensities would be associated with visual attentional control in healthy aging, measured using a functional magnetic resonance imaging search task. We assessed cognitively healthy older adults with search tasks indexing processing speed and attentional control. Expanding upon previous research, older adults demonstrate activation across a frontal-parietal attentional control network. Further, greater white matter hyperintensity volume was associated with increased activation of a frontal network node independent of chronological age. Also consistent with previous research, greater white matter hyperintensity volume was associated with anatomically specific reductions in functional magnetic resonance imaging functional connectivity during search among attentional control regions. White matter hyperintensities may lead to subtle attentional network dysfunction, potentially through impaired frontal-parietal and frontal interhemispheric connectivity, suggesting that clinically silent white matter biomarkers of vascular and inflammatory injury can contribute to differences in search performance and brain function in aging, and likely contribute to advanced age-related impairments in cognitive control.  相似文献   

10.
The conceptual significance of understanding functional brain alterations and cognitive deficits associated with Alzheimer’s disease (AD) process has been widely established. However, the whole-brain functional networks of AD and its prodromal stage, mild cognitive impairment (MCI), are not well clarified yet. In this study, we compared the characteristics of the whole-brain functional networks among cognitively normal (CN), MCI, and AD individuals by applying graph theoretical analyses to [18F] fluorodeoxyglucose positron emission tomography (FDG-PET) data. Ninety-four CN elderly, 183 with MCI, and 216 with AD underwent clinical evaluation and FDG-PET scan. The overall small-world property as seen in the CN whole-brain network was preserved in MCI and AD. In contrast, individual parameters of the network were altered with the following patterns of changes: local clustering of networks was lower in both MCI and AD compared to CN, while path length was not different among the three groups. Then, MCI had a lower level of local clustering than AD. Subgroup analyses for AD also revealed that very mild AD had lower local clustering and shorter path length compared to mild AD. Regarding the local properties of the whole-brain networks, MCI and AD had significantly decreased normalized betweenness centrality in several hubs regionally associated with the default mode network compared to CN. Our results suggest that the functional integration in whole-brain network progressively declines due to the AD process. On the other hand, functional relatedness between neighboring brain regions may not gradually decrease, but be the most severely altered in MCI stage and gradually re-increase in clinical AD stages.  相似文献   

11.
Aging is associated with cognitive decline, diminished brain function, regional brain atrophy, and disrupted structural and functional brain connectivity. Understanding brain networks in aging is essential, as brain function depends on large‐scale distributed networks. Little is known of structural covariance networks to study inter‐regional gray matter anatomical associations in aging. Here, we investigate anatomical brain networks based on structural covariance of gray matter volume among 370 middle‐aged to older adults of 45–85 years. For each of 370 subjects, we acquired a T1‐weighted anatomical MRI scan. After segmentation of structural MRI scans, nine anatomical networks were defined based on structural covariance of gray matter volume among subjects. We analyzed associations between age and gray matter volume in anatomical networks using linear regression analyses. Age was negatively associated with gray matter volume in four anatomical networks (P < 0.001, corrected): a subcortical network, sensorimotor network, posterior cingulate network, and an anterior cingulate network. Age was not significantly associated with gray matter volume in five networks: temporal network, auditory network, and three cerebellar networks. These results were independent of gender and white matter hyperintensities. Gray matter volume decreases with age in networks containing subcortical structures, sensorimotor structures, posterior, and anterior cingulate cortices. Gray matter volume in temporal, auditory, and cerebellar networks remains relatively unaffected with advancing age.  相似文献   

12.
IntroductionNeuropsychological assessment is mandatory in order to identify cognitive changes that occur during either normal or pathological aging. However, normative data adapted to the characteristics of the population are needed in order to reduce the probability of false diagnoses of cognitive impairment. The aim of the present work was to compute normative data for cognitively active elderly people attending a University course for the elderly.Materials and methodsAn analysis was performed on the data from 87 participants (70.9% women) with a mean age of 66.73 years who undertook the abbreviated- revised Barcelona test (test de Barcelona revisado-abreviado). Normative data were calculated using linear regressions controlling for age, gender, and years of education. Adjusted normative data were compared with normative data available from the test manual and obtained from the general population.ResultsYears of education and gender showed the highest weights in the regression model. Normative data for cognitively active older adults showed a different number of low scores compared to normative data from the general population. The number of low scores were related to years of education and general cognitive functioning.ConclusionsNormative data obtained from cognitively active older people could help identify more accurately the cognitive functioning of cognitively active older people than do normative data obtained from the general population.  相似文献   

