首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Titin is a giant filamentous protein of the muscle sarcomere in which stretch induces the unfolding of its globular domains. However, the mechanisms of how domains are progressively selected for unfolding and which domains eventually unfold have for long been elusive. Based on force-clamp optical tweezers experiments we report here that, in a paradoxical violation of mechanically driven activation kinetics, neither the global domain unfolding rate, nor the folded-state lifetime distributions of full-length titin are sensitive to force. This paradox is reconciled by a gradient of mechanical stability so that domains are gradually selected for unfolding as the magnitude of the force field increases. Atomic force microscopic screening of extended titin molecules revealed that the unfolded domains are distributed homogenously along the entire length of titin, and this homogeneity is maintained with increasing overstretch. Although the unfolding of domains with progressively increasing mechanical stability makes titin a variable viscosity damper, the spatially randomized variation of domain stability ensures that the induced structural changes are not localized but are distributed along the molecule''s length. Titin may thereby provide complex safety mechanims for protecting the sarcomere against structural disintegration under excessive mechanical conditions.  相似文献   

2.
B Zhang  G Xu    J S Evans 《Biophysical journal》1999,77(3):1306-1315
Molecular elasticity is a physicomechanical property that is associated with a select number of polypeptides and proteins, such as the giant muscle protein, titin, and the extracellular matrix protein, tenascin. Both proteins have been the subject of atomic force microscopy (AFM), laser tweezer, and other in vitro methods for examining the effects of force extension on the globular (FNIII/Ig-like) domains that comprise each protein. In this report we present a time-dependent method for simulating AFM force extension and its effect on FNIII/Ig domain unfolding and refolding. This method treats the unfolding and refolding process as a standard three-state protein folding model (U right arrow over left arrow T right arrow over left arrow F, where U is the unfolded state, T is the transition or intermediate state, and F is the fully folded state), and integrates this approach within the wormlike chain (WLC) concept. We simulated the effect of AFM tip extension on a hypothetical titin molecule comprised of 30 globular domains (Ig or FNIII) and 25% Pro-Glu-Val-Lys (PEVK) content, and analyzed the unfolding and refolding processes as a function of AFM tip extension, extension rate, and variation in PEVK content. In general, we find that the use of a three-state protein-folding kinetic-based model and the implicit inclusion of PEVK domains can accurately reproduce the experimental force-extension curves observed for both titin and tenascin proteins. Furthermore, our simulation data indicate that PEVK domains exhibit extensibility behavior, assist in the unfolding and refolding of FNIII/Ig domains in the titin molecule, and act as a force "buffer" for the FNIII/Ig domains, particularly at low and moderate extension forces.  相似文献   

3.
Single α-helix (SAH) domains are rich in charged residues (Arg, Lys, and Glu) and stable in solution over a wide range of pH and salt concentrations. They are found in many different proteins where they bridge two functional domains. To test the idea that their high stability might enable these proteins to resist unfolding along their length, the properties and unfolding behavior of the predicted SAH domain from myosin-10 were characterized. The expressed and purified SAH domain was highly helical, melted non-cooperatively, and was monomeric as shown by circular dichroism and mass spectrometry as expected for a SAH domain. Single molecule force spectroscopy experiments showed that the SAH domain unfolded at very low forces (<30 pN) without a characteristic unfolding peak. Molecular dynamics simulations showed that the SAH domain unfolds progressively as the length is increased and refolds progressively as the length is reduced. This enables the SAH domain to act as a constant force spring in the mechanically dynamic environment of the cell.  相似文献   

4.
Muscle elasticity derives directly from titin extensibility, which stems from three distinct types of spring-like behaviour of the I-band portion of the molecule. With progressively greater forces and sarcomere lengths, the molecule straightens and then unfolds, first in the PEVK-region and then in individual immunoglobulin domains. Here, we report quantitative analysis of flexibility and extensibility in isolated titin molecules visualized by electron microscopy. Conformations displayed by molecules dried on a substrate vary from a random coil to rod-like, demonstrating highly flexible and easily deformable tertiary structure. The particular conformation observed depends on the "wettability" of the substrate during specimen preparation: higher wettability favours coiled conformations, whereas lower wettability results in more extended molecules. Extension is shown to occur during liquid dewetting. Statistical methods of conformational analysis applied to a population of coiled molecules gave an average persistence length 13.5(+/-4.5) nm. The close correspondence of this value to an earlier one from light-scattering studies confirms that conformations observed by microscopy closely reflected the equilibrium conformation in solution. Analysis of hydrodynamic forces exerted during dewetting also indicates that the force causing straightening of the molecules and extension of the PEVK-region is in the picoNewton range, whereas unfolding of the immunoglobulin and fibronectin domains may require forces about tenfold higher. The microscope data directly illustrate the relationship between titin conformation and the magnitude of applied force. They also suggest the presence of torsional stiffness in the molecule, which may affect considerations of elasticity.  相似文献   

