首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The interaction between two Fusarium mycotoxins, zearalenone (ZEN) and its derivative ¯α-zearalenol (¯α-ZOL), with two food-grade strains of Lactobacillus was investigated. The mycotoxins (2 μg ml−1) were incubated with either Lactobacillus rhamnosus strain GG or L. rhamnosus strain LC705. A considerable proportion (38 to 46%) of both toxins was recovered from the bacterial pellet, and no degradation products of ZEN and ¯α-ZOL were detected in the high-performance liquid chromatograms of the supernatant of the culturing media and the methanol extract of the pellet. Both heat-treated and acid-treated bacteria were capable of removing the toxins, indicating that binding, not metabolism, is the mechanism by which the toxins are removed from the media. Binding of ZEN or ¯α-ZOL by lyophilized L. rhamnosus GG and L. rhamnosus LC705 was a rapid reaction: approximately 55% of the toxins were bound instantly after mixing with the bacteria. Binding was dependent on the bacterial concentration, and coincubation of ZEN with ¯α-ZOL significantly affected the percentage of the toxin bound, indicating that these toxins may share the same binding site on the bacterial surface. These results can be exploited in developing a new approach for detoxification of mycotoxins from foods and feeds.  相似文献   

2.
A fast, robust and sensitive LC–MS–MS method for the determination of zearalenone (ZON) and its metabolites α-zearalenol (α-ZOL) and β-zearalenol (β-ZOL) in beer samples is described. Sample preparation was performed by direct RP-18 solid-phase extraction of undiluted beer samples followed by selective determination of analytes by LC–MS–MS applying an atmospheric pressure chemical ionization (APCI) interface. Using the negative ion mode limits of determination of 0.03–0.06 μg l−1 beer and limits of quantification of 0.07–0.15 μg l−1 beer were achieved, which was distinctly more sensitive than in the positive ion mode. Twenty-three beer samples from different countries, produced from different grains and under different brewing conditions, were investigated by this method, but only in one sample could β-ZOL and ZON be detected. Independently of the type of beer, relative standard deviations between 2.1% and 3.3%, a linear working range of 0.15 μg l−1 to 500 μg l−1 beer and recovery rates around 100% could be achieved when zearalanone (ZAN) was used as internal standard.  相似文献   

3.
A novel, rapid and sensitive liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for the evaluation of exemestane pharmacokinetics and its metabolites, 17β-dihydroexemestane (active metabolite) and 17β-dihydroexemestane-17-O-β-D-glucuronide (inactive metabolite) in human plasma. Their respective D3 isotopes were used as internal standards. Chromatographic separation of analytes was achieved using Thermo Fisher BDS Hypersil C18 analytic HPLC column (100 × 2.1 mm, 5 μm). The mobile phase was delivered at a rate of 0.5 mL/min by gradient elution with 0.1 % aqueous formic acid and acetonitrile. The column effluents were detected by API 4000 triple quadrupole mass spectrometer using electrospray ionisation (ESI) and monitored by multiple reaction monitoring (MRM) in positive mode. Mass transitions 297 > 121 m/z, 300 > 121 m/z, 299 > 135 m/z, 302 > 135 m/z, 475 > 281 m/z, and 478 > 284 m/z were monitored for exemestane, exemestane-d3, 17β-dihydroexemestane, 17β-dihydroexemestane-d3, 17β-dihydroexemestane-17-O-β-D-glucuronide, and 17β-dihydroexemestane-17-O-β-D-glucuronide-d3 respectively. The assay demonstrated linear ranges of 0.4 – 40.0 ng/mL, for exemestane; and 0.2 – 15.0 ng/mL, for 17β-dihydroexemestane and 17β-dihydroexemestane-17-O-β-D-glucuronide, with coefficient of determination (r2) of > 0.998. The precision (coefficient of variation) were ≤10.7%, 7.7% and 9.5% and the accuracies ranged from 88.8 to 103.1% for exemestane, 98.5 to 106.1% for 17β-dihydroexemestane and 92.0 to 103.2% for 17β-dihydroexemestane-17-O-β-D-glucuronide. The method was successfully applied to a pharmacokinetics/dynamics study in breast cancer patients receiving exemestane 25mg daily orally. For a representative patient, 20.7% of exemestane in plasma was converted into 17β-dihydroexemestane and 29.0% of 17β-dihydroexemestane was inactivated as 17β-dihydroexemestane-17-O-β-D-glucuronide 24 hours after ingestion of exemestane, suggesting that altered 17-dihydroexemestane glucuronidation may play an important role in determining effect of exemestane against breast cancer cells.  相似文献   

