首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of insulin and increased cardiac work on glycolytic rate, metabolite content, and fructose 2,6-bisphosphate (Fru-2,6-P2) content were studied in isolated perfused rat hearts. Steady-state rates of glycolysis increased 5-fold with the addition of insulin to the perfusate or by increasing cardiac pressure-volume work and correlated well in most conditions with changes in substrate concentration (Fru-6-P) and with concentration of the activator, Fru-2,6-P2. There was no correlation with changes in other well known regulators including citrate, ATP, AMP, Pi, or cytosolic phosphorylation potential. Using phosphofructokinase purified from hearts perfused under identical conditions, allosteric kinetic experiments were performed using the metabolite and effector concentrations determined from in vivo experiments. Reaction rates for phosphofructokinase calculated in vitro agreed well with the glycolytic rates measured in vivo and correlated with changes in Fru-6-P but not with other effectors. However, higher Fru-2,6-P2 levels were more effective in maintaining phosphofructokinase activity at high ATP and citrate levels. Kinetic experiments did not indicate a covalent modification of phosphofructokinase. These data indicate that control of cardiac phosphofructokinase and glycolysis may be accomplished by changes in the availability of substrate, Fru-6-P, and activator, Fru-2,6-P2, rather than by citrate, adenine nucleotides, or cytosolic phosphorylation potential as previously suggested.  相似文献   

2.
Phosphofructokinase from the liver fluke, Fasciola hepatica, was phosphorylated by the catalytic subunit of cyclic AMP-dependent protein kinase isolated from this organism. Phosphorylated fluke phosphofructokinase had a sevenfold lower apparent Km for its substrate, Fru-6-P, and an eightfold higher 0.5 Vopt for ATP, the enzyme's primary inhibitor, than native phosphofructokinase. Activation of fluke phosphofructokinase following phorphorylation by a mammalian protein kinase catalytic subunit was previously reported (E. S. Kamemoto and T. E. Mansour (1986) J. Biol. Chem. 261, 4346-4351). The catalytic subunit of protein kinase isolated from the liver fluke phosphorylated sites on fluke phosphofructokinase similar to those phosphorylated by the mammalian enzyme. Maximal phosphate incorporation was 0.3 mol P/mol of protomer. The native enzyme was found to contain 1.3 mol P/mol of protomer. In contrast to fluke phosphofructokinase, activity of the mammalian heart enzyme was slightly decreased following phosphorylation. The dependence of allosteric interaction on an acidic pH observed with the mammalian phosphofructokinase was not observed with the fluke enzyme. Unlike mammalian phosphofructokinase, allosteric kinetics of the fluke enzyme was observed at alkaline pH (8.0). Fluke phosphofructokinase was found to be relatively insensitive to inhibition by citrate, a known potent inhibitor of the mammalian enzyme. Fru-2,6-P2, a potent modifier of phosphofructokinase from a variety of sources, was found to activate both native and phosphorylated fluke phosphofructokinase. The most potent activators of fluke phosphofructokinase were found to be Fru-2,6-P2, AMP, and phosphorylation. The endogenous level of Fru-2,6-P2 in the flukes was determined to be 29 +/- 1.3 nmol/g wet wt, a level that may well modulate enzyme activity. Fru-6-P,2-kinase, the enzyme responsible for synthesis of Fru-2,6-P2, was found to be present in the flukes. Our results suggest physiological roles for phosphorylation and Fru-2,6-P2 in regulation of fluke phosphofructokinase.  相似文献   