13.
Age-associated dementia, in particular Alzheimer's disease (AD), will be a major concern of the 21st century. Research into normal brain aging and AD will therefore become increasingly important. As for other areas of medicine, the availability of good animal models will be a limiting factor for progress. Given the complexity of the human brain, the identification of appropriate primate models will be essential to further knowledge of the disease. In this review, we describe the features of brain aging and age-associated neurodegeneration in a small lemurian primate, the Microcebus murinus, also referred to as the mouse lemur. The mouse lemur has a relatively short life expectancy, and animals over 5 years of age are considered to be elderly. Among elderly mouse lemurs, the majority show normal brain aging, whereas approximately 20% develop neurodegeneration. This Microcebus age-associated neurodegeneration is characterized by a massive brain atrophy, abundant amyloid plaques, a cytoskeletal Tau pathology and a loss of cholinergic neurons. While elderly mouse lemurs with normal brain aging maintain memory function and social interaction, animals with age-associated neurodegeneration lose their cognitive and social capacities and demonstrate certain similarities with age-associated human AD. We conclude that M. murinus is an interesting primate model for the study of normal brain aging and the biochemical dysfunctions occurring in age-associated neurodegeneration. Mouse lemurs might also become an increasingly important model for the development of novel treatments in this domain.  相似文献   

14.
Late-onset Alzheimer disease is the most common form of dementia and is strongly associated with age. Today, around 24 million people suffer from dementia and with aging of industrial populations this number will significantly increase throughout the next decades. An effective therapy that successfully decelerates or prevents the progressive neurodegeneration does not exist. Histopathologically Alzheimer disease is characterized by extensive extracellular amyloid β (Aβ) plaques, intracellular neurofibrillary tangles (NFTs), synaptic loss and neuronal cell death in distinct brain regions. The molecular correlation of Aβ or NFTs and development of late-onset Alzheimer disease needs further clarification. This review focuses on structural and functional alterations of the brain during aging, age-associated imbalances of defences against oxidative stress and age-related alterations of the metabolism of Aβ, via a comparison of observations in healthy aged individuals and cognitively impaired or AD patients. Although our understanding of brain region-specific neuronal aging is still incomplete, the early structural and molecular changes in the transition from cognitive health to impairment are subtle and the actual factors triggering the severe brain atrophy during LOAD remain ambiguous.  相似文献   

15.
The relation between pathological findings and clinical and cognitive decline in Multiple Sclerosis remains unclear. Here, we tested the hypothesis that altered functional connectivity could provide a missing link between structural findings, such as thalamic atrophy and white matter lesion load, and clinical and cognitive dysfunction. Resting-state magnetoencephalography recordings from 21 MS patients and 17 gender- and age matched controls were projected onto atlas-based regions-of–interest using beamforming. Average functional connectivity was computed for each ROI and literature-based resting-state networks using the phase-lag index. Structural measures of whole brain and thalamic atrophy and lesion load were estimated from MRI scans. Global analyses showed lower functional connectivity in the alpha2 band and higher functional connectivity in the beta band in patients with Multiple Sclerosis. Additionally, alpha2 band functional connectivity was lower for the patients in two resting-state networks, namely the default mode network and the visual network. Higher beta band functional connectivity was found in the default mode network and in the temporo-parietal network. Lower alpha2 band functional connectivity in the visual network was related to lower thalamic volumes. Beta band functional connectivity correlated positively with disability scores, most prominently in the default mode network, and correlated negatively with cognitive performance in this network. These findings illustrate the relationship between thalamic atrophy, altered functional connectivity and clinical and cognitive dysfunction in MS, which could serve as a bridge to understand how neurodegeneration is associated with altered functional connectivity and subsequently clinical and cognitive decline.  相似文献   

16.
In humans, theta band (5-7 Hz) power typically increases when performing cognitively demanding working memory (WM) tasks, and simultaneous EEG-fMRI recordings have revealed an inverse relationship between theta power and the BOLD (blood oxygen level dependent) signal in the default mode network during WM. However, synchronization also plays a fundamental role in cognitive processing, and the level of theta and higher frequency band synchronization is modulated during WM. Yet, little is known about the link between BOLD, EEG power, and EEG synchronization during WM, and how these measures develop with human brain maturation or relate to behavioral changes. We examined EEG-BOLD signal correlations from 18 young adults and 15 school-aged children for age-dependent effects during a load-modulated Sternberg WM task. Frontal load (in-)dependent EEG theta power was significantly enhanced in children compared to adults, while adults showed stronger fMRI load effects. Children demonstrated a stronger negative correlation between global theta power and the BOLD signal in the default mode network relative to adults. Therefore, we conclude that theta power mediates the suppression of a task-irrelevant network. We further conclude that children suppress this network even more than adults, probably from an increased level of task-preparedness to compensate for not fully mature cognitive functions, reflected in lower response accuracy and increased reaction time. In contrast to power, correlations between instantaneous theta global field synchronization and the BOLD signal were exclusively positive in both age groups but only significant in adults in the frontal-parietal and posterior cingulate cortices. Furthermore, theta synchronization was weaker in children and was--in contrast to EEG power--positively correlated with response accuracy in both age groups. In summary we conclude that theta EEG-BOLD signal correlations differ between spectral power and synchronization and that these opposite correlations with different distributions undergo similar and significant neuronal developments with brain maturation.  相似文献   