5.
Von Willebrand factor (VWF) is a multimeric plasma glycoprotein involved in both hemostasis and thrombosis. VWF conformational changes, especially unfolding of the A2 domain, may be required for efficient enzymatic cleavage in vivo. It has been shown that a single A2 domain unfolds at most probable unfolding forces of 7-14 pN at force loading rates of 0.35-350 pN/s and A2 unfolding facilitates A2 cleavage in vitro. However, it remains unknown how much force is required to unfold the A2 domain in the context of a VWF multimer where A2 may be stabilized by other domains like A1 and A3. With the optical trap, we stretched VWF multimers and a poly-protein (A1A2A3)3 that contains three repeats of the triplet A1A2A3 domains at constant speeds of 2000 nm/s and 400 nm/s, respectively, which yielded corresponding average force loading rates of 90 and 22 pN/s. We found that VWF multimers became stiffer when they were stretched and extended by force. After force increased to a certain level, sudden extensional jumps that signify domain unfolding were often observed. Histograms of the unfolding force and the unfolded contour length showed two or three peaks that were integral multiples of ∼21 pN and ∼63 nm, respectively. Stretching of (A1A2A3)3 yielded comparable distributions of unfolding force and unfolded contour length, showing that unfolding of the A2 domain accounts for the behavior of VWF multimers under tension. These results show that the A2 domain can be indeed unfolded in the presence of A1, A3, and other domains. Compared with the value in the literature, the larger most probable unfolding force measured in this study suggests that the A2 domain is mechanically stabilized by A1 or A3 although variations in experimental setups and conditions may complicate this interpretation.  相似文献   

6.
Titin is a giant polypeptide that spans half of the striated muscle sarcomere and generates passive force upon stretch. To explore the elastic response and structure of single molecules and oligomers of titin, we carried out molecular force spectroscopy and atomic force microscopy (AFM) on purified full-length skeletal-muscle titin. From the force data, apparent persistence lengths as long as ∼1.5 nm were obtained for the single, unfolded titin molecule. Furthermore, data suggest that titin molecules may globally associate into oligomers which mechanically behave as independent wormlike chains (WLCs). Consistent with this, AFM of surface-adsorbed titin molecules revealed the presence of oligomers. Although oligomers may form globally via head-to-head association of titin, the constituent molecules otherwise appear independent from each other along their contour. Based on the global association but local independence of titin molecules, we discuss a mechanical model of the sarcomere in which titin molecules with different contour lengths, corresponding to different isoforms, are held in a lattice. The net force response of aligned titin molecules is determined by the persistence length of the tandemly arranged, different WLC components of the individual molecules, the ratio of their overall contour lengths, and by domain unfolding events. Biased domain unfolding in mechanically selected constituent molecules may serve as a compensatory mechanism for contour- and persistence-length differences. Variation in the ratio and contour length of the component chains may provide mechanisms for the fine-tuning of the sarcomeric passive force response.  相似文献   

7.
Titin is a giant polypeptide that spans half of the striated muscle sarcomere and generates passive force upon stretch. To explore the elastic response and structure of single molecules and oligomers of titin, we carried out molecular force spectroscopy and atomic force microscopy (AFM) on purified full-length skeletal-muscle titin. From the force data, apparent persistence lengths as long as approximately 1.5 nm were obtained for the single, unfolded titin molecule. Furthermore, data suggest that titin molecules may globally associate into oligomers which mechanically behave as independent wormlike chains (WLCs). Consistent with this, AFM of surface-adsorbed titin molecules revealed the presence of oligomers. Although oligomers may form globally via head-to-head association of titin, the constituent molecules otherwise appear independent from each other along their contour. Based on the global association but local independence of titin molecules, we discuss a mechanical model of the sarcomere in which titin molecules with different contour lengths, corresponding to different isoforms, are held in a lattice. The net force response of aligned titin molecules is determined by the persistence length of the tandemly arranged, different WLC components of the individual molecules, the ratio of their overall contour lengths, and by domain unfolding events. Biased domain unfolding in mechanically selected constituent molecules may serve as a compensatory mechanism for contour- and persistence-length differences. Variation in the ratio and contour length of the component chains may provide mechanisms for the fine-tuning of the sarcomeric passive force response.  相似文献   