4.
The in vitro binding of monomeric, dimeric and multimeric forms of monoclonal IgG1 molecules, designated mAb1 and mAb2, to the extracellular domains of Fcγ receptors RI, RIIA and RIIIB were investigated using a surface plasmon resonance (SPR) based biosensor technique. Stable noncovalent and covalent dimers of mAb1 and mAb2, respectively, were isolated from CHO cell expressed materials. The dissociation constants of monomeric mAb1 and mAb2 were determined to be 1 nM for the FcγRI-binding and 6–12 µM for the FcγRIIA- and FcγRIIIB-binding. Dimeric mAb1 and mAb2 exhibited increased affinities, by 2–3 fold for FcγRI and 200–800 fold for FcγRIIA and FcγRIIIB. Further increases in binding were observed when the antibodies formed large immune complexes with multivalent antigens, but not in a linear relation with size. The binding properties of monomeric mAb2 were identical with and without a bound monovalent antigen, indicating that antigen-binding alone does not induce measurable change in binding of antibodies to Fcγ receptors. Dimerization is sufficient to show enhancement in the receptor binding. Given the wide distribution of the low-affinity Fcγ receptors on immune effector cells, the increased affinities to aggregated IgG may lead to some biological consequences, depending on the subsequent signal transduction events. The SPR-based in vitro binding assay is useful in evaluating Fcγ receptor binding of various species in antibody-based biotherapeutics.  相似文献   

5.
The serine/threonine protein kinases CDK2 and GSK-3β are key oncotargets in breast cancer cell lines, therefore, in the present study three series of oxindole-benzofuran hybrids were designed and synthesised as dual CDK2/GSK-3β inhibitors targeting breast cancer (5a–g, 7a–h, and 13a–b). The N1-unsubstituted oxindole derivatives, series 5, showed moderate to potent activity on both MCF-7 and T-47D breast cancer cell lines. Compounds 5d–f showed the most potent cytotoxic activity with IC50 of 3.41, 3.45 and 2.27 μM, respectively, on MCF-7 and of 3.82, 4.53 and 7.80 μM, respectively, on T-47D cell lines, in comparison to the used reference standard (staurosporine) IC50 of 4.81 and 4.34 μM, respectively. On the other hand, the N1-substituted oxindole derivatives, series 7 and 13, showed moderate to weak cytotoxic activity on both breast cancer cell lines. CDK2 and GSK-3β enzyme inhibition assay of series 5 revealed that compounds 5d and 5f are showing potent dual CDK2/GSK-3β inhibitory activity with IC50 of 37.77 and 52.75 nM, respectively, on CDK2 and 32.09 and 40.13 nM, respectively, on GSK-3β. The most potent compounds 5d–f caused cell cycle arrest in the G2/M phase in MCF-7 cells inducing cell apoptosis because of the CDK2/GSK-3β inhibition. Molecular docking studies showed that the newly synthesised N1-unsubstituted oxindole hybrids have comparable binding patterns in both CDK2 and GSK-3β. The oxindole ring is accommodated in the hinge region interacting through hydrogen bonding with the backbone CO and NH of the key amino acids Glu81 and Leu83, respectively, in CDK2 and Asp133 and Val135, respectively, in GSK-3β. Whereas, in series 7 and 13, the N1-substitutions on the oxindole nucleus hinder the compounds from achieving these key interactions with hinge region amino acids what rationalises their moderate to low anti-proliferative activity.  相似文献   

