首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction between surface components on the invading pathogen and host cells such as platelets plays a key role in the regulation of endovascular infections. However, the mechanisms mediating Staphylococcus aureus binding to platelets under shear remain largely unknown. This study was designed to investigate the kinetics and molecular requirements of platelet-S. aureus interactions in bulk suspensions subjected to a uniform shear field. Hydrodynamic shear-induced collisions augment platelet-S. aureus binding, which is further potentiated by platelet activation with stromal derived factor-1beta. Peak adhesion efficiency occurs at low shear (100 s(-1)) and decreases with increasing shear. The molecular interaction of platelet alpha(IIb)beta(3) with bacterial clumping factor A through fibrinogen bridging is necessary for stable bacterial binding to activated platelets under shear. Although this pathway is sufficient at low shear (相似文献   

2.
3.
Epidemiological studies have shown that arsenic exposure increases atherosclerosis, but the mechanisms underlying this relationship are unknown. Monocytes, macrophages and platelets play an important role in the initiation of atherosclerosis. Circulating monocytes and macrophages bind to the activated vascular endothelium and migrate into the sub-endothelium, where they become lipid-laden foam cells. This process can be facilitated by platelets, which favour monocyte recruitment to the lesion. Thus, we assessed the effects of low-to-moderate arsenic exposure on monocyte adhesion to endothelial cells, platelet activation and platelet-monocyte interactions. We observed that arsenic induces human monocyte adhesion to endothelial cells in vitro. These findings were confirmed ex vivo using a murine organ culture system at concentrations as low as 10 ppb. We found that both cell types need to be exposed to arsenic to maximize monocyte adhesion to the endothelium. This adhesion process is specific to monocyte/endothelium interactions. Hence, no effect of arsenic on platelet activation or platelet/leukocyte interaction was observed. We found that arsenic increases adhesion of mononuclear cells via increased CD29 binding to VCAM-1, an adhesion molecule found on activated endothelial cells. Similar results were observed in vivo, where arsenic-exposed mice exhibit increased VCAM-1 expression on endothelial cells and increased CD29 on circulating monocytes. Interestingly, expression of adhesion molecules and increased binding can be inhibited by antioxidants in vitro and in vivo. Together, these data suggest that arsenic might enhance atherosclerosis by increasing monocyte adhesion to endothelial cells, a process that is inhibited by antioxidants.  相似文献   

4.
Two adhesive events critical to efficient recruitment of neutrophils at vascular sites of inflammation are up-regulation of endothelial selectins that bind sialyl Lewis(x) ligands and activation of beta(2)-integrins that support neutrophil arrest by binding ICAM-1. We have previously reported that neutrophils rolling on E-selectin are sufficient for signaling cell arrest through beta(2)-integrin binding of ICAM-1 in a process dependent upon ligation of L-selectin and P-selectin glycoprotein ligand 1 (PSGL-1). Unresolved are the spatial and temporal events that occur as E-selectin binds to human neutrophils and dynamically signals the transition from neutrophil rolling to arrest. Here we show that binding of E-selectin to sialyl Lewis(x) on L-selectin and PSGL-1 drives their colocalization into membrane caps at the trailing edge of neutrophils rolling on HUVECs and on an L-cell monolayer coexpressing E-selectin and ICAM-1. Likewise, binding of recombinant E-selectin to PMNs in suspension also elicited coclustering of L-selectin and PSGL-1 that was signaled via mitogen-activated protein kinase. Binding of recombinant E-selectin signaled activation of beta(2)-integrin to high-avidity clusters and elicited efficient neutrophil capture of beta(2)-integrin ligands in shear flow. Inhibition of p38 and p42/44 mitogen-activated protein kinase blocked the cocapping of L-selectin and PSGL-1 and the subsequent clustering of high-affinity beta(2)-integrin. Taken together, the data suggest that E-selectin is unique among selectins in its capacity for clustering sialylated ligands and transducing signals leading to neutrophil arrest in shear flow.  相似文献   

