首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The increase rate of utilization of branched-chain amino acids (BCAA) by muscle is reduced to its plasma concentration during prolonged exercise leading to glycogen. BCAA supplementation would reduce the serum activities of intramuscular enzymes associated with muscle damage. To examine the effects of BCAA administration on fatigue substances (serotonin, ammonia and lactate), muscle damage substances (CK and LDH) and energy metabolism substances (FFA and glucose) after endurance exercise. Subjects (n = 26, college-aged males) were randomly divided into an experimental (n = 13, EXP) and a placebo (n = 13, CON) group. Subjects both EXP and CON performed a bout of cycle training (70% VO2max intensity) to exhaustion. Subject in the EXP were administrated BCAA (78ml/kg·w) prior to the bout of cycle exercise. Fatigue substances, muscle damage substances and energy metabolism substances were measured before ingesting BCAAs and placebos, 10 min before exercise, 30 min into exercise, immediately after exercise, and 30 min after exercise. Data were analyzed by two-way repeated measure ANCOVA, correlation and statistical significance was set at p < 0.05. The following results were obtained from this study; 1. In the change of fatigue substances : Serotonin in the EXP tended to decreased at the 10 min before exercise, 30 min into exercise, post exercise, and recovery 30 min. Serotonin in the CON was significantly greater than the EXP at the10 min before exercise and recovery 30. Ammonia in the EXP was increased at the 10 min before exercise, 30 min into exercise, and post exercise, but significantly decreased at the recovery 30min (p < 0.05). Ammonia in the CON was significantly lower than the EXP at the 10 min before exercise, 30 min into exercise, and post exercise (p < 0.05). Lactate in the EXP was significantly increased at the 30 min into exercise and significantly decreased at the post exercise and recovery 30 min. Lactate in the CON was significantly lower than the EXP at the post exercise (p < 0.05). 2. In the change of muscle damage substances : CK in the EXP was decreased at the 10 min before exercise and increased at the 30 min into exercise and then decreased at the post exercise and recovery 30 min. CK in the CON was greater than the EXP. LDH in the EXP was decreased at the 10 min before exercise and increased at the 30 min into exercise and then decreased at the post exercise and recovery 30 min. LDH in the CON was higher than the EXP. 3. In the change of energy metabolism substances :Glucose in the EXP tended to decrease at the 10 min before exercise, 30 min into exercise, post exercise and recovery 30 min. Glucose in the CON was significantly greater than the EXP at the recovery 30 min (p < .05). FFA in both EXP and CON was increased at the post exercise and recovery 30 min. % increase for FFA in the EXP was greater than the CON at the post exercise and recovery 30 min. 4. The relationship of the fatigue substances, muscle damage substances and energy metabolism substances after endurance exercise indicated strongly a positive relationship between LDH and ammonia and a negative relationship between LDH and FFA in the EXP. Also, there were a strong negative relationship between glucose and FFA and a positive relationship between glucose and serotonin in the EXP. There was a strong positive relationship between CK and LDH and a strong negative relationship between FFA and glucose in the CON. These results indicate that supplementary BCAA decreased serum concentrations of the intramuscular enzymes as CK and LDH following exhaustive exercise. This observation suggests that BCAA supplementation may reduce the muscle damage associated with endurance exercise.  相似文献   

2.
There are conflicts between the effects of free radical over-production induced by exercise on neurotrophins and brain oxidative metabolism. The objective of this study was to investigate the effects of intense physical training on brain-derived neurotrophic factor (BDNF) levels, COX activity, and lipoperoxidation levels in mice brain cortex. Twenty-seven adult male CF1 mice were assigned to three groups: control untrained, intermittent treadmill exercise (3 × 15 min/day) and continuous treadmill exercise (45 min/day). Training significantly (P < 0.05) increased citrate synthase activity when compared to untrained control. Blood lactate levels classified the exercise as high intensity. The intermittent training significantly (P < 0.05) reduced in 6.5% the brain cortex COX activity when compared to the control group. BDNF levels significantly (P < 0.05) decreased in both exercise groups. Besides, continuous and intermittent exercise groups significantly (P < 0.05) increased thiobarbituric acid reactive species levels in the brain cortex. In summary, intense exercise promoted brain mitochondrial dysfunction due to decreased BDNF levels in the frontal cortex of mice.  相似文献   