6.
Infant gut-associated bifidobacteria possess species-specific enzymatic sets to assimilate human milk oligosaccharides, and lacto-N-biosidase (LNBase) is a key enzyme that degrades lacto-N-tetraose (Galβ1–3GlcNAcβ1–3Galβ1–4Glc), the main component of human milk oligosaccharides, to lacto-N-biose I (Galβ1–3GlcNAc) and lactose. We have previously identified LNBase activity in Bifidobacterium bifidum and some strains of Bifidobacterium longum subsp. longum (B. longum). Subsequently, we isolated a glycoside hydrolase family 20 (GH20) LNBase from B. bifidum; however, the genome of the LNBase+ strain of B. longum contains no GH20 LNBase homolog. Here, we reveal that locus tags BLLJ_1505 and BLLJ_1506 constitute LNBase from B. longum JCM1217. The gene products, designated LnbX and LnbY, respectively, showed no sequence similarity to previously characterized proteins. The purified enzyme, which consisted of LnbX only, hydrolyzed via a retaining mechanism the GlcNAcβ1–3Gal linkage in lacto-N-tetraose, lacto-N-fucopentaose I (Fucα1–2Galβ1–3GlcNAcβ1–3Galβ1–4Glc), and sialyllacto-N-tetraose a (Neu5Acα2–3Galβ1–3GlcNAcβ1–3Galβ1–4Gal); the latter two are not hydrolyzed by GH20 LNBase. Among the chromogenic substrates examined, the enzyme acted on p-nitrophenyl (pNP)-β-lacto-N-bioside I (Galβ1–3GlcNAcβ-pNP) and GalNAcβ1–3GlcNAcβ-pNP. GalNAcβ1–3GlcNAcβ linkage has been found in O-mannosyl glycans of α-dystroglycan. Therefore, the enzyme may serve as a new tool for examining glycan structures. In vitro refolding experiments revealed that LnbY and metal ions (Ca2+ and Mg2+) are required for proper folding of LnbX. The LnbX and LnbY homologs have been found only in B. bifidum, B. longum, and a few gut microbes, suggesting that the proteins have evolved in specialized niches.  相似文献   

7.
The toxicity of zearalenone (ZEA) was evaluated in swine spleen, a key organ for the innate and adaptative immune response. Weaned pigs were fed for 18 days with a control or a ZEA contaminated diet. The effect of ZEA was assessed on wide genome expression, pro- (TNF-α, IL-8, IL-6, IL-1β, IFN-γ) and anti-inflammatory (IL-10, IL-4) cytokines, other molecules involved in inflammatory processes (MMPs/TIMPs), as well as signaling molecules, (p38/JNK1/JNK2-MAPKs) and nuclear receptors (PPARγ/NFkB/AP-1/STAT3/c-JUN). Microarray analysis showed that 46% of total number of differentially expressed genes was involved in cellular signaling pathway, 13% in cytokine network and 10% in the inflammatory response. ZEA increased expression and synthesis of pro- inflammatory (TNF-α, IL-8, IL-6, IL-1β) and had no effect on IFN-γ, IL-4 and IL-10 cytokines in spleen. The inflammatory stimulation might be a consequence of JNK pathway activation rather than of p-38MAPK and NF-kB involvement whose gene and protein expression were suppressed by ZEA action. In summary, our findings indicated the role of ZEA as an immune disruptor at spleen level.  相似文献   

8.
Thidiazuron (TDZ) is a synthetic plant growth regulator, which is widely used in agriculture and tissue culture. A sensitive and specific monoclonal antibody (mAb3D6F5B2) was obtained. An indirect competitive enzyme-linked immunosorbent assay (icELISA) was developed with mAb3D6F5B2. The established icELISA possessed a 50 % inhibition concentration (IC50) of 0.61 ng/mL and a quantitative range of 0.15–2.49 ng/mL. The recoveries of TDZ fortified in water and soil samples were 76–126 %. The residual level of TDZ in soil samples detected by icELISA was confirmed with high performance liquid chromatography-mass spectrometry (LC/MS). The correlation coefficient (R 2) between the two assays was 0.9898, demonstrating this icELISA is suitable to detect TDZ residues in environmental and agricultural samples.  相似文献   