3.
In order to determine the role of fructose (Fru) 2,6-P2 in stimulation of phosphofructokinase in ischemic liver, tissue contents of Fru-2,6-P2, hexose-Ps, adenine nucleotides, and Fru-6-P,2-kinase:Fru-2,6-bisphosphatase were investigated during the first few minutes of ischemia. The Fru-2,6-P2 concentration in the liver changed in an oscillatory manner. Within 7 s after the initiation of ischemia, Fru-2,6-P2 increased from 6 to 21 nmol/g liver and decreased to 5 nmol/g liver within 30 s. Subsequently, it reached the maximum value at 50, 80, and 100 s and decreased to the basal concentration at 60, 90, and 120 s. Oscillatory patterns were also observed with Glc-6-P and Fru-6-P, but the ATP/ADP ratio decreased monotonically. Determination of Fru-6-P,2-kinase activity and the phosphorylation states of Fru-6-P,2-kinase:Fru-2,6-bisphosphatase demonstrated that at 7 and 50 s, where Fru-2,6-P2 was the highest, the enzyme was activated and mostly in a dephosphorylated form. On the other hand, at 0, 30, and 300 s, the enzyme was predominantly in the phosphorylated form. The concentration of cAMP in the liver also changed in an oscillatory manner between 0.5 to 1.3 nmol/g with varying frequency of 10 to 40 s. These results indicated that: (a) Fru-2,6-P2 was important in rapid activation of phosphofructokinase in the first few seconds and up to 2-3 min, and (b) the oscillation of Fru-2,6-P2 concentration was the result of activation and inhibition of Fru-6-P,2-kinase:Fru-2,6-bisphosphatase, which was caused by changes in the phosphorylation state of the enzyme.  相似文献   

4.
G S Rao  P F Cook  B G Harris 《Biochemistry》1991,30(41):9998-10004
Treatment of the Ascaris suum phosphofructokinase (PFK) with 2',3'-dialdehyde ATP (oATP) results in an enzyme form that is inactive. The conformational integrity of the active site, however, is preserved, suggesting that oATP modification locks the PFK into an inactive T state that cannot be activated. A rapid, irreversible first-order inactivation of the PFK is observed in the presence of oATP. The rate of inactivation is saturable and gives a KoATP of 1.07 +/- 0.27 mM. Complete protection against inactivation is afforded by high concentrations of ATP, and the dependence of the inactivation rate on the concentration of ATP gives a Ki of 326 +/- 26 microM for ATP which is 22-fold higher than the Km for ATP at the catalytic site but close to the binding constant for ATP to the inhibitory site. Fructose 6-phosphate, fructose 2,6-bisphosphate, and AMP provide only partial protection against modification. The pH dependence of the inactivation rate gives a pKa of 8.4 +/- 0.1. Approximately 2 mol of [3H]oATP is incorporated into a subunit of PFK concomitant with 90% loss of activity, and ATP prevents the derivatization of 1 mol/subunit. The oATP-modified enzyme is not activated by AMP or fructose 2,6-bisphosphate. oATP has no effect on the activity of a desensitized form of PFK in which the ATP inhibitory site is modified with diethyl pyrocarbonate but with the active site intact [Rao, G.S.J., Wariso, B.A., Cook, P.F., Hofer, H.W., & Harris, B.G. (1987) J. Biol. Chem. 262, 14068-14073].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Phosphoenolpyruvate (PEP) carboxylase [EC 4.1.1.31] of E. coli was inactivated by 2,4,6-trinitrobenzene sulfonate (TNBS), a reagent known to attack amino groups in polypeptides. When the modified enzyme was hydrolyzed with acid, epsilon-trinitrophenyl lysine (TNP-lysine) was identified as a product. Close similarity of the absorption spectrum of the modified enzyme to that of TNP-alpha-acetyl lysine and other observations indicated that most of the amino acid residues modified were lysyl residues. Spectrophotometric determination suggested that five lysyl residues out of 37 residues per subunit were modified concomitant with the complete inactivation of the enzyme. DL-Phospholactate (P-lactate), a potent competitive inhibitor of the enzyme, protected the enzyme from TNBS inactivation. The concentration of P-lactate required for half-maximal protection was 3 mM in the presence of Mg2+ and acetyl-CoA (CoASAc), which is one of the allosteric activators of the enzyme. About 1.3 lysyl residues per subunit were protected from modification by 10 mM P-lactate, indicating that one or two lysyl residues are essential for the catalytic activity and are located at or near the active site. The Km values of the partially inactivated enzyme for PEP and Mg2+ were essentially unchanged, though Vmax was decreased. The partially inactivated enzyme showed no sensitivity to the allosteric activators, i.e., fructose 1,6-bisphosphate (Fru-1,6-P2) and GTP, or to the allosteric inhibitor, i.e., L-aspartate (or L-malate), but retained sensitivities to other activators, i.e., CoASAc and long-chain fatty acids. P-lactate, in the presence of Mg2+ and CoASAc, protected the enzyme from inactivation, but did not protect it from desensitization to Fru-1,6-P2, GTP, and L-aspartate. However, when the modification was carried out in the presence of L-malate, the enzyme was protected from desensitization to L-aspartate (or L-malate), but was not protected from desensitization to Fru-1,6-P2 and GTP. These results indicate that the lysyl residues involved in the catalytic and regulatory functions are different from each other, and that lysyl residues involved in the regulation by L-aspartate (or L-malate) are also different from those involved in the regulation by Fru-1,6-P2 and GTP.  相似文献   

