首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A quantitative model of large-scale chromatin organization was applied to nuclei of fission yeast Schizosaccharomyces pombe (meiotic prophase and G2 phase), budding yeast Saccharomyces cerevisiae (young and senescent cells), Drosophila (embryonic cycles 10 and 14, and polytene tissues) and Caenorhabditis elegans (G1 phase). The model is based on the coil-like behavior of chromosomal fibers and the tight packing of discrete chromatin domains in a nucleus. Intrachromosomal domains are formed by chromatin anchoring to nuclear structures (e.g., the nuclear envelope). The observed sizes for confinement of chromatin diffusional motion are similar to the estimated sizes of corresponding domains. The model correctly predicts chromosome configurations (linear, Rabl, loop) and chromosome associations (homologous pairing, centromere and telomere clusters) on the basis of the geometrical constraints imposed by nuclear size and shape. Agreement between the model predictions and literature observations supports the notion that the average linear density of the 30-nm chromatin fiber is approximately 4 nucleosomes per 10 nm contour length.  相似文献   

3.
Shemarova IV 《Tsitologiia》2011,53(7):600-614
This review summarizes data on the signaling role of calcium-binding proteins (CaBP) in lower eukaryotes cells. The contributions of calmodulin (CaM)-like proteins, calcium-dependent protein kinases (CDPK), as well as calcineurin B-like phosphatase (CaNB) and some other proteins to Ca(2+)-dependent regulation of cellular functions is considered.  相似文献   

4.
Heterologous expression and characterisation of the membrane proteins of higher eukaryotes is of paramount interest in fundamental and applied research. Due to the rather simple and well-established methods for their genetic modification and cultivation, yeast cells are attractive host systems for recombinant protein production. This review provides an overview on the remarkable progress, and discusses pitfalls, in applying various yeast host strains for high-level expression of eukaryotic membrane proteins. In contrast to the cell lines of higher eukaryotes, yeasts permit efficient library screening methods. Modified yeasts are used as high-throughput screening tools for heterologous membrane protein functions or as benchmark for analysing drug–target relationships, e.g., by using yeasts as sensors. Furthermore, yeasts are powerful hosts for revealing interactions stabilising and/or activating membrane proteins. We also discuss the stress responses of yeasts upon heterologous expression of membrane proteins. Through co-expression of chaperones and/or optimising yeast cultivation and expression strategies, yield-optimised hosts have been created for membrane protein crystallography or efficient whole-cell production of fine chemicals.  相似文献   

5.
The amino acid composition and amino-terminal sequence have been determined for the alanine-rich, acidic ribosomal 'A' protein (equivalent to Escherichia coli L7/L12) from three procaryotic cell types that live under extreme environmental conditions (Arthrobacter glacialis, Clostridium pasteurianum, and Bacillus stearothermophilus) as well as from wheat germ, a eucaryote source. These data are compared with previously published 'A' protein sequences from other procaryotes and eucaryotes. All the procaryotic 'A' proteins, with the exception of the very acidic 'A' protein from Halobacterium cutirubrum, show similar charge, size, and amino acid composition, as well as an extensive sequence homology in the N-terminal region. Some differences are observed between gram-negative and gram-positive bacteria. The 'A' proteins from eucaryotes contain two tyrosine molecules, an amino acid absent in procaryotic 'A' proteins, as well as a reduced number of valine residues and an increased amount of aspartic acid. The N-terminal sequence of wheat germ 'A' protein shows considerable homology with other eucaryotic 'A' proteins and also with H. cutirubrum. It also shows some sequence homology with E. coli 'A' proteins.  相似文献   