9.
Zearalenone (hereafter referred to as ZEA) is a nonsteroidal estrogenic mycotoxin produced by several Fusarium spp. on cereal grains. ZEA is one of the most hazardous natural endocrine disrupting chemicals (EDC) which induces hyper estrogenic responses in mammals. This can result in reproductive disorders in farm animals as well as in humans. Consequently, detoxification strategies for contaminated crops are crucial for food safety. In this study we have developed a bacterial based detoxification system using a non-pathogen Rhodococcus pyridinivorans K408 strain. Following 5 days treatment of ZEA with R. pyridinivorans K408 strain HPLC analyses showed an 87.21% ZEA-degradation efficiency of the bacterial enzyme systems. In another approach, the strain biotransformation ability has also been confirmed by a bioluminescent version of the yeast estrogen screening system (BLYES), which detected an 81.75% of biodegradability of ZEA, in a good agreement with the chemical analyses. Furthermore, the capacity of R. pyridinivorans to eliminate the estrogenic effects of ZEA was tested by using an immature uterotrophic assay. Prepubertal female rats were treated with vehicle (olive oil), 17β-estradiol, ZEA (0.1-1-5-10 mg/kg body weight) and LB broth containing 500 mg/l ZEA that has already been incubated with or without Rhodococcus pyridinivorans K408 strain. Uterine weights were measured and the mRNA level changes relating to apelin, aquaporin 5, complement component 2, and calbindin-3 genes were measured by qRT-PCR. These genes represent the major pathways that are affected by estromimetic compounds. Zearalenone feeding significantly increased the uterus weight in a dose dependent manner and at the same time upregulated complement component 2 and calbindin-3 expression as well as decreased apelin and aquaporin 5 mRNA levels comparable to that seen in 17β-estradiol exposed rats. In contrast, LB broth in which ZEA was incubated with Rhodococcus pyridinivorans K408 prior to the feeding did not display any estrogenic effect neither on uterine weight nor on the expression of estrogen-regulated genes. Consequently, the identification of Rhodococcus pyridinivorans K408 strain in ZEA biodegradation proved to be a very efficient biological tool that is able to eliminate the complete estrogenic effects of ZEA. It is also remarkable that this biotransformation pathway of ZEA did not result in any residual estrogenic effects.  相似文献   

10.

Objective

Although α-klotho is known as an anti-aging, antioxidant, and cardio-renal protective protein, the clinical implications of soluble α-klotho levels in patients with diabetes have not been evaluated. Therefore, this study evaluated whether plasma and urinary α-klotho levels are associated with albuminuria in kidney disease in diabetes.

Research Design and Methods

A total of 147 patients with type 2 diabetes and 25 healthy control subjects were enrolled. The plasma and urine concentrations of α-klotho were analyzed by enzyme-linked immunosorbent assay.

Results

Plasma α-klotho (572.4 pg/mL [95% CI, 541.9–604.6 pg/mL] vs. 476.9 pg/mL [95% CI, 416.9–545.5 pg/mL]) and urinary α-klotho levels (59.8 pg/mg creatinine [95% CI, 43.6–82.0 pg/mg creatinine] vs. 21.0 pg/mg creatinine [95% CI, 9.7–45.6 pg/mg creatinine]) were significantly higher in diabetic patients than non-diabetic controls. Among diabetic patients, plasma α-klotho concentration was inversely associated with albuminuria stages (normoalbuminuria, 612.6 pg/mL [95% CI, 568.9–659.6 pg/mL], microalbuminuria, 551.8 pg/mL [95% CI, 500.5–608.3 pg/mL], and macroalbuminuria, 505.7 pg/mL [95% CI, 439.7–581.7 pg/mL] (p for trend  = 0.0081), while urinary α-klotho levels were remained constantly high with increasing urinary albumin excretion.

