首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
The CONSTANS (CO) gene is a key regulator of the response to photoperiod in the model plant Arabidopsis thaliana, and its homologues are present in many plant species. We describe here the isolation of the CO homologue for zinc finger protein gene GmCOL10 (Glycine max CONSTANS-Like 10) from the soybean cultivar Kennong18. Sequence comparisons showed that the closest A. thaliana gene to GmCOL10 is COL5. The expression of GmCOL10 was regulated in a circadian manner, especially under short-day conditions. The expression of GmCOL10 was concentrated in vegetative organs, and in particular in the unifoliolates and cotyledons. An analysis of subcellular localization found GmCOL10 in the nucleus. Our data suggested that GmCOL10 was not related to the photoperiodic pathway of floral transition as Arabidopsis CO does.  相似文献   

3.
4.
MicroProteins are short, single domain proteins that act by sequestering larger, multi-domain proteins into non-functional complexes. MicroProteins have been identified in plants and animals, where they are mostly involved in the regulation of developmental processes. Here we show that two Arabidopsis thaliana microProteins, miP1a and miP1b, physically interact with CONSTANS (CO) a potent regulator of flowering time. The miP1a/b-type microProteins evolved in dicotyledonous plants and have an additional carboxy-terminal PF(V/L)FL motif. This motif enables miP1a/b microProteins to interact with TOPLESS/TOPLESS-RELATED (TPL/TPR) proteins. Interaction of CO with miP1a/b/TPL causes late flowering due to a failure in the induction of FLOWERING LOCUS T (FT) expression under inductive long day conditions. Both miP1a and miP1b are expressed in vascular tissue, where CO and FT are active. Genetically, miP1a/b act upstream of CO thus our findings unravel a novel layer of flowering time regulation via microProtein-inhibition.  相似文献   

5.
6.
7.
8.
Determining the proper time to flower is important to ensure the reproductive success of plants. The model plant Arabidopsis is able to measure day-length and promotes flowering in long day (LD) conditions. One of the most prominent mechanisms in photoperiodic flowering is the clock-regulated gene expression of CONSTANS (CO) and the stabilization and activation of CO protein by light (regarded as external coincidence). We recently demonstrated that timing of the blue-light dependent formation of FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) and GIGANTEA (GI) protein complex is crucial for regulating the timing of CO gene expression. The expression of FKF1 and GI is clock regulated, and their expression patterns have the same phase in LD (regarded as internal coincidence) but not in short day (SD) conditions, where floral induction is greatly delayed. Hence, timing of the FKF1-GI complex formation is regulated by the coincidence of both external and internal cues. Here, we propose a molecular mechanism for CO regulation by FKF1-GI complex formation.Key words: Arabidopsis, circadian clock, photoperiodic flowering, CONSTANS, GIGANTEA, FKF1, CDF1  相似文献   

9.
Soybean (Glycine max L.) is a typical short-day crop, and its flowering is strictly restricted by specific photoperiod conditions. CONSTANS (CO) plays a pivotal role in the photoperiod pathway of flowering regulation. CO-like genes are present in many plant species. Here we describe the isolation of the CO homologue GmCOL11 (Glycine max CO-like 11) from the soybean cv. Kennong 18. Sequence comparisons show that GmCOL11 is a group II CO-like gene with some similarity to AtCOL6 and AtCOL16. Its sequence includes a conserved B box and a CCT domain. The study of GmCOL11 expression using quantitative real time RT-PCR demonstrated that this gene was regulated in a diurnal rather than in a circadian manner. The gene was expressed throughout the plant, but mainly in adult leaves and maturing seeds; its expression was enhanced following flowering. Apparently GmCOL11 is involved in several aspects of soybean development.  相似文献   