6.
The bifunctional enzyme 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase appears to be the only enzyme catalyzing the formation and hydrolysis of Fru-2,6-P2. The enzyme as we isolate it, contains a trace of tightly bound Fru-6-P. In this condition, it exhibited an ATPase activity comparable to its kinase activity. Inorganic phosphate stimulated all of its activities, by increasing the affinity for all substrates and increasing the Vmax of ATP and Fru-2,6-P2 hydrolysis. The enzyme catalyzed ADP/ATP and Fru-6-P/Fru-2,6-P2 exchanges at rates comparable to net reaction rates. It was phosphorylated by both [gamma-32P]ATP and [2-32P] Fru-2,6-P2, and the label from either donor was chased by either unlabeled donor, showing that the bound phosphate is hydrolyzed if not transferred to an acceptor ligand. The rate of labeling of the enzyme by [2-32P]Fru-2,6-P2 was 2 orders of magnitude greater than the maximal velocity of the bisphosphatase and therefore sufficiently fast to be a step in the hydrolysis. Both inorganic phosphate and Fru-6-P increased the rate and steady state of enzyme phosphorylation by ATP. Fru-2,6-P2 inhibited the ATPase and kinase reactions and Fru-6-P inhibited the Fru-2,6 bisphosphatase reaction while ATP and ADP had no effect. Removal of the trace of Fru-6-P by Glu-6-P isomerase and Glu-6-P dehydrogenase reduced enzyme phosphorylation by ATP to very low levels, greatly inhibited the ATPase, and rendered it insensitive to Pi, but did not affect ADP/ATP exchange. (alpha + beta)Methylfructofuranoside-6-P did not increase the rate or steady state labeling by ATP. These results suggest that labeling of the enzyme by ATP involved the production of [2-32P]Fru-2,6-P2 from the trace Fru-6-P. The 6-phosphofructo-2-kinase, fructose 2,6-bisphosphatase, and ATP/ADP exchange were all inhibited by diethylpyrocarbonate, suggesting the involvement of histidine residues in all three reactions. These results can be most readily explained in terms of two catalytic sites, a kinase site whose phosphorylation by ATP is negligible (or whose E-P is labile) and a Fru-2,6 bisphosphatase site which is readily phosphorylated by Fru-2,6-P2.  相似文献   

7.
The regulatory properties of citrate on the activity of phosphofructokinase (PFK) purified from rat-kidney cortex has been studied. Citrate produces increases in the K0.5 for Fru-6-P and in the Hill coefficient as well as a decrease in the Vmax of the reaction without affecting the kinetic parameters for ATP as substrate. ATP potentiates synergistically the effects of citrate as an inhibitor of the enzyme. Fru-2,6-P2 and AMP at concentrations equal to Ka were not able to completely prevent citrate inhibition of the enzyme. Physiological concentrations of ATP and citrate produce a strong inhibition of renal PFK suggesting that may participate in the control of glycolysisin vivo.Abbreviations PFK 6-Phosphofructo-1-kinase (EC 2.7.1.11) - Fru-6-P Fructose 6-phosphate - Fru-2,6-P2 Fructose 2,6-bisphosphate  相似文献   