Conclusions

Soluble α-klotho levels in plasma and urine may be novel and useful early markers of diabetic renal injury.  相似文献   

11.
Anti-β-glucan antibodies elicited by a laminarin-conjugate vaccine confer cross-protection to mice challenged with major fungal pathogens such as Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. To gain insights into protective β-glucan epitope(s) and protection mechanisms, we studied two anti-β-glucan monoclonal antibodies (mAb) with identical complementarity-determining regions but different isotypes (mAb 2G8, IgG2b and mAb 1E12, IgM). C. albicans, the most relevant fungal pathogen for humans, was used as a model.Both mAbs bound to fungal cell surface and to the β1,3-β1,6 glucan of the fungal cell wall skeleton, as shown by immunofluorescence, electron-microscopy and ELISA. They were also equally unable to opsonize fungal cells in a J774 macrophage phagocytosis and killing assay. However, only the IgG2b conferred substantial protection against mucosal and systemic candidiasis in passive vaccination experiments in rodents. Competition ELISA and microarray analyses using sequence-defined glucan oligosaccharides showed that the protective IgG2b selectively bound to β1,3-linked (laminarin-like) glucose sequences whereas the non-protective IgM bound to β1,6- and β1,4-linked glucose sequences in addition to β1,3-linked ones. Only the protective IgG2b recognized heterogeneous, polydisperse high molecular weight cell wall and secretory components of the fungus, two of which were identified as the GPI-anchored cell wall proteins Als3 and Hyr1. In addition, only the IgG2b inhibited in vitro two critical virulence attributes of the fungus, hyphal growth and adherence to human epithelial cells.Our study demonstrates that the isotype of anti-β-glucan antibodies may affect details of the β-glucan epitopes recognized, and this may be associated with a differing ability to inhibit virulence attributes of the fungus and confer protection in vivo. Our data also suggest that the anti-virulence properties of the IgG2b mAb may be linked to its capacity to recognize β-glucan epitope(s) on some cell wall components that exert critical functions in fungal cell wall structure and adherence to host cells.  相似文献   

12.

Background

Bone formation marker procollagen I N-terminal peptide (PINP) and resorption marker C-terminal telopeptide of type I collagen (β-CTX) are useful biomarkers for differential diagnosis and therapeutic evaluation of osteoporosis, but reference values are required.

Methods

The multi-center, cross-sectional Chinese Bone Turnover Marker Study included 3800 healthy volunteers in 5 Chinese cities. Serum PINP, β-CTX, parathyroid hormone (PTH) and 25OHD levels were measured by chemiluminescence assay. Lumbar spine and proximal femur BMD were measured by dual-energy X-ray absorptiometry. Serum PINP and β-CTX levels were assessed by age, gender, weight, recruitment latitude, levels of PTH and 25OHD.

Results

Subjects (n = 1436, M∶F, 500∶936; mean age 50.6±19.6 years) exhibited non-normally distributed PINP and β-CTX peaking between 15–19 years, gradually declining throughout adulthood, elevating within 10 years of postmenopause, and then declining by age 70. In women between the age of 30 and menopause, median PINP and β-CTX levels were 40.42 (95% CI: 17.10–102.15) and 0.26 (95% CI: 0.08–0.72) ng/mL, respectively. β-CTX and PINP were positively linearly correlated (r = 0.599, P<0.001). β-CTX correlated positively (r = 0.054 and 0.093) and PINP correlated negatively (r = −0.012 and −0.053) with 25OHD and PTH (P<0.05).

Conclusions

We established Chinese reference ranges for PINP and CTX. Chinese individuals exhibited high serum PINP and β-CTX levels between 15 and 19 years of age and at menopause, which gradually declined after 70 years of age.  相似文献   

13.
To investigate the binding of 5′–CpG–3′ sequences by small molecules, two pyrrole (Py)–imidazole (Im) hairpin polyamides, PyImPyIm–γPyImPyIm–βDp (1) and PyIm–βIm–γPyIm–β–Im–β–Dp (2), which recognize the sequence 5′–CGCG–3′, were synthesized. The binding affinities of the 5′–CGCG–3′ sequence to the Py–Im hairpin polyamides were measured by surface plasmon resonance (SPR) analysis. SPR data revealed that dissociation equilibrium constants (Kd) of polyamides 1 and 2 were 1.1 (± 0.3) × 10–6 M and 1.7 (± 0.4) × 10–8 M, respectively. Polyamide 2 possesses great binding affinity for this sequence, 65-fold higher than polyamide 1. Moreover, when all cytosines in 5′–CpGpCpG–3′ were replaced with 5-methylcytosines (mCs), the Kd value of polyamide 2 increased to 5.8 (± 0.7) × 10–9 (M), which indicated about 3-fold higher binding than the unmethylated 5′–CGCG–3′ sequence. These results suggest that polyamide 2 would be suitable to target CpG-rich sequences in the genome.  相似文献   

14.

