首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of post-reproductive lifespan has been of interest primarily with regard to the extended post-menopausal lifespan seen in humans. This unusual feature of human demography has been hypothesized to have evolved because of the “grandmother” effect, or the contributions that post-reproductive females make to the fitness of their children and grandchildren. While some correlative analyses of human populations support this hypothesis, few formal, experimental studies have addressed the evolution of post-reproductive lifespan. As part of an ongoing study of life history evolution in guppies, we compared lifespans of individual guppies derived from populations that differ in their extrinsic mortality rates. Some of these populations co-occur with predators that increase mortality rate, whereas other nearby populations above barrier waterfalls are relatively free from predation. Theory predicts that such differences in extrinsic mortality will select for differences in the age at maturity, allocation of resources to reproduction, and patterns of senescence, including reproductive declines. As part of our evaluation of these predictions, we quantified differences among populations in post-reproductive lifespan. We present here the first formal, comparative study of the evolution of post-reproductive lifespan as a component of the evolution of the entire life history. Guppies that evolved with predators and that experienced high extrinsic mortality mature at an earlier age but also have longer lifespans. We divided the lifespan into three non-overlapping components: birth to age at first reproduction, age at first reproduction to age at last reproduction (reproductive lifespan), and age at last reproduction to age at death (post-reproductive lifespan). Guppies from high-predation environments live longer because they have a longer reproductive lifespan, which is the component of the life history that can make a direct contribution to individual fitness. We found no differences among populations in post-reproductive lifespan, which is as predicted since there can be no contribution of this segment of the life history to an individual's fitness. Prior work on the evolution of post-reproductive lifespan has been dominated by speculation and correlative analyses. We show here that this component of the life history is accessible to formal study as part of experiments that quantify the different segments of an individual's life history. Populations of guppies subject to different mortality pressures from predation evolved differences in total lifespan, but not in post-reproductive lifespan. Rather than showing the direct effects of selection characterizing other life-history traits, post-reproductive lifespan in these fish appears to be a random add-on at the end of the life history. These findings support the hypothesis that differences in lifespan evolving in response to selection are confined to the reproductive lifespan, or those segments of the life history that make a direct contribution to fitness. We also show, for the first time, that fish can have reproductive senescence and extended post-reproductive lifespans despite the general observation that they are capable of producing new primary oocytes throughout their lives.  相似文献   

2.
The study of post-reproductive lifespan has been of interest primarily with regard to the extended post-menopausal lifespan seen in humans. This unusual feature of human demography has been hypothesized to have evolved because of the “grandmother” effect, or the contributions that post-reproductive females make to the fitness of their children and grandchildren. While some correlative analyses of human populations support this hypothesis, few formal, experimental studies have addressed the evolution of post-reproductive lifespan. As part of an ongoing study of life history evolution in guppies, we compared lifespans of individual guppies derived from populations that differ in their extrinsic mortality rates. Some of these populations co-occur with predators that increase mortality rate, whereas other nearby populations above barrier waterfalls are relatively free from predation. Theory predicts that such differences in extrinsic mortality will select for differences in the age at maturity, allocation of resources to reproduction, and patterns of senescence, including reproductive declines. As part of our evaluation of these predictions, we quantified differences among populations in post-reproductive lifespan. We present here the first formal, comparative study of the evolution of post-reproductive lifespan as a component of the evolution of the entire life history.

Guppies that evolved with predators and that experienced high extrinsic mortality mature at an earlier age but also have longer lifespans. We divided the lifespan into three non-overlapping components: birth to age at first reproduction, age at first reproduction to age at last reproduction (reproductive lifespan), and age at last reproduction to age at death (post-reproductive lifespan). Guppies from high-predation environments live longer because they have a longer reproductive lifespan, which is the component of the life history that can make a direct contribution to individual fitness. We found no differences among populations in post-reproductive lifespan, which is as predicted since there can be no contribution of this segment of the life history to an individual's fitness.

Prior work on the evolution of post-reproductive lifespan has been dominated by speculation and correlative analyses. We show here that this component of the life history is accessible to formal study as part of experiments that quantify the different segments of an individual's life history. Populations of guppies subject to different mortality pressures from predation evolved differences in total lifespan, but not in post-reproductive lifespan. Rather than showing the direct effects of selection characterizing other life-history traits, post-reproductive lifespan in these fish appears to be a random add-on at the end of the life history. These findings support the hypothesis that differences in lifespan evolving in response to selection are confined to the reproductive lifespan, or those segments of the life history that make a direct contribution to fitness. We also show, for the first time, that fish can have reproductive senescence and extended post-reproductive lifespans despite the general observation that they are capable of producing new primary oocytes throughout their lives.