3.
Six male non-endurance trained subjects (S) and six marathon runners (M) underwent graded treadmill exercise (T) and isoproterenol stimulation (I; 2 and 4 microgram X min-1). beta-adrenergic receptor density was additionally determined as the amount of 3H-Dihydroalprenolol (DHA) specifically bound on intact polymorphonuclear leucocytes. Heart rate, VO2 uptake, lactate, plasma noradrenaline, and adrenaline were estimated during T. Heart rate, stroke volume, cardiac output, as well as lactate, glucose, free fatty acids (FFA), and glycerol levels in the blood were determined during I. M showed the known training-dependent responses during T, such as lower heart rates, lactate levels, and plasma catecholamines at identical work loads, as well as higher VO2 max than S. I-induced cardiac output increase was quite similar in both groups. Stroke volume, however, increased significantly in M and stayed constant in S. Lactate decreased (S), glucose increased significantly (M), glycerol increased similarly in both groups, FFA rise was less marked in S. I-induced stroke volume response (I) may be indicative of a more economic regulation of heart work in M than S. Lactate decrease and less marked FFA increase, as observed in S, may be the result of a somewhat higher cardiac energy demand, dependent on less economic heart work. Higher DHA-binding as observed in M, as well as stroke volume response and glucose increase, may be indicators of a training-dependent rise in sensitivity to catecholamines. The unsolved question is, however, to what extent beta-receptor responses in intact blood cells are significant for receptor behavior in other organs.  相似文献   

4.
[Purpose] Lactate is a principal energy substrate for the brain during exercise. A single bout of high-intensity interval exercise (HIIE) can increase the blood lactate level, brain lactate uptake, and executive function (EF). However, repeated HIIE can attenuate exercise-induced increases in lactate level and EF. The lactate levels in the brain and blood are reported to be correlated with exercise-enhanced EF. However, research is yet to explain the cause-and-effect relationship between lactate and EF. This study examined whether lactate consumption improves the attenuated exerciseenhanced EF caused by repeated HIIE.[Methods] Eleven healthy men performed two sets of HIIE, and after each set, 30 min were given for rest and examination. In the 2nd set, the subjects consumed experimental beverages containing (n = 6) and not containing (n = 5) lactate. Blood, cardiovascular, and psychological variables were measured, and EF was evaluated by the computerized color–word Stroop test.[Results] The lactate group had a higher EF (P < 0.05) and tended to have a higher blood lactate level (P = 0.082) than the control group in the 2nd set of HIIE. Moreover, blood lactate concentration was correlated with the interference score (i.e., reverse score of EF) (r = -0.394; P < 0.05).[Conclusion] Our results suggest that the attenuated exercise-enhanced EF after repeated HIIE can be improved through lactate consumption. However, the role of lactate needs to be elucidated in future studies, as it can be used for improving athletes’ performance and also in cognitive decline-related clinical studies.  相似文献   

5.
We studied the role of lactate in gluconeogenesis (GNG) during exercise in untrained fasting humans. During the final hour of a 4-h cycle exercise at 33-34% maximal O(2) uptake, seven subjects received, in random order, either a sodium lactate infusion (60 micromol x kg(-1) x min(-1)) or an isomolar sodium bicarbonate infusion. The contribution of lactate to gluconeogenic glucose was quantified by measuring (2)H incorporation into glucose after body water was labeled with deuterium oxide, and glucose rate of appearance (R(a)) was measured by [6,6-(2)H(2)]glucose dilution. Infusion of lactate increased lactate concentration to 4.4 +/- 0.6 mM (mean +/- SE). Exercise induced a decrease in blood glucose concentration from 5.0 +/- 0.2 to 4.2 +/- 0.3 mM (P < 0.05); lactate infusion abolished this decrease (5.0 +/- 0.3 mM; P < 0.001) and increased glucose R(a) compared with bicarbonate infusion (P < 0.05). Lactate infusion increased both GNG from lactate (29 +/- 4 to 46 +/- 4% of glucose R(a), P < 0.001) and total GNG. We conclude that lactate infusion during low-intensity exercise in fasting humans 1). increased GNG from lactate and 2). increased glucose production, thus increasing the blood glucose concentration. These results indicate that GNG capacity is available in humans after an overnight fast and can be used to sustain blood glucose levels during low-intensity exercise when lactate, a known precursor of GNG, is available at elevated plasma levels.  相似文献   