5.
Insulitis is a hallmark feature of autoimmune diabetes that ultimately results in islet beta-cell destruction. We examined integrin requirements and specific inhibition of integrin structure in T cell and monocyte adhesion to pancreatic islet endothelium. Examination of cell surface integrin expression on WEHI 7.1 T cells revealed prominent expression of beta-, beta(1)-, alpha(L)-integrins, and low expression of alpha(M)-integrins; whereas WEHI 274.1 monocytes showed significant staining for beta(2)-, beta(1)-, alpha(M)-molecules and no expression of alpha(L)-molecules. Unstimulated islet endothelium showed constitutive levels of ICAM-1 counter-ligand expression with minimal VCAM-1 expression; however, TNF-alpha stimulation increased cell surface density of both molecules. TNF-alpha increased T cell and monocyte rolling and adhesion under hydrodynamic flow conditions. Administration of a cyclic peptide competitor for the alpha(L)-integrin I domain binding sites (cyclo1,12-PenITDGEATDSGC) blocked T cell adhesion without inhibiting monocyte adhesion. Examination of T cell rolling revealed that cLAB.L treatment increased the average rolling velocity on activated endothelium and significantly decreased the fraction of T cells rolling at < or =50 microm/s, suggesting that cLAB.L treatment interferes with signal activation events required for the conversion of T cell rolling to firm adhesion. These data demonstrate for the first time that cyclic peptide antagonists against alpha(L)-integrin I domain attenuate T cell recruitment to islet endothelium.  相似文献   

6.
Thisstudy examined the binding kinetics and molecular requirements ofeosinophil adhesion to surface-anchored platelets in shear flow.P-selectin glycoprotein ligand-1 (PSGL-1) binding to plateletP-selectin initiates tethering and rolling of eosinophils to plateletsunder flow. These primary interacting cells assist in the capture offree-flowing eosinophils through homotypic tethering (secondaryinteractions) mediated via L-selectin-PSGL-1 interactions. Differencesbetween eosinophils and neutrophils in PSGL-1 and L-selectin expressionlevels predict the pattern and relative extent of their adhesiveinteractions with immobilized platelets under shear, as well as therelative magnitude of their average rolling velocities. The majority oftethered eosinophils become rapidly stationary on the platelet layer, aprocess that is predominantly mediated via eosinophil PSGL-1 binding toplatelet P-selectin and has an absolute requirement for intactcytoskeleton. Only a small fraction of these stationary eosinophilsdevelop shear-resistant attachments mediated by CD18 integrins.However, stimulation of eosinophils with eotaxin-2 convertsPSGL-1-P-selectin-dependent stationary adhesion to CD18-mediatedshear-resistant stable attachment. These studies provide insights fordesigning strategies based on blocking of eosinophil-plateletinteractions to combat thrombotic disorders in hypereosinophilic patients.

  相似文献   

7.
We studied whether circulating activated platelets and platelet-leukocyte aggregates cause the development of atherosclerotic lesions in apolipoprotein-E-deficient (Apoe(-/-)) mice. Circulating activated platelets bound to leukocytes, preferentially monocytes, to form platelet-monocyte/leukocyte aggregates. Activated platelets and platelet-leukocyte aggregates interacted with atherosclerotic lesions. The interactions of activated platelets with monocytes and atherosclerotic arteries led to delivery of the platelet-derived chemokines CCL5 (regulated on activation, normal T cell expressed and secreted, RANTES) and CXCL4 (platelet factor 4) to the monocyte surface and endothelium of atherosclerotic arteries. The presence of activated platelets promoted leukocyte binding of vascular cell adhesion molecule-1 (VCAM-1) and increased their adhesiveness to inflamed or atherosclerotic endothelium. Injection of activated wild-type, but not P-selectin-deficient, platelets increased monocyte arrest on the surface of atherosclerotic lesions and the size of atherosclerotic lesions in Apoe(-/-) mice. Our results indicate that circulating activated platelets and platelet-leukocyte/monocyte aggregates promote formation of atherosclerotic lesions. This role of activated platelets in atherosclerosis is attributed to platelet P-selectin-mediated delivery of platelet-derived proinflammatory factors to monocytes/leukocytes and the vessel wall.  相似文献   