  相似文献   

3.
Life-history theory predicts that organisms should invest resources into intrinsic components of lifespan only to the degree that it pays off in terms of reproductive success. The benefit of a long life may differ between the sexes and different mating systems may therefore select for different sex-specific mortality rates. In insects with polyandrous mating systems, females mate throughout their lives and male reproductive success is likely to increase monotonously with lifespan. In monandrous systems, where the mating season is less protracted because receptive females are available only at the beginning of the flight season, male mating success should be less dependent on a long lifespan. Here, we show, in a laboratory experiment without predation, that the duration of the mating season is longer in the polyandrous comma butterfly, Polygonia c-album, than in the monandrous peacock butterfly, Inachis io, and that, in line with predictions, male lifespan is shorter than female lifespan in I. io, whereas male and female lifespans are similar in P. c-album.  相似文献   

4.
Classic theories for the evolution of senescence predict that rates of aging should be highest in populations in which extrinsic mortality is high. This predication is called into question in new work by David Reznick and co-workers, who found that guppies Poecilia reticulata derived from natural populations with high levels of predation live the longest in the laboratory. This study illustrates that the effect of mortality on aging might depend on how we define aging, and on the particular cause of increased mortality.  相似文献   

5.
It is commonly noted that investments in reproduction, both physiological and behavioral, can trade off with other life‐history traits, such as growth and survival. In males, behavioral reproductive activities (e.g., copulations) are associated with weight loss, increased predation risk, reduced future reproductive output, and decreased lifespans. It is uncommon to find species in which increased copulations actually increase survival. Herein, we examine one such species, the androdioecious (males + hermaphrodites) crustacean Eulimnadia texana, in which increased copulations have been associated with increased lifespan. We examined two potential causes of this association: (1) males not copulating actually expend significant energy by searching for mates and (2) males are experiencing shorter lifespan primarily because they are more inbred than hermaphrodites. We found that isolated males did indeed expend more energy than hermaphrodites, consistent with previous studies showing that males swim over twice as much as hermaphrodites when isolated. Additionally, although inbreeding was associated with reduced lifespan, outcrossed males still had shorter lifespans relative to outcrossed hermaphrodites. Thus, isolated males consistently show decreased lifespans relative to isolated hermaphrodites, which is not explainable only on the basis of level of inbreeding. We conclude that the costly searching behavior of these males is the likely underlying cause of this observed difference in lifespan between the sexes, as previously suggested.  相似文献   

6.
Experimental adaptation of Drosophila melanogaster to nutrient-deficient starch-based (S) medium resulted in lifespan shortening, increased early-life fecundity, accelerated reproductive aging, and sexually dimorphic survival curves. The direction of all these evolutionary changes coincides with the direction of phenotypic plasticity observed in non-adapted flies cultured on S medium. High adult mortality rate caused by unfavorable growth medium apparently was the main factor of selection during the evolutionary experiment. The results are partially compatible with Williams’ hypothesis, which states that increased mortality rate should result in relaxed selection against mutations that decrease fitness late in life, and thus promote the evolution of shorter lifespan and earlier reproduction. However, our results do not confirm Williams’ prediction that the sex with higher mortality rate should undergo more rapid aging: lifespan shortening by S medium is more pronounced in naive males than females, but it was female lifespan that decreased more in the course of adaptation. These data, as well as the results of testing of F1 hybrids between adapted and control lineages, are compatible with the idea that the genetic basis of longevity is different in the two sexes, and that evolutionary response to increased mortality rate depends on the degree to which the mortality is selective. Selective mortality can result in the development of longer (rather than shorter) lifespan in the course of evolution. The results also imply that antagonistic pleiotropy of alleles, which increase early-life fecundity at the cost of accelerated aging, played an important role in the evolutionary changes of females in the experimental lineage, while accumulation of deleterious mutations with late-life effects due to drift was more important in the evolution of male traits.  相似文献   

7.
Modern programmed (adaptive) theories of biological aging contend that organisms including mammals have generally evolved mechanisms that purposely limit their lifespans in order to obtain an evolutionary benefit. Modern non-programmed theories contend that mammal aging generally results from natural deteriorative processes, and that lifespan differences between species are explained by differences in the degree to which they resist those processes. Originally proposed in the 19th century, programmed aging in mammals has historically been widely summarily rejected as obviously incompatible with the mechanics of the evolution process. However, relatively recent and continuing developments described here have dramatically changed this situation, and programmed mammal aging now has a better evolutionary basis than non-programmed aging. Resolution of this issue is critically important to medical research because the two theories predict that very different biological mechanisms are ultimately responsible for age-related diseases and conditions.  相似文献   