10.
Although four maturity genes, E1 to E4, in soybean have been successfully cloned, their functional mechanisms and the regulatory network of photoperiodic flowering remain to be elucidated. In this study, we investigated how the diurnal expression pattern of the E1 gene is related to photoperiodic length; and to what extent allelic variation in the B3-like domain of the E1 gene is associated with flowering time phenotype. The bimodal expression of the E1 gene peaked first at around 2 hours after dawn in long-day condition. The basal expression level of E1 was enhanced by the long light phase, and decreased by duration of dark. We identified a 5bp (3 SNP and 2-bp deletion) mutation, referred to an e1-b3a, which occurs in the middle of B3 domain of the E1 gene in the early flowering cultivar Yanhuang 3. Subcellular localization analysis showed that the putative truncated e1-b3a protein was predominately distributed in nuclei, indicating the distribution pattern of e1-b3a was similar to that of E1, but not to that of e1-as. Furthermore, genetic analysis demonstrated allelic variations at the E1 locus significantly underlay flowering time in three F2 populations. Taken together, we can conclude the legume specific E1 gene confers some special features in photoperiodic control of flowering in soybean. Further characterization of the E1 gene will extend our understanding of the soybean flowering pathway in soybean.  相似文献   

11.
12.
MicroProteins are potent post-translational regulators. In Arabidopsis (Arabidopsis thaliana), the miP1a/b microProteins delay floral transition by forming a complex with CONSTANS (CO) and the co-repressor protein TOPLESS. To better understand the function of the miP1a microProtein in floral repression, we performed a genetic suppressor screen to identify suppressors ofmiP1a (sum) function. One mutant, sum1, exhibited strong suppression of the miP1a-induced late-flowering phenotype. Mapping of sum1 identified another allele of the gene encoding the histone H3K4 demethylase JUMONJI14 (JMJ14), which is required for miP1a function. Plants carrying mutations in JMJ14 exhibit an early flowering phenotype that is largely dependent on CO activity, supporting an additional role for CO in the repressive complex. We further investigated whether miP1a function involves chromatin modification, performed whole-genome methylome sequencing studies with plants ectopically expressing miP1a, and identified differentially methylated regions (DMRs). Among these DMRs is the promoter of FLOWERING LOCUS T (FT), the prime target of miP1a that is ectopically methylated in a JMJ14-dependent manner. Moreover, when aberrantly expressed at the shoot apex, CO induces early flowering, but only when JMJ14 is mutated. Detailed analysis of the genetic interaction among CO, JMJ14, miP1a/b, and TPL revealed a potential role for CO as a repressor of flowering in the shoot apical meristem (SAM). Altogether, our results suggest that a repressor complex operates in the SAM, likely to maintain it in an undifferentiated state until leaf-derived florigen signals induce SAM conversion into a floral meristem.

A mapping-by-sequencing approach allows identification of a suppressor of miP1a function, and the combination of proteomics and genomics reveals a repressor complex in the shoot meristem.  相似文献   

13.
14.
15.
The photoperiodic response in Arabidopsis thaliana requires the precise regulation of CONSTANS (CO) expression in relation to the light period during the day. In short days (SDs) levels of CO expression are normally low during the light period, and this results in delayed flowering compared with long days (LDs) when CO expression rises to high levels before the end of the light period. We identified a novel flowering time gene called DAY NEUTRAL FLOWERING (DNF) that acts in the same flowering pathway as CO. DNF is a membrane-bound E3 ligase that represses CO expression and plays an important role in maintaining low levels of CO expression in SDs. The effect of DNF on the rhythm of CO expression is essential for the photoperiodic response of Arabidopsis, enabling it to have a different flowering response in LDs and SDs.  相似文献   

