首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evans ML 《Plant physiology》1974,54(2):213-215
Research on the mode of action of auxin in the promotion of growth has shown that auxin treatment leads to hydrogen ion secretion and wall acidification. It has recently been reported that auxin stimulates cell wall β-galactosidase activity in Avena coleoptiles, presumably by causing cell wall acidification, since the pH optimum for the enzyme is about 5.0. It has been suggested that enhancement of β-galactosidase and/or other glycosidase activity mediates growth promotion by auxin or low pH. This hypothesis was tested by examining the effect of inhibitors of β-galactosidase and β-glucosidase. Severe inhibition of measureable β-galactosidase or β-glucosidase activity was found to have no effect on auxin- or acid-promoted growth. It is concluded that neither β-galactosidase nor β-glucosidase plays an important role in short term growth promotion by auxin or acid. The data do not rule out the possibility that some other cell wall glycosidase is involved in auxin or acid action.  相似文献   

2.
I-cell fibroblasts with a multiple intracellular lysosomal enzyme deficiency were hybridized with cells from patients with different types of single lysosomal enzyme defects. Fusion with GM2 gangliosidosis, type 2, (Sandhoff disease) fibroblasts resulted in a restoration of the hexosaminidase activity, in a normalization of the electrophoretic mobility of the isoenzymes, and in a decreased activity in the medium. Fusion of I-cells with fibroblasts from GM1 gangliosidosis, type 1, led to enhancement of β-galactosidase (β-gal) activity. This complementation must be the result of the presence of normal polypeptide chains in I-cells, whereas the other cell types provide a factor that causes the intracellular retention of the enzymes. Restoration of β-gal was also observed in heterokaryons after fusion of I-cells with β-galactosidase/neuraminidase-deficient (β-gal/neur) variants, indicating that the neuraminidase(s) and the posttranslational modification of β-gal are affected in a different way in I-cell disease and in β-gal/neur variants. Fusion of I-cells with mannosidosis fibroblasts resulted in a restoration of the acidic form of α-mannosidase and in a decrease of the extracellular activity of both this enzyme and the hexosaminidase enzyme, indicating that fusion of I-cells with different types of fibroblasts with a single lysosomal enzyme deficiency not only leads to complementation for one particular enzyme but also to a correction of the basic defect in I-cells.  相似文献   

3.
1. The activities of β-galactosidase, β-glucosidase, β-glucuronidase and N-acetyl-β-glucosaminidase from rat kidney have been compared when 4-methylumbelliferyl glycosides are used as substrates. 2. Separation by gel electrophoresis at pH7·0 indicated slow- and fast-moving components of rat-kidney β-galactosidase. 3. The fast-moving component is also associated with the total β-glucosidase activity and inhibition experiments indicate that a single enzyme species is responsible for both activities. 4. DEAE-cellulose chromatography and filtration on Sephadex gels suggests that the β-glucosidase component is a small acidic molecule, of molecular weight approx. 40000–50000, with optimum pH5·5–6·0 for β-galactosidase and β-glucosidase activities. 5. The major β-galactosidase component has low electrophoretic mobility, a calculated molecular weight of 80000 and optimum pH3·7.  相似文献   

4.
1. In barley, β-glucosidase and β-galactosidase are separate enzymes. The former also displays β-d-fucosidase activity. 2. In the limpet, Patella vulgata, β-glucosidase activity is associated with the β-d-fucosidase, previously shown to be a separate entity from the β-galactosidase also present. 3. Almond emulsin presents all three activities as a single enzyme. Each is equally inhibited by glucono-, galactono- and d-fucono-lactone. 4. In rat epididymis, there is no significant β-glucosidase activity, nor is there appreciable inhibition of the β-galactosidase and β-d-fucosidase activities of the preparation by gluconolactone.  相似文献   