8.
Platelet adhesion on and activation by components of the extracellular matrix are crucial to arrest post-traumatic bleeding, but can also harm tissue by occluding diseased vessels. Integrin alpha2beta1 is thought to be essential for platelet adhesion to subendothelial collagens, facilitating subsequent interactions with the activating platelet collagen receptor, glycoprotein VI (GPVI). Here we show that Cre/loxP-mediated loss of beta1 integrin on platelets has no significant effect on the bleeding time in mice. Aggregation of beta1-null platelets to native fibrillar collagen is delayed, but not reduced, whereas aggregation to enzymatically digested soluble collagen is abolished. Furthermore, beta1-null platelets adhere to fibrillar, but not soluble collagen under static as well as low (150 s(-1)) and high (1000 s(-1)) shear flow conditions, probably through binding of alphaIIbbeta3 to von Willebrand factor. On the other hand, we show that platelets lacking GPVI can not activate integrins and consequently fail to adhere to and aggregate on fibrillar as well as soluble collagen. These data show that GPVI plays the central role in platelet-collagen interactions by activating different adhesive receptors, including alpha2beta1 integrin, which strengthens adhesion without being essential.  相似文献   

9.
PADGEM (platelet activation-dependent granule-external membrane protein) is a leukocyte receptor of activated platelets that mediates cellular adhesion of platelets to neutrophils and monocytes. To identify the natural ligand on neutrophils and monocytes that interacts with PADGEM, we have evaluated anti-leukocyte antibodies for their ability to block leukocyte-PADGEM binding. Only anti-CD15 antibodies were able to inhibit the binding of neutrophils, monocytes, HL60 cells, and U937 cells to platelets. Anti-CD15 antibodies inhibited the binding of U937 cells to PADGEM-expressing COS cells and to purified PADGEM incorporated into phospholipid vesicles. The CD15 antigen, lacto-N-fucopentaose III (Gal beta 1----4[Fuc alpha 1----3]NAcGlc beta 1----3Gal-beta 1----4Glc), inhibited the interaction of neutrophils or HL60 cells with platelets, whereas lacto-N-fucopentaose I did not; lacto-N-fucopentaose II demonstrated minimal inhibition. Lacto-N-fucopentaose III, and to a lesser extent lacto-N-fucopentaose II, but not lacto-N-fucopentaose I, inhibited the interaction of HL60 cells with COS cells transfected with PADGEM cDNA. CD15, lacto-N-fucopentaose III or Lex, is a component of the PADGEM ligand on neutrophils and monocytes.  相似文献   

10.
Subendothelial collagen plays an important role, via both direct and indirect mechanisms, in the initiation of thrombus formation at sites of vascular injury. Collagen binds plasma von Willebrand factor, which mediates platelet recruitment to collagen under high shear. Subsequently, the direct binding of the platelet receptors glycoprotein VI and alpha2beta1 to collagen is critical for platelet activation and stable adhesion. Leeches, have evolved a number of inhibitors directed towards platelet-collagen interactions so as to prevent hemostasis in the host during hematophagy. In this article, we describe the molecular mechanisms underlying the ability of the leech product saratin to inhibit platelet binding to collagen. In the presence of inhibitors of ADP and thromboxane A2, both saratin and 6F1, a blocking alpha2beta1 mAb, abrogated platelet adhesion to fibrillar and soluble collagen. Additionally, saratin eliminated alpha2beta1-dependent platelet adhesion to soluble collagen in the presence of an Src kinase inhibitor. Moreover, saratin prevented platelet-rich plasma adhesion to fibrillar collagen, a process dependent upon both alpha2beta1 and von Willebrand factor binding to collagen. Furthermore, saratin specifically inhibited the binding of the alpha2 integrin subunit I domain to collagen, and prevented platelet adhesion to collagen under flow to the same extent as observed in the presence of a combination of mAbs to glycoprotein Ib and alpha2beta1. These results demonstrate that saratin interferes with integrin alpha2beta1 binding to collagen in addition to inhibiting von Willebrand factor-collagen binding, presumably by binding to an overlapping epitope on collagen. This has significant implications for the use of saratin as a tool to inhibit platelet-collagen interactions.  相似文献   