8.
Phosphofructokinase from the liver fluke Fasciola hepatica was purified from extracts of the whole organisms. The molecular weight of the protomer as determined by sodium dodecyl sulfate-gel electrophoresis is 83,000. Phosphorylation of the liver fluke phosphofructokinase by the catalytic subunit of cAMP-dependent protein kinase occurred at a rate that was at least an order of magnitude greater than that observed with mammalian heart phosphofructokinase. The maximum level of phosphate incorporated was 0.22 mol P/mol of protomer. The kinetic properties of the enzyme were greatly altered as a result of phosphorylation. Compared to native enzyme, phosphorylated enzyme had a greater affinity for its substrate Fru-6-P and a decreased sensitivity to inhibition by ATP. These kinetic changes were similar to those of native enzyme in the presence of positive modifiers such as AMP. AMP also activated the phosphorylated enzyme. Activation of the phosphorylated enzyme by AMP was characterized by a further increase in affinity for Fru-6-P and a further decrease in sensitivity to ATP inhibition. Thus, the liver fluke phosphofructokinase can be modulated by covalent phosphorylation as well as noncovalent binding of different modifier ligands.  相似文献   

9.
Two phosphofructokinase genes have been described previously in Entamoeba histolytica. The product of the larger of the two genes codes for a 60-kDa protein that has been described previously as a pyrophosphate (PP(i))-dependent enzyme, and the product of the second, coding for a 48-kDa protein, has been previously reported to be a PP(i)-dependent enzyme with extremely low specific activity. Here it is found that the 48-kDa protein is not a PP(i)-dependent enzyme but a highly active ATP-requiring enzyme (k(cat) = 250 s(-)1) that binds the cosubstrate fructose 6-phosphate (Fru-6-P) with relatively low affinity. This enzyme exists in concentration- and ATP-dependent tetrameric active and dimeric inactive states. Activation is achieved in the presence of nucleoside triphosphates, ADP, and PP(i), but not by AMP, P(i), or the second substrate Fru-6-P. Activation by ATP is facilitated by conditions of molecular crowding. Divalent cations are not required, and no phosphoryl transfer occurs during activation. Kinetics of the activated enzyme show cooperativity with Fru-6-P (Fru-6-P(0.5) = 3.8 mm) and inhibition by high ATP and phosphoenolpyruvate. The enzyme is active without prior activation in extracts of E. histolytica. The level of mRNA, the amount of enzyme protein, and the enzyme activity of the 48-kDa enzyme are about one-tenth that of the 60-kDa enzyme in extracts of E. histolytica trophozoites.  相似文献   

10.
The histidine-selective reagents diethylpyrocarbonate (DEPC) and dimethylpyrocarbonate were used to study active site residues of phosphoenolpyruvate carboxykinase. Both reagents show pseudo first-order inhibition of enzyme activity at 22 +/- 1 degree C with calculated second-order rate constants of 2.8 and 4.6 M-1 s-1, respectively. The inhibition appears partially reversible. Substrates affect the rate of inhibition: KHCO3 enhances the rate, Mn2+ has little effect, and phosphoenolpyruvate decreases the rate. The best protection is obtained by IDP or IDP and Mn2+. The kinetic studies show that modification of histidine is specific and leads to loss of enzymatic activity. Two histidines per enzyme are modified by DEPC, as measured by an absorption change at 240 nm, in the absence of substrate, leading to loss in activity. One histidine per molecule is modified in the presence of KHCO3, giving inactivation. Cysteine and lysine residues are not affected. A study of the inhibition rate constant as a function of pH gives a pKa of 6.7. Enzyme modified by DEPC in the absence of substrate (1% remaining activity) shows no binding of ITP or of phosphoenolpyruvate to the enzyme.Mn2+ complex as studied by proton relaxation rates. When enzyme is modified in the presence of KHCO3 (44% remaining activity), ITP and KHCO3 bind to the enzyme.Mn2+ complex similarly to the binding to native enzyme. Phosphoenolpyruvate binding to modified enzyme.Mn results in an enhancement of proton relaxation rates rather than the decrease observed with native enzyme.Mn. The CD spectra of histidine-modified enzyme show a decrease in alpha-helical and random structure with an increase in anti-parallel beta-sheet structure compared to native enzyme. These results show that avian phosphoenolpyruvate carboxykinase has 2 histidine residues which are reactive with DEPC and dimethylpyrocarbonate, and one of the 15 histidine residues in the protein is at or near the phosphoenolpyruvate binding site and is involved in catalysis.  相似文献   