5.
Measurements of the activities of lysosomal enzymes in cerebrospinal fluid have recently been proposed as putative biomarkers for Parkinson''s disease and other synucleinopathies. To define the operating procedures useful for ensuring the reliability of these measurements, we analyzed several pre-analytical factors that may influence the activity of β-glucocerebrosidase, α-mannosidase, β-mannosidase, β-galactosidase, α-fucosidase, β-hexosaminidase, cathepsin D and cathepsin E in cerebrospinal fluid. Lysosomal enzyme activities were measured by well-established fluorimetric assays in a consecutive series of patients (n = 28) with different neurological conditions, including Parkinson''s disease. The precision, pre-storage and storage conditions, and freeze/thaw cycles were evaluated. All of the assays showed within- and between-run variabilities below 10%. At −20°C, only cathepsin D was stable up to 40 weeks. At −80°C, the cathepsin D, cathepsin E, and β-mannosidase activities did not change significantly up to 40 weeks, while β-glucocerebrosidase activity was stable up to 32 weeks. The β-galactosidase and α-fucosidase activities significantly increased (+54.9±38.08% after 4 weeks and +88.94±36.19% after 16 weeks, respectively). Up to four freeze/thaw cycles did not significantly affect the activities of cathepsins D and E. The β-glucocerebrosidase activity showed a slight decrease (−14.6%) after two freeze/thaw cycles. The measurement of lysosomal enzyme activities in cerebrospinal fluid is reliable and reproducible if pre-analytical factors are accurately taken into consideration. Therefore, the analytical recommendations that ensue from this study may contribute to the establishment of actual values for the activities of cerebrospinal fluid lysosomal enzymes as putative biomarkers for Parkinson''s disease and other neurodegenerative disorders.  相似文献   

6.
The β-galactosidase from the Antarctic gram-negative bacterium Pseudoalteromonas haloplanktis TAE 79 was purified to homogeneity. The nucleotide sequence and the NH2-terminal amino acid sequence of the purified enzyme indicate that the β-galactosidase subunit is composed of 1,038 amino acids with a calculated Mr of 118,068. This β-galactosidase shares structural properties with Escherichia coli β-galactosidase (comparable subunit mass, 51% amino sequence identity, conservation of amino acid residues involved in catalysis, similar optimal pH value, and requirement for divalent metal ions) but is characterized by a higher catalytic efficiency on synthetic and natural substrates and by a shift of apparent optimum activity toward low temperatures and lower thermal stability. The enzyme also differs by a higher pI (7.8) and by specific thermodynamic activation parameters. P. haloplanktis β-galactosidase was expressed in E. coli, and the recombinant enzyme displays properties identical to those of the wild-type enzyme. Heat-induced unfolding monitored by intrinsic fluorescence spectroscopy showed lower melting point values for both P. haloplanktis wild-type and recombinant β-galactosidase compared to the mesophilic enzyme. Assays of lactose hydrolysis in milk demonstrate that P. haloplanktis β-galactosidase can outperform the current commercial β-galactosidase from Kluyveromyces marxianus var. lactis, suggesting that the cold-adapted β-galactosidase could be used to hydrolyze lactose in dairy products processed in refrigerated plants.  相似文献   

7.
The effect of a number of physiological variables on the secretion of polysaccharide-degrading enzymes by culture-grown Colletotrichum lindemuthianum (Saccardo and Magnus) Scribner was determined. The number of spores used to inoculate cultures grown on isolated bean hypocotyl cell walls affects the time after inoculation at which enzyme secretion occurs, but has no significant effect on the maximal amount of enzyme ultimately secreted. Cell walls isolated from bean leaves, first internodes, or hypocotyls (susceptible to C. lindemuthianum infection), when used as carbon source for C. lindemuthianum growth, stimulate the fungus to secrete more α-galactosidase than do cell walls isolated from roots (resistant to infection). The concentration of carbon source used for fungal growth determines the final level of enzyme activity in the culture fluid. The level of enzyme secretion is not proportional to fungal growth; rather, enzyme secretion is induced. Maximal α-galactosidase activity in the culture medium is found when the concentration of cell walls used as carbon source is 1% or greater. A higher concentration of cell walls is necessary for maximal α-arabinosidase activity. Galactose, when used as the carbon source, stimulates α-galactosidase secretion but, at comparable concentrations, is less effective in doing so than are cell walls. Polysaccharide-degrading enzymes are secreted by C. lindemuthianum at different times during growth of the pathogen on isolated cell walls. Pectinase and α-arabinosidase are secreted first, followed by β-xylosidase and cellulase, then β-glucosidase, and, finally, α-galactosidase.  相似文献   