8.
Life span and aging are substantially modified by natural selection. Across species, higher extrinsic (environmentally related) mortality (and hence shorter life expectancy) selects for the evolution of more rapid aging. However, among populations within species, high extrinsic mortality can lead to extended life span and slower aging as a consequence of condition‐dependent survival. Using within‐species contrasts of eight natural populations of Nothobranchius fishes in common garden experiments, we demonstrate that populations originating from dry regions (with short life expectancy) had shorter intrinsic life spans and a greater increase in mortality with age, more pronounced cellular and physiological deterioration (oxidative damage, tumor load), and a faster decline in fertility than populations from wetter regions. This parallel intraspecific divergence in life span and aging was not associated with divergence in early life history (rapid growth, maturation) or pace‐of‐life syndrome (high metabolic rates, active behavior). Variability across four study species suggests that a combination of different aging and life‐history traits conformed with or contradicted the predictions for each species. These findings demonstrate that variation in life span and functional decline among natural populations are linked, genetically underpinned, and can evolve relatively rapidly.  相似文献   

9.
Life-history theory predicts that reduced extrinsic risk of mortality should increase species longevity over evolutionary time. Increasing group size should reduce an individual''s risk of predation, and consequently reduce its extrinsic risk of mortality. Therefore, we should expect a relationship between group size and maximum longevity across species, while controlling for well-known correlates of longevity. We tested this hypothesis using a dataset of 253 mammal species and phylogenetic comparative methods. We found that group size was a poor predictor of maximum longevity across all mammals, as well as within primates and rodents. We found a weak but significant group-size effect on artiodactyl longevity, but in a negative direction. Body mass was consistently the best predictor of maximum longevity, which may be owing to lower predation risk and/or lower basal metabolic rates for large species. Artiodactyls living in large groups may exhibit higher rates of extrinsic mortality because of being more conspicuous to predators in open habitats, resulting in shorter lifespans.  相似文献   

10.
Evolutionary theories of senescence suggest that aging evolves as a consequence of early reproduction imposing later viability costs, or as a consequence of weak selection against mutations that act late in life. In addition, highly social species that live in sites that are protected from extrinsic mortality due to predation should senesce at a slower rate than solitary species. Therefore, species that start reproducing late in life should senesce at a slower rate than species that start reproducing early. In addition, social species should senesce more slowly than solitary species. Here I investigate the rate of senescence using an extensive data set on longevity records under natural field conditions to test predictions about the evolution of senescence among 271 species of birds. Longevity records increased with sampling effort and body mass, but once these confounding variables were controlled statistically, there was a strongly positive relationship between relative longevity and relative adult survival rate. Relative longevity after controlling statistically for sampling effort, body mass and adult survival rate, increased with age at first reproduction, but not with degree of breeding sociality. These findings suggest that the evolution of senescence is related to timing of first reproduction, but that the evolution of breeding sociality has played a negligible role in the evolution of senescence.  相似文献   

11.
Life-history theory predicts that increased predation on juvenile age/size-classes favors delayed maturation and decreased reproductive investment. Although this theory has received correlative support, experimental tests in nature are rare. In 1976 and 1981, guppies (Poecilia reticulata) were transplanted into localities that previously only contained a killifish, Rivulus hartii. This situation presents an opportunity to experimentally test this life-history prediction because guppies prey upon young Rivulus. We evaluated the response to selection in Rivulus by measuring phenotypic and genotypic divergence between introduction and upstream "control" localities that lack guppies. Contrary to expectations, Rivulus from the introduction sites evolved earlier maturation and increased reproductive investment within 25 years. Such evolutionary changes parallel previous investigations on natural communities of Rivulus, but do not comply with predictions of age/size-specific theory. Guppies also caused reduced densities and increased growth rates of Rivulus, which are hypothesized indirect effects of predation. Additional life-history theories show that changes in density and growth can interact with predator-induced mortality to alter the predicted trajectory of evolution. We discuss how these latter frameworks improve the fit between theory and evolution in Rivulus.  相似文献   