11.
Sheflyan GY  Duewel HS  Chen G  Woodard RW 《Biochemistry》1999,38(43):14320-14329
The enzyme 3-deoxy-D-manno-octulosonic acid 8-phosphate (KDO 8-P) synthase from Escherichia coli that catalyzes the aldol-type condensation of D-arabinose 5-phosphate (A 5-P) and phosphoenolpyruvate (PEP) to give KDO 8-P and inorganic phosphate (P(i)) is inactivated by diethyl pyrocarbonate (DEPC). The inactivation is first-order in enzyme and DEPC. A second-order rate constant of 340 M(-1) min(-1) is obtained at pH 7.6 and 4 degrees C. The rate of inactivation is dependent on pH and the pH-inactivation rate data imply the involvement of an amino acid residue with a pK(a) value of 7.3. KDO 8-P synthase activity is not restored to the DEPC-inactivated enzyme following treatment with hydroxylamine. Complete loss of KDO 8-P synthase activity correlates with the ethoxyformylation of three histidine residues by DEPC. KDO 8-P synthase is protected against DEPC inactivation by PEP and partially protected against inactivation by A 5-P. To provide further evidence for the involvement or role of the histidine residues in the aldol-type condensation catalyzed by KDO 8-P synthase, all six histidines were individually mutated to either glycine or alanine. The kinetic constants for the three mutants H40A, H67G, and H246G were unaffected as compared to the wild type enzyme. In contrast, H241G demonstrates a >10-fold increase in K(M) for both PEP and A 5-P and a 4-fold reduction in k(cat), while H97G demonstrates an increase in K(M) for only A 5-P and a 2-fold reduction in k(cat). The activity of the H202G mutant was too low to be measured accurately but the data obtained indicated an approximate 400-fold reduction in k(cat). Circular dichroism measurements of the wild-type and mutant enzymes indicate modest structural changes in only the fully active H67G and H246G mutants. The H241G mutant is protected against DEPC inactivation by PEP and A 5-P to the same extent as the wild-type enzyme, suggesting that the functionally important H241 may not be located in the vicinity of the substrate binding sites. The H97G mutant is protected by PEP against DEPC inactivation to the same degree as the wild-type enzyme but is no longer protected by A 5-P. In the case of the H202G mutant, both A 5-P and PEP protect the mutant against DEPC inactivation but to different extents from those observed for the wild-type enzyme. The catalytic activity of the H97G mutant is partially restored (20% --> 60% of wild-type activity) in the presence of imidazole, while a minor amount of activity is restored to the H202G mutant (<1% --> 4% of wild-type activity) in the presence of imidazole.  相似文献   

12.
The conversion of ATP-sensitive PFKs to ATP-desensitized PFKd is dependent on the following effectors: ADP, Fru-6-P, NH4+, MgF+ (or CaF+). For half-maximal rate of desensitization, the necessary concentrations of effectors are: 0.01 mm ADP, 0.006 mm Fru-6-P, 0.5 mm NH4+, and 0.011 mm MgF+. Except for the unphysiological MgF+, these concentrations generally lie below those encountered in intact cells. On this basis the biological significance of the effector-controlled ATP desensitization of phosphofructokinase is discussed.  相似文献   

13.
在无二硫苏糖醇(DTT)存在下得到部份纯化的氧化型PFP酶,在广泛的pH范围内(pH6.0~9.0)失去其大部分对果糖2,6-二磷酸的敏感性。活化效应可藉与DTT保温得到恢复而不改变其最适pH值。在与DTT保温过程中,酶对果糖2,6-二磷酸的亲和力逐步增加。氧化型酶的K_a值(对果糖2,6-二磷酸)在酶与DTT保温(pH8)1h之后从1400nmol/L下降到约50nmol/L。 在DTT存在下纯化的酶(还原型)经低浓度5,5′-二硫代双(2-硝基苯甲酸)(DTNB)处理,在使酶活性迅速失活的同时引起酶对果糖2,6-二磷酸脱敏。这一过程可为DTT处理所回复。从小麦胚中纯化的硫氧还蛋白h在恢复酶活性和酶的果糖2,6-二磷酸敏感性的效应中表明,细胞内的氧化还原状态可能藉以改变酶对果糖2,6-二磷酸的亲和力而调节PFP酶的活性。  相似文献   