8.
We describe the use of Bio-layer Interferometry to study inhibitory interactions of subunit ε with the catalytic complex of Escherichia coli ATP synthase. Bacterial F-type ATP synthaseis the target of a new, FDA-approved antibiotic to combat drug-resistant tuberculosis. Understanding bacteria-specific auto-inhibition of ATP synthase by the C-terminal domain of subunit ε could provide a new means to target the enzyme for discovery of antibacterial drugs. The C-terminal domain of ε undergoes a dramatic conformational change when the enzyme transitions between the active and inactive states, and catalytic-site ligands can influence which of ε''s conformations is predominant. The assay measures kinetics of ε''s binding/dissociation with the catalytic complex, and indirectly measures the shift of enzyme-bound ε to and from the apparently nondissociable inhibitory conformation. The Bio-layer Interferometry signal is not overly sensitive to solution composition, so it can also be used to monitor allosteric effects of catalytic-site ligands on ε''s conformational changes.  相似文献   

9.

Background

Selective modulation of different Aβ products of an intramembrane protease γ-secretase, could be the most promising strategy for development of effective therapies for Alzheimer''s disease. We describe how different drug-candidates can modulate γ-secretase activity in cells, by studying how DAPT affects changes in γ-secretase activity caused by gradual increase in Aβ metabolism.

Results

Aβ 1–40 secretion in the presence of DAPT shows biphasic activation-inhibition dose-response curves. The biphasic mechanism is a result of modulation of γ-secretase activity by multiple substrate and inhibitor molecules that can bind to the enzyme simultaneously. The activation is due to an increase in γ-secretase''s kinetic affinity for its substrate, which can make the enzyme increasingly more saturated with otherwise sub-saturating substrate. The noncompetitive inhibition that prevails at the saturating substrate can decrease the maximal activity. The synergistic activation-inhibition effects can drastically reduce γ-secretase''s capacity to process its physiological substrates. This reduction makes the biphasic inhibitors exceptionally prone to the toxic side-effects and potentially pathogenic. Without the modulation, γ-secretase activity on it physiological substrate in cells is only 14% of its maximal activity, and far below the saturation.

Significance

Presented mechanism can explain why moderate inhibition of γ-secretase cannot lead to effective therapies, the pharmacodynamics of Aβ-rebound phenomenon, and recent failures of the major drug-candidates such as semagacestat. Novel improved drug-candidates can be prepared from competitive inhibitors that can bind to different sites on γ-secretase simultaneously. Our quantitative analysis of the catalytic capacity can facilitate the future studies of the therapeutic potential of γ-secretase and the pathogenic changes in Aβ metabolism.  相似文献   

10.
Pressey R 《Plant physiology》1983,71(1):132-135
Tomatoes (Lycopersicon esculentum L.) contained a high level of β-galactosidase activity which was due to three forms of the enzyme. During tomato ripening, the sum of their activities remained relatively constant, but the levels of the individual forms of β-galactosidase changed markedly. The three enzymes were separated by a combination of chromatography of DEAE-Sephadex A-50 and Sephadex G-100. During ripening of tomatoes, β-galactosidases I and III levels decreased but the β-galactosidase II level increased more than 3-fold. The three enzymes were optimally active near pH 4, and all were inhibited by galactose and galactonolactone. However, the enzymes differed in molecular weight, Km value with p-nitrophenyl-β-galactoside, and stability with respect to pH and temperature. β-Galactosidase II was the only enzyme capable of hydrolyzing a polysaccharide that was isolated from tomatoes and that consisted primarily of β-1, 4-linked galactose. The ability of β-galactosidase II to degrade the galactan and the increase in its activity during tomato ripening suggest a possible role for this enzyme in tomato softening.  相似文献   

11.
The ability of three strains of Lactobacillus acidophilus to survive and retain β-galactosidase activity during storage in liquid nitrogen at −196°C and during subsequent storage in milk at 5°C was tested. The level of β-galactosidase activity varied among the three strains (0.048 to 0.177 U/107 organisms). Freezing and storage at −196°C had much less adverse influence on viability and activity of the enzyme than did storage in milk at 5°C. The strains varied in the extent of the losses of viability and β-galactosidase activity during both types of storage. There was not a significant interaction between storage at −196°C and subsequent storage at 5°C. The strains that exhibited the greatest losses of β-galactosidase activity during storage in milk at 5°C also exhibited the greatest losses in viability at 5°C. However, the losses in viability were of much greater magnitude than were the losses of enzymatic activity. This indicates that some cells of L. acidophilus which failed to form colonies on the enumeration medium still possessed β-galactosidase activity. Cultures of L. acidophilus to be used as dietary adjuncts to improve lactose utilization in humans should be carefully selected to ensure that adequate β-galactosidase activity is provided.  相似文献   