8.
Association of the chaperone alphaB-crystallin with titin in heart muscle   总被引:5,自引:0,他引:5  
alphaB-crystallin, a major component of the vertebrate lens, is a chaperone belonging to the family of small heat shock proteins. These proteins form oligomers that bind to partially unfolded substrates and prevent denaturation. alphaB-crystallin in cardiac muscle binds to myofibrils under conditions of ischemia, and previous work has shown that the protein binds to titin in the I-band of cardiac fibers (Golenhofen, N., Arbeiter, A., Koob, R., and Drenckhahn, D. (2002) J. Mol. Cell. Cardiol. 34, 309-319). This part of titin extends as muscles are stretched and is made up of immunoglobulin-like modules and two extensible regions (N2B and PEVK) that have no well defined secondary structure. We have followed the position of alphaB-crystallin in stretched cardiac fibers relative to a known part of the titin sequence. alphaB-crystallin bound to a discrete region of the I-band that moved away from the Z-disc as sarcomeres were extended. In the physiological range of sarcomere lengths, alphaB-crystallin bound in the position of the N2B region of titin, but not to PEVK. In overstretched myofibrils, it was also in the Ig region between N2B and the Z-disc. Binding between alphaB-crystallin and N2B was confirmed using recombinant titin fragments. The Ig domains in an eight-domain fragment were stabilized by alphaB-crystallin; atomic force microscopy showed that higher stretching forces were needed to unfold the domains in the presence of the chaperone. Reversible association with alphaB-crystallin would protect I-band titin from stress liable to cause domain unfolding until conditions are favorable for refolding to the native state.  相似文献   

9.
Myofibril assembly and disassembly are complex processes that regulate overall muscle mass. Titin kinase has been implicated as an initiating catalyst in signaling pathways that ultimately result in myofibril growth. In titin, the kinase domain is in an ideal position to sense mechanical strain that occurs during muscle activity. The enzyme is negatively regulated by intramolecular interactions occurring between the kinase catalytic core and autoinhibitory/regulatory region. Molecular dynamics simulations suggest that human titin kinase acts as a force sensor. However, the precise mechanism(s) resulting in the conformational changes that relieve the kinase of this autoinhibition are unknown. Here we measured the mechanical properties of the kinase domain and flanking Ig/Fn domains of the Caenorhabditis elegans titin-like proteins twitchin and TTN-1 using single-molecule atomic force microscopy. Our results show that these kinase domains have significant mechanical resistance, unfolding at forces similar to those for Ig/Fn β-sandwich domains (30-150 pN). Further, our atomic force microscopy data is consistent with molecular dynamic simulations, which show that these kinases unfold in a stepwise fashion, first an unwinding of the autoinhibitory region, followed by a two-step unfolding of the catalytic core. These data support the hypothesis that titin kinase may function as an effective force sensor.  相似文献   

10.
In myocytes, small heat shock proteins (sHSPs) are preferentially translocated under stress to the sarcomeres. The functional implications of this translocation are poorly understood. We show here that HSP27 and αB-crystallin associated with immunoglobulin-like (Ig) domain-containing regions, but not the disordered PEVK domain (titin region rich in proline, glutamate, valine, and lysine), of the titin springs. In sarcomeres, sHSP binding to titin was actin filament independent and promoted by factors that increased titin Ig unfolding, including sarcomere stretch and the expression of stiff titin isoforms. Titin spring elements behaved predominantly as monomers in vitro. However, unfolded Ig segments aggregated, preferentially under acidic conditions, and αB-crystallin prevented this aggregation. Disordered regions did not aggregate. Promoting titin Ig unfolding in cardiomyocytes caused elevated stiffness under acidic stress, but HSP27 or αB-crystallin suppressed this stiffening. In diseased human muscle and heart, both sHSPs associated with the titin springs, in contrast to the cytosolic/Z-disk localization seen in healthy muscle/heart. We conclude that aggregation of unfolded titin Ig domains stiffens myocytes and that sHSPs translocate to these domains to prevent this aggregation.  相似文献   