11.
12.
The small GTPase RhoA modulates the adhesive nature of many cell types; however, despite high levels of expression in platelets, there is currently limited evidence for an important role for this small GTPase in regulating platelet adhesion processes. In this study, we have examined the role of RhoA in regulating the adhesive function of the major platelet integrin, alpha(IIb)beta(3). Our studies demonstrate that activation of RhoA occurs as a general feature of platelet activation in response to soluble agonists (thrombin, ADP, collagen), immobilized matrices (von Willebrand factor (vWf), fibrinogen) and high shear stress. Blocking the ligand binding function of integrin alpha(IIb)beta(3), by pretreating platelets with c7E3 Fab, demonstrated the existence of integrin alpha(IIb)beta(3)-dependent and -independent mechanisms regulating RhoA activation. Inhibition of RhoA (C3 exoenzyme) or its downstream effector Rho kinase had no effect on integrin alpha(IIb)beta(3) activation induced by soluble agonists or adhesive substrates, however, both inhibitors reduced shear-dependent platelet adhesion on immobilized vWf and shear-induced platelet aggregation in suspension. Detailed analysis of the sequential adhesive steps required for stable platelet adhesion on a vWf matrix under shear conditions revealed that RhoA did not regulate platelet tethering to vWf or the initial formation of integrin alpha(IIb)beta(3) adhesion contacts but played a major role in sustaining stable platelet-matrix interactions. These studies define a critical role for RhoA in regulating the stability of integrin alpha(IIb)beta(3) adhesion contacts under conditions of high shear stress.  相似文献   

13.
Cell adhesion, mediated by specific receptor-ligand interactions, plays an important role in biological processes such as tumor metastasis and inflammatory cascade. For example, interactions between beta 2-integrin (lymphocyte function-associated antigen-1 and/or Mac-1) on polymorphonuclear neutrophils (PMNs) and ICAM-1 on melanoma cells initiate the bindings of melanoma cells to PMNs within the tumor microenvironment in blood flow, which in turn activate PMN-melanoma cell aggregation in a near-wall region of the vascular endothelium, therefore enhancing subsequent extravasation of melanoma cells in the microcirculations. Kinetics of integrin-ligand bindings in a shear flow is the determinant of such a process, which has not been well understood. In the present study, interactions of PMNs with WM9 melanoma cells were investigated to quantify the kinetics of beta 2-integrin and ICAM-1 bindings using a cone-plate viscometer that generates a linear shear flow combined with a two-color flow cytometry technique. Aggregation fractions exhibited a transition phase where it first increased before 60 s and then decreased with shear durations. Melanoma-PMN aggregation was also found to be inversely correlated with the shear rate. A previously developed probabilistic model was modified to predict the time dependence of aggregation fractions at different shear rates and medium viscosities. Kinetic parameters of beta 2-integrin and ICAM-1 bindings were obtained by individual or global fittings, which were comparable to respectively published values. These findings provide new quantitative understanding of the biophysical basis of leukocyte-tumor cell interactions mediated by specific receptor-ligand interactions under shear flow conditions.  相似文献   

14.
PADGEM (platelet activation dependent granule-external membrane protein) is an integral membrane protein of the alpha granules of platelets and Weibel-Palade bodies of endothelial cells that is expressed on the plasma membrane upon cell activation and granule secretion. Activated platelets, but not resting platelets, bind to neutrophils, monocytes, HL60 cells, and U937 cells. This interaction is inhibited by anti-PADGEM antibodies, PADGEM, and EDTA; anti-GPIIb-IIIa, anti-thrombospondin, anti-GPIV, and thrombospondin produce no effect. Neutrophils and U937 cells, in contrast to Jurkatt cells, contain PADGEM recognition sites, as shown by binding of PADGEM contained in phospholipid vesicles. These results indicate that PADGEM mediates adhesion of activated platelets to monocytes and neutrophils. Therefore, PADGEM shares not only structural but also functional homology with ELAM-1 and MEL-14, members of a new family of vascular cell adhesion molecules.  相似文献   