12.
In vivo α-complementation of β-galactosidase was demonstrated in 16 Z gene terminator (nonsense) mutant strains of Escherichia coli upon introduction of the episome F′M15 which specifies production of a mutant Z gene polypeptide containing a small deletion in the N-terminal region of the enzyme monomer. Genetic and biochemical analyses of the merodiploids showed that restoration of enzyme activity was due to their terminator/F′M15 genetic constitution resulting in the production of two enzymatically inactive polypeptides which associate in vivo to reconstitute active, stable β-galactosidase. The prematurely terminated polypeptide fragments known to be rapidly degraded in haploid cells were shown by phenotypic and biochemical studies to be stabilized (i.e., protected) in merodiploids by formation of complemented enzyme complexes with the M15 protein. Phenotypic properties of complementing diploids are described and are discussed in relation to in vitro determination of β-galactosidase activity.  相似文献   

13.
Relation of glycosidases to bean hypocotyl growth   总被引:6,自引:5,他引:1       下载免费PDF全文
Nevins DJ 《Plant physiology》1970,46(3):458-462
The enzymes β-glucosidase, α-glucosidase, β-galactosidase, α-galactosidase, and β-xylosidase were detected in Phaseolus vulgaris L. var. Red Kidney bean hypocotyl tissue throughout the first 13 days of development with p-nitrophenyl glycosides as substrates. Activities of all enzymes except β-glucosidase declined as a function of increasing tissue age. In contrast, β-glucosidase activity increased rapidly 3 days after imbibition to a maximal activity at 5 days and then subsided to one-third the maximum by day 7. This activity peak immediately preceded the logarithmic phase of hypocotyl growth. This enzyme is strongly associated with cell walls during extraction, suggesting that it is wall-bound in situ. Various polysaccharide substrates were used to evaluate the specificity of this enzyme.  相似文献   

14.
1. The previous study (Conchie, Gelman & Levvy, 1967b) of the specificity of β-glucosidase, β-galactosidase and β-d-fucosidase in barley, limpet, almond emulsin and rat epididymis was extended to α-l-arabinosidase. 2. The inhibitory action of l-arabinono-(1→5)-lactone was tested against all four types of enzyme, and α-l-arabinosidase was examined for inhibition by glucono-, galactono- and d-fucono-lactone. 3. In emulsin, the enzyme that hydrolyses β-glucosides, β-galactosides and β-d-fucosides also hydrolyses α-l-arabinosides. Rat epididymis resembles emulsin except that, as already noted, it lacks β-glucosidase activity. 4. In the limpet, α-l-arabinosidase activity is associated with the enzyme that hydrolyses β-glucosides and β-d-fucosides, and not with the separate β-galactosidase. 5. The effects of the different lactones on the barley preparation suggest that α-l-arabinosidase activity is associated with the β-galactosidase rather than with the enzyme that hydrolyses β-glucosides and β-d-fucosides. Fractionation and heat-inactivation experiments indicate that there is also a separate α-l-arabinosidase in the preparation.  相似文献   

15.
Twenty different legume species (20 genera) were examined for α-galactosidase and hemagglutinin activities. Although all of the species contained enzyme activity, only 13 of 20 contained hemagglutinin activities and none displayed a hemagglutinin activity comparable to the previously described α-galactosidase-hemagglutinins.  相似文献   

16.
A Molecular Investigation of Genotype by Environment Interactions   总被引:2,自引:2,他引:0       下载免费PDF全文
A. M. Dean 《Genetics》1995,139(1):19-33
The fitnesses conferred by seven lactose operons, which had been transduced into a common genetic background from natural isolates of Escherichia coli, were determined during competition for growth rate-limiting quantities of galactosyl-glycerol, a naturally occurring galactoside. The fitnesses of these same operons have been previously determined on lactose and three artificial galactosides, lactulose, methyl-galactoside and galactosyl-arabinose. Analysis suggests that although marked genotype by environment interactions occur, changes in the fitness rankings are rare. The relative activities of the β-galactosidases and the permeases were determined on galactosyl-glycerol, lactose, lactulose and methyl-galactoside. Both enzymes display considerable kinetic variation. The β-galactosidase alleles provide no evidence for genotype by environment interactions at the level of enzyme activity. The permease alleles display genotype by environment interactions with a few causing changes in activity rankings. The contributions to fitness made by the permeases and the β-galactosidases were partitioned using metabolic control analysis. Most of the genotype by environment interaction at the level of fitness is generated by changes in the distribution of control among steps in the pathway, particularly at the permease where large control coefficients ensure that its kinetic variation has marked fitness effects. Indeed, changes in activity rankings at the permease account for the few changes in fitness rankings. In contrast, the control coefficients of the β-galactosidase are sufficiently small that its kinetic variation is in, or close to, the neutral limit. The selection coefficients are larger on the artificial galactosides because the control coefficients of the permease and β-galactosidase are larger. The flux summation theorem requires that control coefficients associated with other steps in the pathway must be reduced, implying that the selection at these steps will be less intense on the artificial galactosides. This suggests that selection intensities need not be greater in novel environments.  相似文献   