11.
We have applied a dynamic force modulation technique to the mechanical unfolding of a homopolymer of immunoglobulin (Ig) domains from titin, (C47S C63S I27)5, [(I27)5] to determine the viscoelastic response of single protein molecules as a function of extension. Both the stiffness and the friction of the homopolymer system show a sudden decrease when a protein domain unfolds. The decrease in measured friction suggests that the system is dominated by the internal friction of the (I27)5 molecule and not solvent friction. In the stiffness-extension spectrum we detected an abrupt feature before each unfolding event, the amplitude of which decreased with each consecutive unfolding event. We propose that these features are a clear indication of the formation of the known unfolding intermediate of I27, which has been observed previously in constant velocity unfolding experiments. This simple force modulation AFM technique promises to be a very useful addition to constant velocity experiments providing detailed viscoelastic characterization of single molecules under extension.  相似文献   

12.
Titin (connectin) based passive force regulation has been an important physiological mechanism to adjust to varying muscle stretch conditions. Upon stretch, titin behaves as a spring capable of modulating its elastic response in accordance with changes in muscle biochemistry. One such mechanism has been the calcium-dependent stiffening of titin domains that renders the spring inherently more resistant to stretch. This transient titin-calcium interaction may serve a protective function in muscle, which could preclude costly unfolding of select domains when muscles elongate to great lengths. To test this idea, fluorescence spectroscopy was performed revealing a change in the microenvironment of the investigated immunoglobulin domain 27 (I27) of titin with calcium. Additionally, an atomic force microscope was used to evaluate the calcium-dependent regulation of passive force by stretching eight linked titin I27 domains until they unfolded. When stretching in the presence of calcium, the I27 homopolymer chain became stabilized, displaying three novel properties: (1) higher stretching forces were needed to unfold the domains, (2) the stiffness, measured as a persistence length (PL), increased and (3) the peak-to-peak distance between adjacent I27 domains increased. Furthermore, a peak order dependence became apparent for both force and PL, reflecting the importance of characterizing the dynamic unfolding history of a polymer with this approach. Together, this novel titin Ig-calcium interaction may serve to stabilize the I27 domain permitting titin to tune passive force within stretched muscle in a calcium-dependent manner.  相似文献   

13.
M Rief  M Gautel  A Schemmel    H E Gaub 《Biophysical journal》1998,75(6):3008-3014
The domains of the giant muscle protein titin (connectin) provide interaction sites for other sarcomeric proteins and fulfill mechanical functions. In this paper we compare the unfolding forces of defined regions of different titin isoforms by single-molecule force spectroscopy. Constructs comprising six to eight immunoglobulin (Ig) domains located in the mechanically active I-band part of titin are compared to those containing fibronectin III (Fn3) and Ig domains from the A-band part. The high spatial resolution of the atomic force microscope allows us to detect differences in length as low as a few amino acids. Thus constructs of different lengths may be used as molecular rulers for structural comparisons with other modular proteins. The unfolding forces range between 150 and 300 pN and differ systematically between the constructs. Fn3 domains in titin exhibit 20% lower unfolding forces than Ig domains. Fn3 domains from tenascin, however, unfold at forces only half those of titin Fn3 domains. This indicates that the tightly folded titin domains are designed to maintain their structural integrity, even under the influence of stretching forces. Hence, at physiological forces, unfolding is unlikely unless the forces are applied for a long time (longer than minutes).  相似文献   

14.
Protein engineering Phi-value analysis combined with single molecule atomic force microscopy (AFM) was used to probe the molecular basis for the mechanical stability of TNfn3, the third fibronectin type III domain from human tenascin. This approach has been adopted previously to solve the forced unfolding pathway of a titin immunoglobulin domain, TI I27. TNfn3 and TI I27 are members of different protein superfamilies and have no sequence identity but they have the same beta-sandwich structure consisting of two antiparallel beta-sheets. TNfn3, however, unfolds at significantly lower forces than TI I27. We compare the response of these proteins to mechanical force. Mutational analysis shows that, as is the case with TI I27, TNfn3 unfolds via a force-stabilised intermediate. The key event in forced unfolding in TI I27 is largely the breaking of hydrogen bonds and hydrophobic interactions between the A' and G-strands. The mechanical Phi-value analysis and molecular dynamics simulations reported here reveal that significantly more of the TNfn3 molecule contributes to its resistance to force. Both AFM experimental data and molecular dynamics simulations suggest that the rate-limiting step of TNfn3 forced unfolding reflects a transition from the extended early intermediate to an aligned intermediate state. As well as losses of interactions of the A and G-strands and associated loops there are rearrangements throughout the core. As was the case for TI I27, the forced unfolding pathway of TNfn3 is different from that observed in denaturant studies in the absence of force.  相似文献   