Background

Peripartum cardiomyopathy (PPCM) is characterized by left ventricular systolic dysfunction and heart failure. However, its pathogenesis is not clear. Our preliminary study revealed that autoantibodies against β1-adrenergic receptors (β1R-AABs) and M2-muscarinic receptors (M2R-AABs) participated in heart failure regardless of primary heart disease. Whether β1R-AABs and M2R-AABs participate in the pathogenesis of PPCM is still unknown.

Methods

Totally 37 diagnosed PPCM patients and 36 normal pregnant women were enrolled in this study. Clinical assessment and 2-dimensional echocardiographic studies as well as the measurement of β1R-AABs or M2R-AABs by enzyme linked immunosorbent assay (ELISA) were performed.

Results

The positive rates for β1R-AABs and M2R-AABs were 59.5% (22/37) and 45.9% (17/37) in PPCM patients, and 19.4% (7/36) (P<0.001) and 16.67% (6/36) (P<0.001) in normal pregnant women, respectively. Both β1R-AABs and M2R-AABs had a positive correlation with serum expression level of NT-proBNP, left ventricular dimension and NYHA FC (rs: 0.496–0.892, P<0.01). In addition, a negative correlation between the activity of β1R-AABs and M2R-AABs and LVEF, LVFS was observed (rs: −0.488–0.568, P<0.01). Moreover, autoantibodies against cardiovascular receptors increased the risk of the onset of PPCM (OR = 18.786, 95% confidence interval 1.926–183.262, P = 0.012).

Conclusions

The β1R-AABs and M2R-AABs reveal a significant elevation and are correlated with the increased left ventricular dimension and worse cardiac contraction function. The autoantibodies of cardiovascular receptors are independent risk factors for the onset of PPCM.  相似文献   

15.
A number of case-control studies have been conducted to clarify the association between ApoE polymorphisms and myocardial infarction (MI); however, the results are inconsistent. This meta-analysis was performed to clarify this issue using all the available evidence. Searching in PubMed retrieved all eligible articles. A total of 33 studies were included in this meta-analysis, including 18752 MI cases and 18963 controls. The pooled analysis based on all included studies showed that the MI patients had a decreased frequency of the ε2 allele (OR = 0.78, 95% CI = 0.70–0.87) and an increased frequency of the ε4 allele (OR = 1.15, 95% CI = 1.10–1.20); The results also showed a decreased susceptibility of MI in the ε2ε3 vs. ε3ε3 analysis (OR = 0.79, 95% CI = 0.68–0.90) and in the ε2 vs. ε3 analysis (OR = 0.78, 95% CI = 0.69–0.89), an increased susceptibility of MI in the ε3ε4 vs. ε3ε3 analysis (OR = 1.26, 95% CI = 1.12–1.41), in the ε4 vs. ε3 analysis (OR = 1.22, 95% CI = 1.12–1.32) and in the ε4ε4 vs. ε3ε3 analysis (OR = 1.59, 95% CI = 1.15–2.19). However, there were no significant associations among polymorphisms and MI for the following genetic models: frequency of the ε3 allele (OR = 0.99, 95% CI = 0.96–1.02); ε2ε2 vs. ε3ε3 analysis (OR = 0.73, 95% CI = 0.40–1.32); or ε2ε4 vs. ε3ε3 analysis (OR = 1.10, 95% CI = 0.99–1.21). Our results suggested that the ε4 allele of ApoE is a risk factor for the development of MI and the ε2 allele of ApoE is a protective factor in the development of MI.  相似文献   