15.
Reperfusion of ischemic tissues results in development of a proinflammatory, prothrombogenic phenotype, culminating in the recruitment of leukocytes and platelets within postcapillary venules. Recent studies have indicated an interdependence of platelet and leukocyte adhesion, suggesting that heterotypic blood cell interactions may account for postischemic platelet recruitment. The objectives of this study were to 1) determine whether ischemia-reperfusion (I/R)-induced platelet recruitment is leukocyte dependent and 2) quantify the contributions of leukocytes and endothelial cells in this platelet recruitment. Intravital microscopy was used to monitor the recruitment of fluorescently labeled platelets in postcapillary venules of the small intestine after 45-min ischemia and 4-h reperfusion. To assess the leukocyte dependence of platelet adhesion, platelets from wild-type mice were infused into mice deficient in neutrophils and/or lymphocytes and mice deficient in key leukocyte adhesion molecules (CD18 and ICAM-1). These antileukocyte strategies resulted in significantly reduced platelet recruitment. Simultaneous visualization of platelets and leukocytes enabled quantification of leukocyte-dependent and endothelium-dependent platelet adhesion. It was observed that in wild-type animals 74% of I/R-induced platelet adhesion was a result of platelet-leukocyte interactions. Although the majority of adherent platelets were associated with leukocytes, <50% of adherent leukocytes were platelet bearing, suggesting that not all adherent leukocytes support platelet adhesion. These results are consistent with leukocytes playing a major role in supporting I/R-induced platelet adhesion.  相似文献   

16.
In acute inflammation, infiltration of neutrophils often precedes a second phase of monocyte invasion, and data in the literature suggest that neutrophils may directly stimulate mobilization of monocytes via neutrophil granule proteins. In this study, we present a role for neutrophil-derived heparin-binding protein (HBP) in monocyte arrest on endothelium. Adhesion of neutrophils to bovine aorta endothelial cells (ECs) or HUVEC-triggered secretion of HBP and binding of the protein to the EC surface. Blockade of neutrophil adhesion by treatment with a mAb to CD18 greatly reduced accumulation of HBP. In a flow chamber model, immobilized recombinant HBP induced arrest of human monocytes or monocytic Mono Mac 6 (MM6) cells to activated EC or plates coated with recombinant adhesion molecules (E-selectin, P-selectin, VCAM-1). However, immobilized recombinant HBP did not influence arrest of neutrophils or lymphocytes. Treatment of MM6 cells with recombinant HBP evoked a rapid and clear-cut increase in cytosolic free Ca(2+) that was found to be critical for the HBP-induced monocyte arrest inasmuch as pretreatment with the intracellular calcium chelating agent BAPTA-AM abolished the evoked increase in adhesion. Thus, secretion of a neutrophil granule protein, accumulating on the EC surface and promoting arrest of monocytes, could contribute to the recruitment of monocytes at inflammatory loci.  相似文献   

17.
The migration of neutrophils from the circulation to areas of inflammation is the result of the sequential activation of multiple cellular adhesion molecules. beta1-Integrins are cell surface glycoproteins and the class of adhesion molecules responsible for binding to the extracellular matrix. The goal of this study was to determine the contribution of glycosylation, specifically the presence of sialic acid, to beta1-integrin adhesion in a neutrophil model. beta1-Integrins on differentiated HL60 cells were remodeled by treatment with the exoglycosidases, sialidase and beta-galactosidase. beta1-Integrin activity was determined by measuring adherence to the extracellular matrix protein fibronectin. The expression of beta1-integrins, beta2-integrins and activated beta1-integrins was determined by flow cytometry. Remodeling of beta1-integrins by treatment with sialidase increased adhesion by greater than 1,000%. Flow cytometric analysis of remodeled beta1-integrins demonstrated an increased expression of the activated beta1-integrin, but only minor increases in the expression of total beta1- and beta2-integrins. We postulate that glycosidase treatment increases adhesion and expression of activated beta1-integrins by exposure of the normally hidden ligand-binding site. The glycosylation of beta1-integrins on neutrophils may act to hide the ligand-binding site in unstimulated cells thereby contributing to the affinity modulation observed in neutrophil beta1-integrin function.  相似文献   