6.
1. The regulation of glucose uptake and disposition in skeletal muscle was studied in the isolated perfused rat hindquarter. 2. Insulin and exercise, induced by sciatic-nerve stimulation, enhanced glucose uptake about tenfold in fed and starved rats, but were without effect in rats with diabetic ketoacidosis. 3. At rest, the oxidation of lactate (0.44 mumol/min per 30 g muscle in fed rats) was decreased by 75% in both starved and diabetic rats, whereas the release of alanine and lactate (0.41 and 1.35 mumol/min per 30 g respectively in the fed state) was increased. Glycolysis, defined as the sum of lactate+alanine release and lactate oxidation, was not decreased in either starvation or diabetes. 4. In all groups, exercise tripled O2 consumption (from approximately 8 to approximately 25 mumol/min per 30 g of muscle) and increased the release and oxidation of lactate five- to ten-fold. The differences in lactate release between fed, starved and diabetic rats observed at rest were no longer apparent; however, lactate oxidation was still several times greater in the fed group. 5. Perfusion of the hindquarter of a fed rat with palmitate, octanoate or acetoacetate did not alter glucose uptake or lactate release in either resting or exercising muslce; however, lactate oxidation was significantly inhibited by acetoacetate, which also increased the intracellular concentration of acetyl-CoA. 6. The data suggest that neither that neither glycolysis nor the capacity for glucose transport are inhbitied in the perfused hindquarter during starvation or perfusion with fatty acids or ketone bodies. On the other hand, lactate oxidation is inhibited, suggesting diminished activity of pyruvate dehydrogenase. 7. Differences in the regulation of glucose metabolism in heart and skeletal muscle and the role of the glucose/fatty acid cycle in each tissue are discussed.  相似文献   

7.
The metabolic response to moderate exercise in postabsorptive insulin-dependent diabetics receiving insulin by constant intravenous infusion was compared with that of normal controls. The diabetics were infused with insulin overnight and were normoglycemic (89 +/- 6 mg/dL, controls: 90 +/- 6 mg/dL). With exercise, glycemia remained constant in both groups. In the diabetic subjects, glucose production was 166 +/- 11 mg/min at rest, increased to 230 +/- 27 mg/min with exercise (p less than 0.05), and returned to base line during recovery. Glucose disappearance changed in a synchronous and parallel fashion. In the normal controls, insulin concentration was 0.44 +/- 0.03 ng/mL at rest and decreased significantly with exercise (p less than 0.01) while in the diabetic free insulin was fourfold higher (1.70 +/- 0.32) and did not change with exercise. Lactate increased similarly (twofold) with exercise in both groups. In summary, (i) complete normalization of glycemia, glucose turnover, and the lactate response to postabsorptive exercise can be achieved by the intravenous infusion of insulin adjusted to obtain normoglycemia before the onset of exercise; (ii) this response was obtained with an associated elevation in circulating free insulin which probably reflects the peripheral intravenous route rather than the physiologic (portal) site of insulin administration.  相似文献   

8.
This study was undertaken to determine if patients who lack muscle phosphorylase (i.e., McArdle's disease), and therefore the ability to produce lactic acid during exercise, demonstrate a normal hyperventilatory response during progressive incremental exercise. As expected these patients did not increase their blood lactate above resting levels, whereas the blood lactate levels of normal subjects increased 8- to 10-fold during maximal exercise. The venous pH of the normal subjects decreased markedly during exercise that resulted in hyperventilation. The patients demonstrated a distinct increase in ventilation with respect to O2 consumption similar to that seen in normal individuals during submaximal exercise. However their hyperventilation resulted in an increase in pH because there was no underlying metabolic acidosis. End-tidal partial pressures of O2 and CO2 also reflected a distinct hyperventilation in both groups at approximately 70-85% maximal O2 consumption. These data show that hyperventilation occurs during intense exercise, even when there is no increase in plasma [H+]. Since arterial CO2 levels were decreasing and O2 levels were increasing during the hyperventilation, it is possible that nonhumoral stimuli originating in the active muscles or in the brain elicit the hyperventilation observed during intense exercise.  相似文献   