14.
1. The fructose-2,6-bisphosphate (Fru-2,6-P2) content of mesenteric lymph nodes was measured in rats. 2. The effects of Fru-2,6-P2 on the activity of 6-phosphofructo-1-kinase (PFK-1) from rat mesenteric lymph nodes were also studied. 3. The affinity of the enzyme for fructose-6-phosphate was increased by Fru-2,6-P2 whereas the inhibition of the enzyme with high concentrations of ATP was released by Fru-2,6-P2. 4. The activity of lymphocyte PFK-1 was highly stimulated in a simultaneous presence of low concentrations of AMP and Fru-2,6-P2. 5. These results show that rat lymphocyte PFK-1 is highly regulated with Fru-2,6-P2 which means that glycolysis in rat lymphocytes is controlled by Fru-2,6-P2.  相似文献   

15.
The effects of AMP, fructose 6-phosphate (Fru-6-P), fructose 2,6-bisphosphate (Fru-2,6-P2), and paramagnetic ions on the aromatic region of the proton nuclear magnetic resonance (NMR) spectrum of rabbit liver fructose-1,6-bisphosphatase have been investigated at 300 MHz. Two well resolved peaks in this region of the NMR spectrum are assigned to the protons from the aromatic ring of a tyrosyl residue of the enzyme by chemical modification with tetranitromethane and by nuclear Overhauser effects. Nitration of the tyrosyl residue causes desensitization of the enzyme to AMP inhibition as well as the loss of activity. In the presence of AMP during the modifications, 1 tyrosyl residue could be protected, presumably the one observed by NMR. Binding of AMP, an allosteric inhibitor of the enzyme, to rabbit liver fructose-1,6-bisphosphatase leads to an upfield shift of the tyrosyl proton signals in the NMR spectrum. No chemical shift or line broadening could be detected in the presence of the paramagnetic manganous ion, Fru-2,6-P2, or Fru-6-P. The negative intramolecular nuclear Overhauser effect from the ribose H2' proton to the adenine H8 proton of AMP suggested that AMP binds to the enzyme with an anti conformation about the glycosidic bond. The failure to observe intermolecular nuclear Overhauser effects between the tyrosyl residue and the protons of AMP indicates that the distances between them are greater than 4 A. On the basis of these observations, it is suggested that the AMP-related tyrosyl residue may be close to the AMP binding site, but it is not directly involved in ligand binding. Rather, the protection of this tyrosyl residue by AMP as observed by chemical modification experiments may well be due to a conformational change that results from covalent modification of the enzyme.  相似文献   

16.
Horseradish peroxidase (HRP), when incubated with diethylpyrocarbonate (DEPC), shows a time-dependent loss of iodide oxidation activity. The inactivation follows pseudo-first order kinetics with a second order rate constant of 0.43 min-1 M-1 at 30 degrees C and is reversed by neutralized hydroxylamine. The difference absorption spectrum of the modified versus native enzyme shows a peak at 244 nm, characteristic of N-carbethoxyhistidine, which is diminished by treatment with hydroxylamine. Correlation between the stoichiometry of histidine modification and the extent of inactivation indicates that out of 2 histidine residues modified, one is responsible for inactivation. A plot of the log of the reciprocal half-time of inactivation against log DEPC concentration further suggests that only 1 histidine is involved in catalysis. The rate of inactivation shows a pH dependence with an inflection point at 6.2, indicating histidine derivatization by DEPC. Inactivation due to modification of tyrosine, lysine, or cysteine has been excluded. CD studies reveal no significant change in the protein or heme conformation following DEPC modification. We suggest that a unique histidine residue is required for maximal catalytic activity of HRP for iodide oxidation.  相似文献   