12.
Gardner MP  Gems D  Viney ME 《Aging cell》2006,5(4):315-323
Aging evolves as the result of weakened selection against late-acting deleterious alleles due, for example, to extrinsic mortality. Comparative studies of aging support this evolutionary theory, but details of the genetic mechanisms by which lifespan evolves remain unclear. We have studied aging in an unusual nematode, Strongyloides ratti, to gain insight into the nature of these mechanisms, in this first detailed examination of aging in a parasitic nematode. S. ratti has distinct parasitic and free-living adults, living in the rat small intestine and the soil, respectively. We have observed reproductive and demographic aging in parasitic adults, with a maximum lifespan of 403 days. By contrast the maximum lifespan of free-living adults is only 5 days. Thus, the two adults of S. ratti have evolved strikingly different rates of aging. Parasitic nematode species are frequently longer-lived than free-living species, presumably reflecting different extrinsic mortality rates in their respective niches. Parasitic and free-living female S. ratti are morphologically different, yet genetically identical. Thus, the 80-fold difference in their lifespans, the greatest plasticity in aging yet reported, must largely reflect evolved differences in gene expression. This suggests that interspecific differences in lifespan may evolve via similar mechanisms.  相似文献   

13.
G.C. Williams's 1957 hypothesis famously argues that higher age-independent, or "extrinsic," mortality should select for faster rates of senescence. Long-lived species should therefore show relatively few deaths from extrinsic causes such as predation and starvation. Theoretical explorations and empirical tests of Williams's hypothesis have flourished in the past decade but it has not yet been tested empirically among humans. We test Williams's hypothesis using mortality data from subsistence populations and from historical cohorts from Sweden and England/Wales, and examine whether rates of actuarial aging declined over the past two centuries. We employ three aging measures: mortality rate doubling time (MRDT), Ricklefs's ω, and the slope of mortality hazard from ages 60–70, m '60–70, and model mortality using both Weibull and Gompertz–Makeham hazard models. We find that (1) actuarial aging in subsistence societies is similar to that of early Europe, (2) actuarial senescence has slowed in later European cohorts, (3) reductions in extrinsic mortality associate with slower actuarial aging in longitudinal samples, and (4) men senesce more rapidly than women, especially in later cohorts. To interpret these results, we attempt to bridge population-based evolutionary analysis with individual-level proximate mechanisms.  相似文献   

14.
We tested for variation in longevity, senescence rate and early fecundity of Drosophila buzzatii along an elevational transect in Argentina, using laboratory-reared flies in laboratory tests performed to avoid extrinsic mortality. At 25 °C, females from lowland populations lived longer and had a lower demographic rate of senescence than females from highland populations. Minimal instead of maximal temperature at the sites of origin of population best predicted this cline. A very different pattern was found at higher test temperature. At 29.5 °C, longevity of males increased with altitude of origin of population. No clinal trend was apparent for longevity of females at 29.5 °C. There was evidence for a trade-off between early fecundity and longevity at non-stressful temperature (25 °C) along the altitudinal gradient. This trait association is consistent with evolutionary theories of aging. Population-by-temperature and sex-by-temperature interactions indicate that senescence patterns are expressed in environment specific ways.  相似文献   

15.
According to a prominent recent report, guppies collected from sites lacking predators are inferior in every aspect of their life history profile to those evolved in other, nearby sites with predators present. This is an exception to two classical predictions of evolutionary theory: that low extrinsic mortality should be associated with longer life span, and that higher fertility should be associated with shorter life span. Some theorists have tried to accommodate this and other anomalous results within the standard framework, but we argue that the exceptions they carve out do not explain the results at hand. In fact, the findings suggest that population regulation has been selected at the group level, though this is a mechanism that most theorists regard with suspicion. We conclude by relating the present result to other experiments that seem to point in the same direction.  相似文献   

16.
Evolutionary theories of ageing predict that life span increases with decreasing extrinsic mortality, and life span variation among queens in ant species seems to corroborate this prediction: queens, which are the only reproductive in a colony, live much longer than queens in multi-queen colonies. The latter often inhabit ephemeral nest sites and accordingly are assumed to experience a higher mortality risk. Yet, all prior studies compared queens from different single- and multi-queen species. Here, we demonstrate an effect of queen number on longevity and fecundity within a single, socially plastic species, where queens experience the similar level of extrinsic mortality. Queens from single- and two-queen colonies had significantly longer lifespan and higher fecundity than queens living in associations of eight queens. As queens also differ neither in morphology nor the mode of colony foundation, our study shows that the social environment itself strongly affects ageing rate.  相似文献   