17.
The concept of reserve arose from the mismatch between the extent of brain changes or pathology and the clinical manifestations of these brain changes. The cognitive reserve hypothesis posits that individual differences in the flexibility and adaptability of brain networks underlying cognitive function may allow some people to cope better with brain changes than others. Although there is ample epidemiologic evidence for cognitive reserve, the neural substrate of reserve is still a topic of ongoing research. Here we review some representative studies from our group that exemplify possibilities for the neural substrate of reserve including neural reserve, neural compensation, and generalized cognitive reserve networks. We also present a schematic overview of our ongoing research in this area. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.  相似文献   

18.
Although motor imagery could improve motor rehabilitation, the detailed neural mechanisms of motor imagery cognitive process of stroke patients, particularly from functional network perspective, remain unclear. This study investigated functional brain network properties in each cognitive sub-stage of motor imagery of stroke patients with ischemic lesion in left hemisphere to reveal the impact of stroke on the cognition of motor imagery. Both stroke patients and control subjects participated in mental rotation task, which includes three cognitive sub-stages: visual stimulus perception, mental rotation and response cognitive process. Event-related electroencephalograph was recorded and interdependence between two different cortical areas was assessed by phase synchronization. Both global and nodal properties of functional networks in three sub-stages were statistically analyzed. Phase synchronization of stroke patients significantly reduced in mental rotation sub-stage. Longer characteristic path length and smaller global clustering coefficient of functional network were observed in patients in mental rotation sub-stage which implied the impaired segregation and integration. Larger nodal clustering coefficient and betweenness in contralesional occipitoparietal and frontal area respectively were observed in patients in all sub-stages. In addition, patients also showed smaller betweenness in ipsilesional central-parietal area in response sub-stage. The compensatory effects on local connectedness and centrality indicated the neuroplasticity in contralesional hemisphere. The functional brain networks of stroke patients demonstrated significant alterations and compensatory effects during motor imagery.  相似文献   

19.
Recent advances in magnetic resonance imaging (MRI) are allowing neuroscientists to gain critical insights into the neural networks mediating a variety of cognitive processes. This work investigates structural and functional connectivity in the human brain under different experimental conditions through multimodal MRI acquisitions. To define the nodes of a full-brain network, a set of regions was identified from resting-state functional MRI (fMRI) data using spatial independent component analysis (sICA) and a hierarchical clustering technique. Diffusion-weighted imaging (DWI) data were acquired from the same subjects and a probabilistic fiber tracking method was used to estimate the structure of this network. Using features originating from graph theory, such as small-world properties and network efficiency, we characterized the structural and functional connectivities of the full-brain network and we compared them quantitatively. We showed that structural and functional networks shared some properties in terms of topology as measured by the distribution of the node degrees, hence supporting the existence of an underlying anatomical substrate for functional networks.  相似文献   

20.
Aging has a multi-faceted impact on brain structure, brain function and cognitive task performance, but the interaction of these different age-related changes is largely unexplored. We hypothesize that age-related structural changes alter the functional connectivity within the brain, resulting in altered task performance during cognitive challenges. In this neuroimaging study, we used independent components analysis to identify spatial patterns of coordinated functional activity involved in the performance of a verbal delayed item recognition task from 75 healthy young and 37 healthy old adults. Strength of functional connectivity between spatial components was assessed for age group differences and related to speeded task performance. We then assessed whether age-related differences in global brain volume were associated with age-related differences in functional network connectivity. Both age groups used a series of spatial components during the verbal working memory task and the strength and distribution of functional network connectivity between these components differed across the age groups. Poorer task performance, i.e. slower speed with increasing memory load, in the old adults was associated with decreases in functional network connectivity between components comprised of the supplementary motor area and the middle cingulate and between the precuneus and the middle/superior frontal cortex. Advancing age also led to decreased brain volume; however, there was no evidence to support the hypothesis that age-related alterations in functional network connectivity were the result of global brain volume changes. These results suggest that age-related differences in the coordination of neural activity between brain regions partially underlie differences in cognitive performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号