15.
Titin is a giant elastic protein responsible for passive force generated by the stretched striated-muscle sarcomere. Passive force develops in titin's extensible region which consists of the PEVK segment in series with tandemly arranged immunoglobulin (Ig)-like domains. Here we studied the mechanics of tandem Ig segments from the differentially spliced (I65-70) and constitutive (I91-98) regions by using an atomic force microscope specialized for stretching single molecules. The mechanical stability of I65-70 domains was found to be different from that of I91-98 domains. In the range of stretch rates studied (0.05-1.00 microm/s) lower average domain unfolding forces for I65-70 were associated with a weaker stretch-rate dependence of the unfolding force, suggesting that the differences in the mechanical stabilities of the segments derive from differences in the zero force unfolding rate (K(0)(u)) and the characteristic distance (location of the barrier) along the unfolding reaction coordinate (DeltaX(u)). No effect of calcium was found on unfolding forces and persistence length of unfolded domains. To explore the structural basis of the differences in mechanical stabilities of the two fragment types, we compared the amino acid sequence of I65-70 domains with that of I91-98 domains and by using homology modeling analyzed how sequence variations may affect folding free energies. Simulations suggest that differences in domain stability are unlikely to be caused by variation in the number of hydrogen bonds between the force-bearing beta-strands at the domain's N- and C-termini. Rather, they may be due to differences in hydrophobic contacts and strand orientations.  相似文献   

16.
Molecular elasticity is associated with a select number of polypeptides and proteins, such as titin, Lustrin A, silk fibroin, and spider silk dragline protein. In the case of titin, the globular (Ig) and non-globular (PEVK) regions act as extensible springs under stretch; however, their unfolding behavior and force extension characteristics are different. Using our time-dependent macroscopic method for simulating AFM-induced titin Ig domain unfolding and refolding, we simulate the extension and relaxation of hypothetical titin chains containing Ig domains and a PEVK region. Two different models are explored: 1) a series-linked WLC expression that treats the PEVK region as a distinct entropic spring, and 2) a summation of N single WLC expressions that simulates the extension and release of a discrete number of parallel titin chains containing constant or variable amounts of PEVK. In addition to these simulations, we also modeled the extension of a hypothetical PEVK domain using a linear Hooke's spring model to account for "enthalpic" contributions to PEVK elasticity. We find that the modified WLC simulations feature chain length compensation, Ig domain unfolding/refolding, and force-extension behavior that more closely approximate AFM, laser tweezer, and immunolocalization experimental data. In addition, our simulations reveal the following: 1) PEVK extension overlaps with the onset of Ig domain unfolding, and 2) variations in PEVK content within a titin chain ensemble lead to elastic diversity within that ensemble.  相似文献   

17.
A growing number of proteins have been shown to adopt knotted folds. Yet the biological roles and biophysical properties of these knots remain poorly understood. We used protein engineering and atomic force microscopy to explore the single-molecule mechanics of the figure-eight knot in the chromophore-binding domain of the red/far-red photoreceptor, phytochrome. Under load, apo phytochrome unfolds at forces of ∼47 pN, whereas phytochrome carrying its covalently bound tetrapyrrole chromophore unfolds at ∼73 pN. These forces are not unusual in mechanical protein unfolding, and thus the presence of the knot does not automatically indicate a superstable protein. Our experiments reveal a stable intermediate along the mechanical unfolding pathway, reflecting the sequential unfolding of two distinct subdomains in phytochrome, potentially the GAF and PAS domains. For the first time (to the best of our knowledge), our experiments allow a direct determination of knot size under load. In the unfolded chain, the tightened knot is reduced to 17 amino acids, resulting in apparent shortening of the polypeptide chain by 6.2 nm. Steered molecular-dynamics simulations corroborate this number. Finally, we find that covalent phytochrome dimers created for these experiments retain characteristic photoreversibility, unexpectedly arguing against a dramatic rearrangement of the native GAF dimer interface upon photoconversion.  相似文献   