9.
Little is known about the effects of exercise intensity on compensatory changes in glucose-stimulated insulin secretion (GSIS) when adjusted for adipose, liver and skeletal muscle insulin resistance (IR). Fifteen participants (8F, Age: 49.9±3.6yr; BMI: 31.0±1.5kg/m2; VO2peak: 23.2±1.2mg/kg/min) with prediabetes (ADA criteria, 75g OGTT and/or HbA1c) underwent a time-course matched Control, and isocaloric (200kcal) exercise at moderate (MIE; at lactate threshold (LT)), and high-intensity (HIE; 75% of difference between LT and VO2peak). A 75g OGTT was conducted 1 hour post-exercise/Control, and plasma glucose, insulin, C-peptide and free fatty acids were determined for calculations of skeletal muscle (1/Oral Minimal Model; SMIR), hepatic (HOMAIR), and adipose (ADIPOSEIR) IR. Insulin secretion rates were determined by deconvolution modeling for GSIS, and disposition index (DI; GSIS/IR; DISMIR, DIHOMAIR, DIADIPOSEIR) calculations. Compared to Control, exercise lowered SMIR independent of intensity (P<0.05), with HIE raising HOMAIR and ADIPOSEIR compared with Control (P<0.05). GSIS was not reduced following exercise, but DIHOMAIR and DIADIPOSEIR were lowered more following HIE compared with Control (P<0.05). However, DISMIR increased in an intensity based manner relative to Control (P<0.05), which corresponded with lower post-prandial blood glucose levels. Taken together, pancreatic insulin secretion adjusts in an exercise intensity dependent manner to match the level of insulin resistance in skeletal muscle, liver and adipose tissue. Further work is warranted to understand the mechanism by which exercise influences the cross-talk between tissues that regulate blood glucose in people with prediabetes.  相似文献   

10.
运动后补充肉碱可提升骨骼肌糖原合成代谢   总被引:1,自引:0,他引:1  
本研究旨在探讨单次口服肉碱是否有利于促进人体运动后骨骼肌糖原恢复。本研究为交叉实验设计,选取20名受试者,随机分为肉碱试验(实验组)和安慰剂试验(安慰剂组),两次实验间隔至少7 d。所有受试者接受单次60 min 70%VO2max功率车测试,运动后立即给予高碳水化合物饮食补充和肉碱胶囊或安慰剂淀粉胶囊口服补充,同时观察运动后3 h恢复期内的生理反应。功率车运动后第0、第3小时从股外侧肌采集肌肉样本,同期间隔每30 min收集血液样本,每60 min收集10 min气体样本。研究发现,实验组肌糖原含量增加率显著增加,在血液生化值方面,两组的血糖浓度在各时间点均无显著差异,但实验组的胰岛素反应显著低于安慰剂组。同时在运动恢复期间,实验组呼吸交换率明显低于安慰剂组,这代表运动恢复期口服肉碱后,身体以脂肪为主要能量来源。研究表明,运动后立即补充肉碱能显著提升人体运动后肌糖原恢复,具备临床进一步推广应用的价值。  相似文献   

11.
The present study was to determine the effect of strenuous exercise on glucose utilization, lactate accumulation and small intestinal transit (SIT). In strenuous exercises, rats would be put on the runway of a moving treadmill for a one-hour compulsive running. Rats first performed running treadmill for 45 min. After orogastric feeding of radiochromium marker, they resumed running for additional 15 min until sacrifice to measure SIT. Saline and various doses of glucose and lactate were infused through previously placed jugular vein during the whole procedure. Blood was finally obtained to measure plasma glucose and lactate levels. Saline infusion had no effect on running rat SIT during strenuous exercise, but plasma glucose level was significantly lowered (P < 0.01). Infusion of various doses of glucose did not alter SIT during strenuous exercise; however, the initially lowered plasma glucose was restored even to a hyperglycemic state. Meanwhile, strenuous running markedly increased plasma lactate level, irrespectively of saline or glucose infusion (P < 0.01). Lactate infusion did not change rat SIT obtained on the quiet runways. In conclusion, rat SIT remained unchanged in the strenuous exercise although obvious hypoglycemia and higher plasma lactate level did exist. Glucose utilization and lactate accumulation after the strenuous exercise may not directly mediate small intestinal motility.  相似文献   