16.
Objectives:To: 1. Assess muscle function (MF) of rural Indian children (6-11y, n=232), using Jumping Mechanography (JM) and hand dynamometer, 2. Investigate gender differences, 3. Identify determinants of MF.Methods:Data on anthropometry, muscle mass%, diet, physical activity, sunlight exposure, MF (maximum relative power Pmax/mass, maximum relative force Fmax/BW by JM; relative grip strength (RGS) by hand dynamometer) were collected. Pearson’s correlation and hierarchical linear regression was performed.Results:Pmax/mass, Fmax/BW and RGS of the group were 31.7±5.0W/kg, 3.0±0.3 and 0.4±0.1 (mean±SD), respectively. The Pmax/mass Z-score was –1.1±0.9 and Fmax/BW Z-score was –0.9±1 (mean±SD) which was significantly lower than the machine reference data (p<0.05). Positive association of muscle mass% and protein intake was observed with all MF parameters and moderate+vigorous physical activity with Fmax/BW (p<0.05). Determinants of MF identified through regression for Pmax/mass were age (β=1.83,95% CI=0.973 – 2.686), muscle mass% (β=0.244,95% CI=0.131–0.358) and protein intake (β=3.211,95% CI=1.597–4.825) and for Fmax/BW was protein intake (β=0.130,95% CI=0.023–0.237) (p<0.05). Male gender was a positive predictor of having higher Pmax/mass (β=1.707,95% CI=0.040–3.373) (p<0.05).Conclusion:MF was lower than in western counterparts. To optimize MF of rural Indian children, focus should be on improving muscle mass, ensuring adequate dietary protein, and increasing physical activity, especially in girls.  相似文献   

17.
Age-related macular degeneration (AMD) is a leading cause of legal blindness in the Western world. There are effective treatments for the vascular complications of neo-vascular AMD, but no effective therapies are available for the dry/atrophic form of the disease. A previously described transgenic CFH-gene deficient mouse model, (cfh−/−), shows hallmarks of early AMD. The ocular phenotype has been further analysed to demonstrate amyloid beta (Aβ) rich basement membrane deposits associated with activated complement C3. Cfh−/− mice were treated systemically in both prophylactic and therapeutic regimes with an anti-Aβ monoclonal antibody (mAb), 6F6, to determine the effect on the cfh−/− retinal phenotype. Prophylactic treatment with 6F6 demonstrated a dose dependent reduction in the accumulation of both Aβ and activated C3 deposition. A similar reduction in the retinal endpoints could be seen after therapeutic treatment. Serum Aβ levels after systemic administration of 6F6 show accumulation of Aβ in the periphery suggestive of a peripheral sink mechanism. In summary, anti-Aβ mAb treatment can partially prevent or reverse ocular phenotypes of the cfh−/− mouse. The data support this therapeutic approach in humans potentially modulating two key elements in the pathogenesis of AMD – Aβ and activated, complement C3.  相似文献   

18.
Evidence shows that an abnormal deposition of amyloid beta-peptide25–35 (Aβ25–35) was the primary cause of the pathogenesis of Alzheimer’s disease (AD). And the elimination of Aβ25–35 is considered an important target for the treatment of AD. Triptolide (TP), isolated from Tripterygium wilfordii Hook.f. (TWHF), has been shown to possess a broad spectrum of biological profiles, including neurotrophic and neuroprotective effects. In our study investigating the effect and potential mechanism of triptolide on cytotoxicity of differentiated rat pheochromocytoma cell line (the PC12 cell line is often used as a neuronal developmental model) induced by Amyloid-Beta25–35 (Aβ25–35), we used 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide (MTT) assay, flow cytometry, Western blot, and acridine orange staining to detect whether triptolide could inhibit Aβ25–35–induced cell apoptosis. We focused on the potential role of the autophagy pathway in Aβ25–35-treated differentiated PC12 cells. Our experiments show that cell viability is significantly decreased, and the apoptosis increased in Aβ25–35-treated differentiated PC12 cells. Meanwhile, Aβ25–35 treatment increased the expression of microtubule-associated protein light chain 3 II (LC3 II), which indicates an activation of autophagy. However, triptolide could protect differentiated PC12 cells against Aβ25–35-induced cytotoxicity and attenuate Aβ25–35-induced differentiated PC12 cell apoptosis. Triptolide could also suppress the level of autophagy. In order to assess the effect of autophagy on the protective effects of triptolide in differentiated PC12 cells treated with Aβ25–35, we used 3-Methyladenine (3-MA, an autophagy inhibitor) and rapamycin (an autophagy activator). MTT assay showed that 3-MA elevated cell viability compared with the Aβ25–35-treated group and rapamycin inhibits the protection of triptolide. These results suggest that triptolide will repair the neurological damage in AD caused by deposition of Aβ25–35 via the autophagy pathway, all of which may provide an exciting view of the potential application of triptolide or TWHF as a future research for AD.  相似文献   