18.
X Gao  M Qin  P Yin  J Liang  J Wang  Y Cao  W Wang 《Biophysical journal》2012,102(9):2149-2157
Per-ARNT-Sim (PAS) domains serve as versatile binding motifs in many signal-transduction proteins and are able to respond to a wide spectrum of chemical or physical signals. Despite their diverse functions, PAS domains share a conserved structure. It has been suggested that the structure of PAS domains is flexible and thus adaptable to many binding partners. However, direct measurement of the flexibility of PAS domains has not yet been provided. Here, we quantitatively measure the mechanical unfolding of a PAS domain, ARNT PAS-B, using single-molecule atomic force microscopy. Our force spectroscopy results indicate that the structure of ARNT PAS-B can be unraveled under mechanical forces as low as ~30 pN due to its broad potential well for the mechanical unfolding transition of ~2 nm. This allows the PAS-B domain to extend by up to 75% of its resting end-to-end distance without unfolding. Moreover, we found that the ARNT PAS-B domain unfolds in two distinct pathways via a kinetic partitioning mechanism. Sixty-seven percent of ARNT PAS-B unfolds through a simple two-state pathway, whereas the other 33% unfolds with a well-defined intermediate state in which the C-terminal β-hairpin is detached. We propose that the structural flexibility and force-induced partial unfolding of PAS-B domains may provide a unique mechanism for them to recruit diverse binding partners and lower the free-energy barrier for the formation of the binding interface.  相似文献   

19.
The mechanisms that determine mechanical stabilities of protein folds remain elusive. Our understanding of these mechanisms is vital to both bioengineering efforts and to the better understanding and eventual treatment of pathogenic mutations affecting mechanically important proteins such as titin. We present a new approach to analyze data from single‐molecule force spectroscopy for different domains of the giant muscle protein titin. The region of titin found in the I‐band of a sarcomere is composed of about 40 Ig‐domains and is exposed to force under normal physiological conditions and connects the free‐hanging ends of the myosin filaments to the Z‐disc. Recent single‐molecule force spectroscopy data show a mechanical hierarchy in the I‐band domains. Domains near the C‐terminus in this region unfold at forces two to three times greater than domains near the beginning of the I‐band. Though all of these Ig‐domains are thought to share a fold and topology common to members of the Ig‐like fold family, the sequences of neighboring domains vary greatly with an average sequence identity of only 25%. We examine in this study the relation of these unique mechanical stabilities of each I‐band Ig domain to specific, conserved physical–chemical properties of amino acid sequences in related Ig domains. We find that the sequences of each individual titin Ig domain are very highly conserved, with an average sequence identity of 79% across species that are divergent as humans, chickens, and zebra fish. This indicates that the mechanical properties of each domain are well conserved and tailored to its unique position in the titin molecule. We used the PCPMer software to determine the conservation of amino acid properties in titin Ig domains grouped by unfolding forces into “strong” and “weak” families. We found two motifs unique to each family that may have some role in determining the mechanical properties of these Ig domains. A detailed statistical analysis of properties of individual residues revealed several positions that displayed differentially conserved properties in strong and weak families. In contrast to previous studies, we find evidence that suggests that the mechanical stability of Ig domains is determined by several residues scattered across the β‐sandwich fold, and force sensitive residues are not only confined to the A′‐G region. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

20.
Towards a molecular understanding of titin.   总被引:22,自引:4,他引:18       下载免费PDF全文
S Labeit  M Gautel  A Lakey    J Trinick 《The EMBO journal》1992,11(5):1711-1716
Titin is at present the largest known protein (M(r) 3000 kDa) and its expression is restricted to vertebrate striated muscle. Single molecules span from M- to Z-lines and therefore over 1 micron. We have isolated cDNAs encoding five distant titin A-band epitopes, extended their sequences and determined 30 kb (1000 kDa) of the primary structure of titin. Sequences near the M-line encode a kinase domain and are closely related to the C-terminus of twitchin from Caenorhabditis elegans. This suggests that the function of this region in the titin/twitchin family is conserved throughout the animal kingdom. All other A-band sequences consist of 100 amino acid (aa) repeats predicting immunoglobulin-C2 and fibronectin type III globular domains. These domains are arranged into highly ordered 11 domain super-repeat patterns likely to match the myosin helix repeat in the thick filament. Expressed titin fragments bind to the LMM part of myosin and C-protein. Binding strength increases with the number of domains involved, indicating a cumulative effect of multiple binding sites for myosin along the titin molecule. We conclude that A-band titin is likely to be involved in the ordered assembly of the vertebrate thick filament.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号