12.
Blood glutathione oxidation during human exercise   总被引:4,自引:0,他引:4  
To examine the effects of increased O2 utilization on the glutathione antioxidant system in blood, eight moderately trained male volunteers were exercised to peak O2 consumption (VO2peak) and for 90 min at 65% of VO2peak on a cycle ergometer. Blood samples were taken during exercise, and for up to 4 days of recovery from submaximal exercise. During exercise to VO2peak, blood reduced glutathione (GSH) and total glutathione [GSH + oxidized glutathione (GSSG)] did not change significantly. Lactate (L), pyruvate (P), and L/P increased significantly from rest values (P less than 0.01). During prolonged submaximal exercise, GSH decreased 60% from control, and GSSG increased 100%. Total glutathione, glucose, pyruvate, and lactate concentrations and L/P did not change significantly during sustained exercise. During recovery, GSH and GSH/GSSG increased from exercise levels and significantly overshot preexercise levels, reaching maximum values after 3 days. Oxidation of GSH during submaximal exercise and its reduction in recovery suggest increased formation of active O2-. species in blood during physical exercise in moderately trained males.  相似文献   

13.
Muscle glycogen levels in the perfused rat hemicorpus preparation were reduced two-thirds by electrical stimulation plus exposure to epinephrine (10(-7) M) for 30 min. During the contraction period muscle lactate concentrations increased from a control level of 3.6 +/- 0.6 to a final value of 24.1 +/- 1.6 mumol/g muscle. To determine whether the lactate that had accumulated in muscle during contraction could be used to resynthesize glycogen, glycogen levels were determined after 1-3 h of recovery from the contraction period during which time the perfusion medium (flow-through system) contained low (1.3 mmol/l) or high (10.5 or 18 mmol/l) lactate concentrations but no glucose. With the low perfusate lactate concentration, muscle lactate levels declined to 7.2 +/- 0.8 mumol/g muscle by 3 h after the contraction period and muscle glycogen levels did not increase (1.28 +/- 0.07 at 3 h vs. 1.35 +/- 0.09 mg glucosyl U/g at end of exercise). Lactate disappearance from muscle was accounted for entirely by output into the venous effluent. With the high perfusate lactate concentrations, muscle lactate levels remained high (13.7 +/- 1.7 and 19.3 +/- 2.0 mumol/g) and glycogen levels increased by 1.11 and 0.86 mg glucosyl U/g, respectively, after 1 h of recovery from exercise. No more glycogen was synthesized when the recovery period was extended. Therefore, it appears that limited resynthesis of glycogen from lactate can occur after the contraction period but only when arterial lactate concentrations are high; otherwise the lactate that builds up in muscle during contraction will diffuse into the bloodstream.  相似文献   

14.
The pattern of lactate increase and its relation to pyruvate and lactate-to-pyruvate (L/P) ratio were studied during exercise and early recovery in 10 normal subjects for incremental exercise on a cycle ergometer. Gas exchange was measured breath by breath. Lactate and pyruvate were measured by enzymatic techniques. Lactate and log lactate changed only slightly at low levels of O2 uptake (VO2) but both began to abruptly increase at approximately 40-55% of the maximal VO2. However, the point of abrupt increase in pyruvate occurred at higher work rates and the rate of increase was not as great as that for lactate. Thus L/P ratio increased at the same VO2 as the log lactate increase. Following the exercise, pyruvate continued to increase steeply for at least the first 5 recovery min, whereas at 2 min lactate increased only slightly or decreased. Thus arterial L/P ratio reversed its direction of change and decreased toward the resting value by 2 min of recovery. Lactate, as well as L/P ratios, decreased in all subjects by 5 min. This study demonstrates that lactate and pyruvate concentrations increase slightly at low levels of exercise without a change in L/P ratio until a threshold work rate at which lactate abruptly increases without pyruvate. The resulting increase in L/P ratio is progressive as work rate is incremented and abruptly reverses when exercise stops.  相似文献   