19.

Objective

To investigate whether there is a specific dose-dependent effect of the Apolipoprotein E (APOE) ε4 and ε2 alleles on hippocampal volume, across the cognitive spectrum, from normal aging to Alzheimer’s Disease (AD).

Materials and Methods

We analyzed MR and genetic data on 662 patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database–198 cognitively normal controls (CN), 321 mild-cognitive impairment (MCI) subjects, and 143 AD subjects–looking for dose-dependent effects of the ε4 and ε2 alleles on hippocampal volumes. Volumes were measured using a fully-automated algorithm applied to high resolution T1-weighted MR images. Statistical analysis consisted of a multivariate regression with repeated-measures model.

Results

There was a dose-dependent effect of the ε4 allele on hippocampal volume in AD (p = 0.04) and MCI (p = 0.02)–in both cases, each allele accounted for loss of >150 mm3 (approximately 4%) of hippocampal volume below the mean volume for AD and MCI subjects with no such alleles (Cohen’s d = −0.16 and −0.19 for AD and MCI, respectively). There was also a dose-dependent, main effect of the ε2 allele (p<0.0001), suggestive of a moderate protective effect on hippocampal volume–an approximately 20% per allele volume increase as compared to CN with no ε2 alleles (Cohen’s d = 0.23).

Conclusion

Though no effect of ε4 was seen in CN subjects, our findings confirm and extend prior data on the opposing effects of the APOE ε4 and ε2 alleles on hippocampal morphology across the spectrum of cognitive aging.  相似文献   

20.
The bloodstream form of the human pathogen Trypanosoma brucei expresses oligomannose, paucimannose, and complex N-linked glycans, including some exceptionally large poly-N-acetyllactosamine-containing structures. Despite the presence of complex N-glycans in this organism, no homologues of the canonical N-acetylglucosaminyltransferase I or II genes can be found in the T. brucei genome. These genes encode the activities that initiate the elaboration of the Manα1–3 and Manα1–6 arms, respectively, of the conserved trimannosyl-N-acetylchitobiosyl core of N-linked glycans. Previously, we identified a highly divergent T. brucei N-acetylglucosaminyltransferase I (TbGnTI) among a set of putative T. brucei glycosyltransferase genes belonging to the β3-glycosyltransferase superfamily (Damerow, M., Rodrigues, J. A., Wu, D., Güther, M. L., Mehlert, A., and Ferguson, M. A. (2014) J. Biol. Chem. 289, 9328–9339). Here, we demonstrate that TbGT15, another member of the same β3-glycosyltransferase family, encodes an equally divergent N-acetylglucosaminyltransferase II (TbGnTII) activity. In contrast to multicellular organisms, where GnTII activity is essential, TbGnTII null mutants of T. brucei grow in culture and are still infectious to animals. Characterization of the large poly-N-acetyllactosamine containing N-glycans of the TbGnTII null mutants by methylation linkage analysis suggests that, in wild-type parasites, the Manα1–6 arm of the conserved trimannosyl core may carry predominantly linear poly-N-acetyllactosamine chains, whereas the Manα1–3 arm may carry predominantly branched poly-N-acetyllactosamine chains. These results provide further detail on the structure and biosynthesis of complex N-glycans in an important human pathogen and provide a second example of the adaptation by trypanosomes of β3-glycosyltransferase family members to catalyze β1–2 glycosidic linkages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号