17.
Both the synthesis and the degradation of Fru-2,6-P2 are catalyzed by a single enzyme protein; ie, the enzyme is bifunctional. This protein, which we have designated 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatase is an important enzyme in the regulation of hepatic carbohydrate metabolism since its activity determines the steady-state concentration of fructose 2,6-P2, an activator of 6-phosphofructo 1-kinase and an inhibitor of fructose 1,6-bisphosphatase. Regulation of the bifunctional enzyme in intact cells is a complex function of both covalent modification via phosphorylation/dephosphorylation and the influence of substrates and low molecular weight effectors. Recent evidence suggests that both reactions may proceed by two-step transfer mechanisms with different phosphoenzyme intermediates. The enzyme catalyzes exchange reactions between ADP and ATP and between fructose 6-P and fructose 2,6-P2. A labeled phosphoenzyme is formed rapidly during incubation with [2-32P]Fru-2,6-P2. The labeled residue has been identified as 3-phosphohistidine. However, it was not possible to demonstrate significant labeling of the enzyme directly from [gamma-32P]ATP. These results can be most readily explained in terms of two catalytic sites, a kinase site whose phosphorylation by ATP is negligible (or whose E-P is labile) and a fructose 2,6-bisphosphatase site which is readily phosphorylated by fructose 2,6-P2. Additional evidence in support of two active sites include: limited proteolysis with thermolysin results in loss of 6-phosphofructo 2-kinase activity and activation of fructose 2,6-bisphosphatase, mixed function oxidation results in inactivation of the 6-phosphofructo 2-kinase but no affect on the fructose 2,6-bisphosphatase, N-ethylmaleimide treatment also inactivates the kinase but does not affect the bisphosphatase, and p-chloromercuribenzoate immediately inactivates the fructose 2,6-bisphosphatase but not the 6-phosphofructo 2-kinase. Our findings indicate that the bifunctional enzyme is a rather complicated enzyme; a dimer, probably with two catalytic sites reacting with sugar phosphate, and with an unknown number of regulatory sites for most of its substrates and products. Three enzymes from Escherichia coli, isocitric dehydrogenase kinase/phosphatase, glutamine-synthetase adenylyltransferase, and the uridylyltransferase for the regulatory protein PII in the glutamine synthetase cascade system also catalyze opposing reactions probably at two discrete sites. All four enzymes are important in the regulation of metabolism and may represent a distinct class of regulatory enzymes.  相似文献   

18.
Fructose-2,6-bisphosphate (Fru-2,6-P(2)) is a potent allosteric activator of the ATP-dependent phosphofructokinase (PFK) in eukaryotes. Based on the sequence homology between rabbit muscle PFK and two bacterial PFKs and the crystal structures of the latter, Ser(530), Arg(292) and His(662) of the rabbit enzyme are implicated as binding sites for Fru-2,6-P(2). We report here the effects of three mutations, S530D, R292A, and H662A on the activation of rabbit muscle PFK by Fru-2,6-P(2). At pH 7.0 and the inhibitory concentrations of ATP, the native enzyme gives a classic sigmoidal response to changes in Fru-6-P concentration in the absence of Fru-2,6-P(2) and a nearly hyperbolic response in the presence of the activator. Under the same conditions, no activation was seen for S530D. On the other hand, H662A can be activated but requires a 10-fold or higher concentration of Fru-2,6-P(2). Limited activation was observed for mutant R292A. A model illustrating the sites for recognition of Fru-2,6-P(2) in rabbit muscle PFK as well as the mechanism of allosteric activation is proposed.  相似文献   

19.
An investigation was performed to elucidate some unusual phenomena which had been observed with phosphoenolpyruvate (PEP) carboxylase [EC 4.1.1.31] of Escherichia coli. (i) Fructose 1,6-bisphosphate (Fru-1,6-P2) and GTP--the allosteric activators--were competitive with each other in the activation. (ii) Some analogs of PEP such as DL-2-phospholactate and 2-phosphoglycolate, which behaved as inhibitors in the presence of the activator (acetyl-CoA or dioxane), activated the enzyme to some extent in the absence of the activator. (iii) Ammonium sulfate deprived the enzyme of sensitivity to Fru-1,6-P2 or GTP but had no effect on the sensitivity to other effectors. It was found that the activation by the analogs was lost upon desensitization of the enzyme to Fru-1,6-P2 by reaction with 2,4,6-trinitrobenzene sulfonate. The activation by the analogs was not observed in the presence of 200 mM ammonium sulfate. In the presence of lower concentrations (0.1 mM) of PEP, ammonium sulfate activated the enzyme at concentrations less than 700 mM but had an inhibitory effect on the desensitized enzyme. These findings suggest that the unusual phenomena described above are a result of binding of the phosphate esters and sulfate ions with the Fru-1,6-P2 site of the enzyme or the active site depending on the reaction conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号