15.
It has been demonstrated that exercise is one of the stresses known to increase the aldosterone secretion. Both potassium and angiotensin II (Ang II) levels are shown to be correlated with aldosterone production during exercise, but the mechanism is still unclear. In an in vivo study, male rats were catheterized via right jugular vein (RJV), and divided into four groups namely water immersion, swimming, lactate infusion (13 mg/kg/min) and pyruvate infusion (13 mg/kg/min) groups. Each group was treated for 10 min. Blood samples were collected at 0, 10, 15, 30, 60 and 120 min from RJV after administration. In an in vitro study, rat zona glomerulosa (ZG) cells were challenged by lactate (1–10 mM) in the presence or absence of Ang II (10−8 M) for 60 min. The levels of aldosterone in plasma and medium were measured by radioimmunoassay. Cell lysates were analyzed by immunoblotting assay. After exercise and lactate infusion, plasma levels of aldosterone and lactate were significantly higher than those in the control group. Swimming for 10 min significantly increased the plasma Ang II levels in male rats. Administration of lactate plus Ang II significantly increased aldosterone production and enhanced protein expression of steroidogenic acute regulatory protein (StAR) in ZG cells. These results demonstrated that acute exercise led to the increase of both aldosterone and Ang II secretion, which is associated with lactate action on ZG cells and might be dependent on the activity of renin-angiotensin system.  相似文献   

16.
To determine the effect of maternal exercise on fetal liver glycogen content, fed and fasted rats that were pregnant for 20.5 or 21.5 days were run on a rodent treadmill for 60 min at 12 m/min with a 0% grade or 16 m/min up a 10% grade. The rats were anesthetized by intravenous injection of pentobarbital sodium, and fetal and maternal liver and plasma samples were collected and frozen. Fetal liver glycogenolysis did not occur as a result of maternal exercise. Fetal blood levels of lactate increased 22-60%, but glucose, plasma glucagon, and insulin were unchanged during maternal exercise. Maternal liver glycogen decreased as a result of exercise in all groups of rats except the fasted 20.5-day-pregnant group. Plasma free fatty acids increased in all groups and blood lactate increased in fed (20.5 days) and fasted (21.5 days) pregnant rats. Maternal glucose, glucagon, and insulin values remained constant during exercise. The fetus appears to be well-protected from metabolic stress during moderate-intensity maternal exercise.  相似文献   

17.
Several studies have described high correlation of salivary and blood lactate level during exercise. Measuring the effectiveness and intensity of training, lactate concentration in blood, and lately in saliva are used.The aim of our study was to evaluate the correlation between the concentration and timing of salivary and blood lactate level in endurance athletes and non-athletes after a maximal treadmill test, and to identify physiological and biochemical factors affecting these lactate levels.Sixteen volunteers (8 athletes and 8 non-athletes) performed maximal intensity (Astrand) treadmill test. Anthropometric characteristics, body composition and physiological parameters (heart rate, RR-variability) were measured in both studied groups. Blood and whole saliva samples were collected before and 1, 4, 8, 12, 15, 20 min after the exercise test. Lactate level changes were monitored in the two groups and two lactate peaks were registered at different timeperiods in athletes. We found significant correlation between several measured parameters (salivary lactate - total body water, salivary lactate - RR-variability, maximal salivary lactate - maximal heart rate during exercise, salivary- and blood lactate -1 min after exercise test). Stronger correlation was noted between salivary lactate and blood lactate in athletes, than in controls.  相似文献   