6.
7.
8.
A phylogenetic survey for the poly(ADP-ribose)polymerase has been conducted by analyzing enzyme activity in various organisms and determining the structure of the catalytic peptides by renaturation of functional activities of the enzyme in situ after electrophoresis in denaturing conditions (activity gel). The enzyme is widely distributed in cells from all different classes of vertebrates, from arthropods, mollusks and plant cells but could not be detected in echinoderms, nematodes, platyhelminths, thallophytes (including yeast) and bacteria. The presence on activity gels of a catalytic peptide with Mr = 115,000-120,000 was demonstrated in vertebrates, arthropods and mollusks but no activity bands were recovered in many lower eukaryotes, in plant cells and bacteria. By using an immunological procedure that used an antiserum against homogeneous calf thymus poly(ADP-ribose) polymerase, common immunoreactive peptides were visualized in mammals, avians, reptiles, amphibians and fishes, while lacking in non-vertebrate organisms. Our results indicate that the structure of poly(ADP-ribose) polymerase is conserved down to the mollusks suggesting its important role for DNA metabolism of multicellular organisms.  相似文献   

9.
Yamamoto R  Yanagisawa HA  Yagi T  Kamiya R 《FEBS letters》2006,580(27):6357-6360
To elucidate the subunit composition of axonemal inner-arm dynein, we examined a 38 kDa protein (p38) co-purified with a Chlamydomonas inner arm subspecies, dynein d. We found it is a novel protein conserved among a variety of organisms with motile cilia and flagella. Immunoprecipitation using specific antibody verified its association with a heavy chain, actin and a previously identified light chain (p28). Unexpectedly, mutant axonemes lacking dynein d and other dyneins retained reduced amounts of p38. This finding suggests that p38 is involved in the docking of dynein d to specific loci.  相似文献   

10.
11.
12.
13.
14.
Summary Recent studies into the properties and biological function of the acidic (non-histone) chromatin proteins have utilized inorganic or organic acids to first remove the histones prior to analysis of the acidic proteins. Examination of the effects of the acid treatment on the DNA and acidic proteins by immunochemistry, circular dichroism, and the ability of the DNA to serve as a template in thein vitro DNA-dependent RNA synthesis, has demonstrated a marked structural change (denaturation) in the proteins and DNA after the acid treatment. Other methods of removing histones, e.g., by high salt or salt and urea, are recommended for studies, especially for those of the biological functions, of the DNA and acidic proteins.  相似文献   

15.
16.
17.
The endoplasmic reticulum (ER) is a fundamental organelle required for protein assembly, lipid biosynthesis, and vesicular traffic, as well as calcium storage and the controlled release of calcium from the ER lumen into the cytosol. Membranes functionally linked to the ER by vesicle-mediated transport, such as the Golgi complex, endosomes, vacuoles-lysosomes, secretory vesicles, and the plasma membrane, originate largely from proteins and lipids synthesized in the ER. In this review we will discuss the structural organization of the ER and its inheritance.  相似文献   

18.
19.
20.
Meinnel T  Peynot P  Giglione C 《Biochimie》2005,87(8):701-712
N-terminal-ubiquitinylation (NTU) is a newly discovered protein degradation pathway initiated by ubiquitin-tagging of the N-terminal alpha-amino group. We have used data from recent genomic studies, especially those on humans, to up-date and re-interpret biochemical data to identify the sequence features associated with NTU. We compared a mini-proteome for which experimental protein sequence is available with large-scale genomic data. We conclude that N-alpha-acetylation involves less than 30%, and not the widely assumed 90%, of the proteins encoded by any higher eukaryote genome, greatly increasing thereby the number of possible targets for NTU-mediated degradation. Next, straightforward rules linking the first N-terminal residues of any nascent polypeptides to the nature of their processed N-termini are established and dedicated prediction tool is made available at . We provide strong arguments indicating that the nature of the processed N-terminus is a major determinant factor of the half-life of the protein. We finally reveal that one third of the nuclear-encoded proteins starting with an unprocessed and unblocked methionine are at least one order of magnitude less stable than is average in higher eukaryotes. This appears to be the first common feature of proteins undergoing N-terminal ubiquitinylation. Hence, a pool of about 3000 proteins in each proteome could be unstable per se and tagged for rapid degradation via NTU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号