16.
Ethylene, a regulator of plant growth and development, is perceived by specific receptors that act as negative regulators of the ethylene response. Five ethylene receptors, i.e., ETR1, ERS1, EIN4, ETR2, and ERS2, are present in Arabidopsis and dominant negative mutants of each that confer ethylene insensitivity have been reported. In contrast, maize contains just two types of ethylene receptors: ZmERS1, encoded by ZmERS1a and ZmERS1b, and ZmETR2, encoded by ZmETR2a and ZmETR2b. In this study, we introduced a Cys to Tyr mutation in the transmembrane domain of ZmERS1b and ZmETR2b that is present in the etr1-1 dominant negative mutant and expressed each protein in Arabidopsis. Mutant Zmers1b and Zmetr2b receptors conferred ethylene insensitivity and Arabidopsis expressing Zmers1b or Zmetr2b were larger and exhibited a delay in leaf senescence characteristic of ethylene insensitive Arabidopsis mutants. Zmers1b and Zmetr2b were dominant and functioned equally well in a hemizygous or homozygous state. Expression of the Zmers1b N-terminal transmembrane domain was sufficient to exert dominance over endogenous Arabidopsis ethylene receptors whereas the Zmetr2b N-terminal domain failed to do so. Neither Zmers1b nor Zmetr2b functioned in the absence of subfamily 1 ethylene receptors, i.e., ETR1 and ERS1. These results suggest that Cys65 in maize ZmERS1b and ZmETR2b plays the same role that it does in Arabidopsis receptors. Moreover, the results demonstrate that the mutant maize ethylene receptors are functionally dependent on subfamily 1 ethylene receptors in Arabidopsis, indicating substantial functional conservation between maize and Arabidopsis ethylene receptors despite their sequence divergence.  相似文献   

17.
The timing of flowering is coordinated by a web of gene regulatory networks that integrates developmental and environmental cues in plants. Light and temperature are two major environmental determinants that regulate flowering time. Although prolonged treatment with low nonfreezing temperatures accelerates flowering by stable repression of FLOWERING LOCUS C (FLC), repeated brief cold treatments delay flowering. Here, we report that intermittent cold treatments trigger the degradation of CONSTANS (CO), a central activator of photoperiodic flowering; daily treatments caused suppression of the floral integrator FLOWERING LOCUS T (FT) and delayed flowering. Cold-induced CO degradation is mediated via a ubiquitin/proteasome pathway that involves the E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 1 (HOS1). HOS1-mediated CO degradation occurs independently of the well established cold response pathways. It is also independent of the light signaling repressor CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) E3 ligase and light wavelengths. CO has been shown to play a key role in photoperiodic flowering. Here, we demonstrated that CO served as a molecular hub, integrating photoperiodic and cold stress signals into the flowering genetic pathways. We propose that the HOS1-CO module contributes to the fine-tuning of photoperiodic flowering under short term temperature fluctuations, which often occur during local weather disturbances.  相似文献   

18.
SIZ1 is a small ubiquitin‐related modifier (SUMO) E3 ligase that mediates post‐translational SUMO modification of target proteins and thereby regulates developmental processes and hormonal and environmental stress responses in Arabidopsis. However, the role of SUMO E3 ligases in crop plants is largely unknown. Here, we identified and characterized two Glycine max (soybean) SUMO E3 ligases, GmSIZ1a and GmSIZ1b. Expression of GmSIZ1a and GmSIZ1b was induced in response to salicylic acid (SA), heat, and dehydration treatment, but not in response to cold, abscisic acid (ABA), and NaCl treatment. Although GmSIZ1a was expressed at higher levels than GmSIZ1b, both genes encoded proteins with SUMO E3 ligase activity in vivo. Heterologous expression of GmSIZ1a or GmSIZ1b rescued the mutant phenotype of Arabidopsis siz1‐2, including dwarfism, constitutively activated expression of pathogen‐related genes, and ABA‐sensitive seed germination. Simultaneous downregulation of GmSIZ1a and GmSIZ1b (GmSIZ1a/b) using RNA interference (RNAi)‐mediated gene silencing decreased heat shock‐induced SUMO conjugation in soybean. Moreover, GmSIZ1RNAi plants exhibited reduced plant height and leaf size. However, unlike Arabidopsis siz1‐2 mutant plants, flowering time and SA levels were not significantly altered in GmSIZ1RNAi plants. Taken together, our results indicate that GmSIZ1a and GmSIZ1b mediate SUMO modification and positively regulate vegetative growth in soybean.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号