18.
Platelet adhesion receptors and (patho)physiological thrombus formation   总被引:6,自引:0,他引:6  
In thrombus formation associated with hemostasis or thrombotic disease, blood platelets first undergo a rapid transition from a circulating state to an adherent state, followed by activation and aggregation. Under flow conditions in the bloodstream, this process potentially involves platelet-platelet, platelet-endothelium, platelet-subendothelial matrix, and platelet-leukocyte interactions. Specific adhesion receptors on platelets mediate these interactions, by engaging counter-receptors on other cells, or noncellular ligands in the plasma or matrix. The glycoprotein (GP) Ib-IX-V complex on platelets initiates adhesion at high shear stress by binding the adhesive ligand, von Willebrand Factor (vWF). GP Ib-IX-V may also mediate platelet-endothelium or platelet-leukocyte adhesion, by recognition of P-selectin or Mac-1, respectively. Other membrane glycoproteins, such as the collagen receptor GP VI, may trigger platelet activation at low shear rates. Engagement of GP Ib-IX-V or GP VI leads ultimately to platelet aggregation mediated by the integrin, alphaIIbbeta3 (GP IIb-IIIa). This review will focus on recent advances in understanding structure-activity relationships of GP Ib-IX-V, its role in initiating thrombus formation, and its emerging relationships with other vascular cell adhesion receptors.  相似文献   

19.
Zhu CH  Ying DJ  Mi JH  Zhu XH  Sun JS  Cui XP 《Biorheology》2004,41(2):127-137
In regions of a vessel that experience low shear stress and reversing flow patterns, early features in the pathogenesis of atherosclerosis include the accumulation of oxidized LDL (OxLDL) and adhesion of monocytes to endothelial cells (EC). Here we investigated the hypothesis that low shear stress (2 dyn/cm2) and OxLDL are synergistic for enhanced expression of vascular cell adhesion molecule (VCAM-1) and human aortic endothelial cell (HAEC)-monocyte adhesion. This study shows low shear stress can significantly reduce IkappaBalpha levels, activate NF-kappaB, increase the expression of VCAM-1 in HAEC and binding of monocytes. OxLDL itself cannot significantly increase the expression of VCAM-1 in HAEC and binding of monocytes, but through activation of NF-kappaB and degradation of IkappaBalpha induced by low shear stress it can significantly enhance VCAM-1 expression and monocyte adhesion, over that in unmodified LDL or control. These results suggest that low shear stress can regulate monocyte adhesion to oxidized lipid-induced endothelial cells via an IkappaBalpha-dependent pathway, and that low shear stress together with OxLDL may likely play an important role in atherogenesis.  相似文献   

20.
In this work we checked the hypothesis whether estrone, progesterone, and testosterone are able to modulate the interactions between platelets, monocytes, and endothelial cells either under basal or inflammatory conditions. Using adhesion assays we demonstrated that pretreatment of endothelial cells with estrone, progesterone, or testosterone prevented monocytes and platelets adhesion induced by the proinflammatory agent bacterial lipopolysaccharide. The hormones reduced the expression of mRNA of ICAM-1, VCAM-1, and P-selectin, endothelial surface proteins that mediate monocytes and platelets adhesion respectively. Integrins are the main leukocyte proteins that allow firm adhesion. Using flow cytometry we showed that estrone treatment of monocytes reduced CD11b and CD11c expression, either under basal or injury (lipopolysaccharide) conditions. The three steroids inhibited platelet aggregation in a nitric oxide dependent manner. Platelet function was not affected by the steroid treatment. The molecular mechanisms of action exerted by the steroids included the participation of the intracellular signaling pathways PKC, MAPK, and PI3K, which selectively and differentially mediate the stimulation of nitric oxide release. We evidence that estrone, progesterone, and testosterone modulate monocyte and platelet adhesion to endothelial cells, events that play a major role in the initiation and progression of vascular lesions. The steroid action was evidenced under basal or inflammatory conditions. The mechanisms of action exerted by the steroids included stimulation of nitric oxide production and the participation of PKC, MAPK, and PI3K systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号