17.
Several glycosidases have been isolated from suspensioncultured sycamore (Acer pseudoplatanus) cells. These include an α-galactosidase, an α-mannosidase, a β-N-acetyl-glucosaminidase, a β-glucosidase, and two β-galactosidases. The pH optimum of each of these enzymes was determined. The pH optima, together with inhibition studies, suggest that each observed glycosidase activity represents a separate enzyme. Three of these enzymes, β-glucosidase, α-galactosidase, and one of the β-galactosidases, have been shown to be associated with the cell surface. The enzyme activities associated with the cell surface were shown to possess the ability to degrade to a limited extent isolated sycamore cell walls. It was found that the activities of β-glucosidase and of one of the β-galactosidases increase as the cells go through a period of growth and decrease as cell growth ceases.  相似文献   

18.
1. The influence of pH and the kind of buffer on the hydrolysis of lactose and four hetero-β-galactosides (phenyl β-galactoside, o-nitrophenyl β-galactoside, p-nitrophenyl β-galactoside and 6-bromo-2-naphthyl β-galactoside) by homogenates of rat small-intestinal mucosa has been studied. 2. There are at least two β-galactosidases present in the homogenates, one with optimum pH3–4 and another with optimum pH5–6. 3. The enzyme with the lower pH optimum is mainly a heterogalactosidase. It hydrolyses lactose slowly. The other enzyme is mainly a disaccharidase, since it hydrolyses lactose much more rapidly than the heterogalactosides. 4. Under the conditions used, citrate had an inhibitory effect on the 6-bromo-2-naphthyl β-galactosidase activity at pH3–4, but did not influence the 6-bromo-2-naphthyl β-galactosidase activity at pH5–6 or the hydrolysis of the other substrates at any pH.  相似文献   

19.
Conversion of local structural state of a protein from an α-helix to a β-strand is usually associated with a major change in the tertiary structure. Similar changes were observed during the self assembly of amyloidogenic proteins to form fibrils, which are implicated in severe diseases conditions, e.g., Alzheimer disease. Studies have emphasized that certain protein sequence fragments known as chameleon sequences do not have a strong preference for either helical or the extended conformations. Surprisingly, the information on the local sequence neighborhood can be used to predict their secondary at a high accuracy level. Here we report a large scale-analysis of chameleon sequences to estimate their propensities to be associated with different local structural states such as α -helices, β-strands and coils. With the help of the propensity information derived from the amino acid composition, we underline their complexity, as more than one quarter of them prefers coil state over to the regular secondary structures. About half of them show preference for both α-helix and β-sheet conformations and either of these two states is favored by the rest.  相似文献   

20.
The relationship between the amount of active phytochrome (Pfr) produced by 5-minute light pulses and the rate of subsequent enzyme accumulation (phenylalanine ammonia-lyase, EC 4.3.1.5) of mustard (Sinapis alba L.) cotyledons was investigated. The response rapidly adjusts to changes of the Pfr level produced by light pulses of different wavelengths. Regardless of total phytochrome levels in the cotyledons, response adjustments to new photostationary states (λ) are correlated with α values. On the other hand, the kinetics of enzyme accumulation shows no influence of Pfr destruction as determined spectrophotometrically (τ½ = 45 min) in the same organ (see Schäfer et al. 1973 Photochem Photobiol 18: 331-334). It is concluded that the phytochrome molecules involved in the regulation of this response by light pulses comprise a small fraction of the total phytochrome of the cotyledons. In contrast to bulk phytochrome this fraction appears to be not subject to Pfr destruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号