18.
Metabolic responses to exercise after fasting   总被引:1,自引:0,他引:1  
Fasting before exercise increases fat utilization and lowers the rate of muscle glycogen depletion. Since a 24-h fast also depletes liver glycogen, we were interested in blood glucose homeostasis during exercise after fasting. An experiment was conducted with human subjects to determine the effect of fasting on blood metabolite concentrations during exercise. Nine male subjects ran (70% maximum O2 consumption) two counterbalanced trials, once fed and once after a 23-h fast. Plasma glucose was elevated by exercise in the fasted trial but there was no difference between fed and fasted during exercise. Lactate was significantly higher (P less than 0.05) in fasted than fed throughout the exercise bout. Fat mobilization and utilization appeared to be greater in the fasted trial as evidenced by higher plasma concentrations of free fatty acids, glycerol, and beta-hydroxybutyrate as well as lower respiratory exchange ratio in the fasted trial during the first 30 min of exercise. These results demonstrate that in humans blood glucose concentration is maintained at normal levels during exercise after fasting despite the depletion of liver glycogen. Homeostasis is probably maintained as a result of increased gluconeogenesis and decreased utilization of glucose in the muscle as a result of lowered pyruvate dehydrogenase activity.  相似文献   

19.
We hypothesized that the increased blood glucose disappearance (Rd) observed during exercise and after acclimatization to high altitude (4,300 m) could be attributed to net glucose uptake (G) by the legs and that the increased arterial lactate concentration and rate of appearance (Ra) on arrival at altitude and subsequent decrease with acclimatization were caused by changes in net muscle lactate release (L). To evaluate these hypotheses, seven healthy males [23 +/- 2 (SE) yr, 72.2 +/- 1.6 kg], on a controlled diet were studied in the postabsorptive condition at sea level, on acute exposure to 4,300 m, and after 3 wk of acclimatization to 4,300 m. Subjects received a primed-continuous infusion of [6,6-D2]glucose (Brooks et al., J. Appl. Physiol. 70: 919-927, 1991) and [3-13C]lactate (Brooks et al., J. Appl. Physiol. 71:333-341, 1991) and rested for a minimum of 90 min, followed immediately by 45 min of exercise at 101 +/- 3 W, which elicited 51.1 +/- 1% of the sea level peak O2 uptake (65 +/- 2% of both acute altitude and acclimatization peak O2 uptake). Glucose and lactate arteriovenous differences across the legs and arms and leg blood flow were measured. Leg G increased during exercise compared with rest, at altitude compared with sea level, and after acclimatization. Leg G accounted for 27-36% of Rd at rest and essentially all glucose Rd during exercise. A shunting of the blood glucose flux to active muscle during exercise at altitude is indicated. With acute altitude exposure, at 5 min of exercise L was elevated compared with sea level or after acclimatization, but from 15 to 45 min of exercise the pattern and magnitude of L from the legs varied and followed neither the pattern nor the magnitude of responses in arterial lactate concentration or Ra. Leg L accounted for 6-65% of lactate Ra at rest and 17-63% during exercise, but the percent Ra from L was not affected by altitude. Tracer-measured lactate extraction by legs accounted for 10-25% of lactate Rd at rest and 31-83% during exercise. Arms released lactate under all conditions except during exercise with acute exposure to high altitude, when the arms consumed lactate. Both active and inactive muscle beds demonstrated simultaneous lactate extraction and release. We conclude that active skeletal muscle is the predominant site of glucose disposal during exercise and at high altitude but not the sole source of blood lactate during exercise at sea level or high altitude.  相似文献   

20.
Summary Lactate removal and glycogen replenishment were studied in the lizardSceloporus occidentalis following exhaustion at 35°C. Whole body lactate concentrations and oxygen consumption were measured inSceloporus at rest, after 2 min vigorous exercise and at intervals during a 150 min recovery period. Lactate concentrations peaked at 2.2 mg/g (24 mM) after exercise and returned to resting levels after 90 min. Oxygen consumption returned to resting rates after 66 min. In a second set of experiments, glycogen and lactate concentrations of liver, hindlimb and trunk musculature were measured over the same time periods of exercise and recovery. The decrease in muscle glycogen following exercise was identical (mg/g) to the increase in muscle lactate, and the stoichiometric and temporal relationships between lactate removal and glycogen replenishment during the recovery period were also similar. Glycogen replenishment was rapid (within 150 min) and complete in fastedSceloporus. Dietary supplement of carbohydrate during 48 h of recovery led to supercompensation of glycogen stores in the muscle (+66%) and liver (+800%). The changes were similar to the seasonal differences measured inSceloporus from the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号