17.
David Reznick 《Genetica》1993,91(1-3):79-88
Progress in any area of biology has generally required work on a variety of organisms. This is true because particular species often have characteristics that make them especially useful for addressing specific questions. Recent progress in studying the evolutionary biology of senescence has been made through the use of new species, such asCaenorhabditis elegans andDrosophila melanogaster, because of the ease of working with them in the laboratory and because investigators have used theories for the evolution of aging as a basis for discovering the underlying mechanisms.I describe ways of finding new model systems for studying the evolutionary mechanisms of aging by combining the predictions of theory with existing information about the natural history of organisms that are well-suited to laboratory studies. Properties that make organisms favorable for laboratory studies include having a short generation time, high fecundity, small body size, and being easily cultured in a laboratory environment. It is also desirable to begin with natural populations that differ in their rate of aging. I present three scenarios and four groups of organisms which fulfill these requirements. The first two scenarios apply to well-documented differences in age/size specific predation among populations of guppies and microcrustacea. The third is differences among populations of fairy shrimp (anostraca) in habitat permanence. In all cases, there is an environmentla factor that is likely to select for changes in the life history, including aging, plus a target organism which is well-suited for laboratory studies of aging.  相似文献   

18.
P. Christe  L. Keller  A. Roulin 《Oikos》2006,114(2):381-384
Evolutionary theory predicts that the rate of extrinsic (i.e. age- and condition-independent) mortality should affect important life history traits such as the rate of ageing and maximum lifespan. Sex-specific differences in mortality rates due to predation may therefore result in the evolution of important differences in life history traits between males and females. However, quantifying the role of predators as a factor of extrinsic mortality is notoriously difficult in natural populations. We took advantage of the unusual prey caching behaviour of the barn owl Tyto alba and the tawny owl Strix aluco to estimate the sex ratio of their five most common preys. For all prey species, there was a significant bias in the sex ratio of remains found in nests of both these owls. A survey of literature revealed that sex-biased predation is a common phenomenon. These results demonstrate that predation, a chief source of extrinsic mortality, was strongly sex-biased. This may select for alternate life history strategies between males and females, and account for a male life span being frequently lower than female lifespan in many animal species.  相似文献   

19.
A major factor influencing life-history strategies of endotherms is body size. Larger endotherms live longer, develop more slowly, breed later and less frequently, and have fewer offspring per attempt at breeding. The classical evolutionary explanation for this pattern is that smaller animals experience greater extrinsic mortality, which favors early reproduction at high intensity. This leads to a short lifespan and early senescence by three suggested mechanisms. First, detrimental late-acting mutations cannot be removed because of the low force of selection upon older animals (mutation accumulation). Second, genes that promote early reproduction will be favored in small animals, even if they have later detrimental effects (antagonistic pleiotropy). Third, small animals may be forced to reduce their investment in longevity assurance mechanisms (LAMs) in favor of investment in reproduction (the disposable soma theory, DST). The DST hinges on three premises: that LAMs exist, that such LAMs are energetically expensive and that the supply of energy is limited. By contrast, the heat dissipation limit (HDL) theory provides a different conceptual perspective on the evolution of life histories in relation to body size. We suggest that rather than being limited, energy supplies in the environment are often unlimited, particularly when animals are breeding, and that animals are instead constrained by their maximum capacity to dissipate body heat, generated as a by-product of their metabolism. Because heat loss is fundamentally a surface-based phenomenon, the low surface-to-volume ratio of larger animals generates significant problems for dissipating the body heat associated with reproductive effort, which then limits their current reproductive investment. We suggest that this is the primary reason why fecundity declines as animal size increases. Because large animals are constrained by their capacity for heat dissipation, they have low reproductive rates. Consequently, only those large animals living in habitats with low extrinsic mortality could survive leading to the familiar patterns of life-history trade-offs and their links to extrinsic mortality rates. The HDL theory provides a novel mechanism underpinning the evolution of life history and ageing in endotherms, and makes a number of testable predictions that directly contrast with the predictions arising from the DST.  相似文献   

20.
Evolution of male longevity bias in nematodes   总被引:4,自引:0,他引:4  
McCulloch D  Gems D 《Aging cell》2003,2(3):165-173
Many animal species exhibit sex differences in aging. In the nematode Caenorhabditis elegans, under conditions that minimize mortality, males are the longer-lived sex. In a survey of 12 independent C. elegans isolates, we find that this is a species-typical character. To test the hypothesis that the C. elegans male longevity bias evolved as a consequence of androdioecy (having males and hermaphrodites), we compared sex-specific survival in four androdioecious and four dioecious (males and females) nematode species. Contrary to expectation, in all but C. briggsae (androdioecious), males were the longer-lived sex, and this difference was greatest among dioecious species. Moreover, male lifespan was reduced in androdioecious species relative to dioecious species. The evolutionary theory of aging predicts the evolution of a shorter lifespan in the sex with the greater rate of extrinsic mortality. We demonstrate that in each of eight species early adult mortality is elevated in females/hermaphrodites in the absence of food as the consequence of internal hatching of larvae (matricide). This age-independent mortality risk can favour the evolution of rapid aging in females and hermaphrodites relative to males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号