首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The success of Triticum aestivumxZea mays crosses, used to producewheat doubled haploids, is influenced by light intensity. Toexamine the basis for this response, pollen tube growth, embryosurvival and indicators of photosynthetic rate were measuredin two wheat cultivars (‘Karamu’ and ‘Kotuku’)crossed with maize at two irradiance levels (250 or 750 µmolm-2s-1, PAR). Pollen tube growth was significantly affectedby light intensity in ‘Karamu’ plants but not in‘Kotuku’ plants, despite both cultivars being pollinatedby the same maize source. The percentage of pollen tubes reachingthe cavity between the ovarian wall and integuments, or in themicropyle of ‘Karamu’ plants at high light intensity(65%) was nearly three-times greater than that at low lightintensity (22%). Thus, either low light intensity can affectthe maternal wheat plant in a way that inhibits pollen tubegrowth and/or high light intensity may promote pollen tube growthin ‘Karamu’ plants. Significant differences in ratesof electron transport in plants grown at the two light intensitiesindicated that the rate of photosynthesis may also have an effecton pollen tube growth. These results have importance for improvingthe efficiency of wheat x maize crosses and other wide cerealcrosses. Copyright 2001 Annals of Botany Company Intergeneric hybridization, light intensity, pollen tube growth, embryo survival, Triticum aestivum, wheat,Zea mays , maize  相似文献   

2.
Male Sterility and Anther Wall Structure in Copper-deficient Plants   总被引:5,自引:0,他引:5  
DELL  B. 《Annals of botany》1981,48(5):599-608
Anther development and pollen sterility were followed in plantsof wheat, oat, barley, sweetcorn, sunflower, petunia and subterraneumclover grown at a range of copper supplies. Copper-deficientplants had increased pollen sterility. Lignified wall thickenings were reduced or absent in the endotheciaof anthers from Cu-deficient plants. Reduced seed set may resultboth from reduced pollen fertility or failure of the stomiato rupture due to decreased lignification of anther walls. Triticum aestivum L., wheat, Hordeum vulgare L., barley, Avena sativa L., oat, Zea mays L., corn, sweetcorn, maize, Helianthus annuus L., sunflower, Petunia hybrida L., Trifolium subterraneum L., subterranean clover, male sterility, anther development, copper deficiency  相似文献   

3.
We investigated the effect of reproductive growth on the profilesof leaf senescence in maize (Zea mays L.) and sunflower (Helianthusannuus L.). Leaf senescence after flowering was assessed usingboth structural (leaf chlorophyll, nitrogen and dry matter)and functional (photosynthesis) variables in undisturbed plants(+G) and in plants in which grain set was prevented (-G). Twoweeks after flowering, lack of grain accelerated senescencein maize and delayed senescence in sunflower as indicated byleaf chlorophyll; leaf nitrogen and dry matter were less sensitiveresponse variables. Lack of interaction between reproductivetreatment and leaf position indicates that the senescence signal,whatever its nature, was equally effective throughout the plantin both species. In both species, feedback inhibition of photosynthesiswas first detected 30–35 d after flowering; excess carbohydratein the leaves was therefore an unlikely trigger of acceleratedsenescence in maize. As reproductive development progressed,differences between +G and -G plants were more marked in sunflower,and tended to disappear or reverse in maize. In sunflower, interactionsbetween leaf position and reproductive treatment—attributableto the local effect of grain—were detected around 20–27d after flowering. Copyright 2000 Annals of Botany Company Helianthus annuus, Zea mays, chlorophyll, light, nitrogen, photosynthesis, reproductive growth, senescence, source-sink, SPAD.  相似文献   

4.
Maize plants, subjected to 0, 80, 120 and 160 meq l–1salinity using NaCl, showed adverse effects on viability, germinationand tube growth of pollen, besides enhancing the bursting ofpollen. The endogenous levels of various metabolites in pollenwere also affected. Pollen grains from salinized plants hadmore soluble carbohydrates, free amino acids, especially proline,phenols and DNA and less starch, protein and RNA compared tothe non-saline controls. Salinity also resulted in the accumulationof ions such as Na+, K+ and Cl while it caused a reductionin the boron content of pollen. These metabolic disturbancespossibly lead to decreased viability, germination and tube growthof pollen thereby resulting into a reduction in reproductivecapacity of the plants under salt stress. Zea mays L., maize, pollen, viability, germination, salt stress  相似文献   

5.
Concentrations of free amino acids and amides were measuredin organs of maize plants, Zea mays L. in the period from 14d before pollen liberation until complete seed maturation. Inthis time anthesis took place and only the ovaries of ear 9(numbered from below) developed into seeds. In mature leaf bladesNH4 ion assimilation had ceased and asparagine and glutaminewere not found there. N redistribution induced the occurrenceof large amounts of aspartate, glutamate and alanine. The amountsof amides in leaf sheaths and stem parts depended on the neighbourhoodof generative parts. The generative plant parts can be distinguishedfrom adjacent vegetative plant parts in concentrations of freeproline or asparagine. Proline occurred in pollen but not inthe empty anthers. Ears had a small, early peak amount of prolinemostly before pollination. Only the ninth ear had a first maximumproline amount after the fifth day of pollen liberation. A secondproline peak in the ears coincided with the period of maximumincrease in d. wt. The occurrence of proline in the generativeorgans relative to metabolic processes inducing fertility orseed maturation is discussed. Zea mays L., amides, amino acids, amino-transferring components, asparagine, glutamine, proline  相似文献   

6.
Enhanced UV-B irradiation is one of the most important abiotic stresses that can influence various aspects of plant morphology, biochemistry and physiology. Silicon as a beneficial element can increase the plant’s tolerance against different abiotic stresses, including UV-B stress. In this work, the effect of silicon supplementation on the sensitivity of young maize (Zea mays L.) seedlings exposed to short-term UV-B radiation was studied. The seedlings were grown with 0 or 5 mM silicon in cultivation medium and on the fifth day of cultivation, they were exposed for 15 and 30 min to UV-B (302 nm) radiation. No significant changes in growth and content of assimilation pigments and the chlorophyll a/b ratio were observed in any of tested irradiation periods in control or Si-treated plants. Under UV-B stress, the content of ROS (hydrogen peroxide and superoxide radical) and TBARS increased in control plants. The oxidative status of Si-treated plants was only slightly affected even after 30 min. Phenolic metabolites (total phenols and flavonoids), important for their screening function under radiation stress, slightly increased after UV-B exposure in control plants, however, only flavonoids increased after 30 min in Si-treated plants. The measured parameters indicated that to some extent silicon supplementation contributes to higher UV-B tolerance of maize seedlings.  相似文献   

7.
Seed swelling, germination, root extension, lateral root initiationand shoot growth were studied in soils of different water contents,using non-destructive, serial neutron radiography. Seeds fromthree varieties of soya beans (Glycine max L.) and one varietyeach of maize (Zea mays L.) and vetch (Vicia sativa L.) wereused. The seeds germinated when they had increased in size bya certain amount, if germination is taken as the time when theradicle first appears. The rate at which roots and shoots extendalso depend on soil water content. Glycine max L., Vicia sativa L., Zea mays L., Soya bean vetch, maize, seed germination, root extension, lateral root initiation, neutron radiography  相似文献   

8.
Plants of Phaseolus vulgaris L. (cv. Stella) were grown in controlledconditions under three different irradiances of visible lightwith or without UV-B (280–320nm) radiation. The biologicallyeffective UV-B radiation (UV-BBE) was 6.17 kJ m–2 d–1,and simulated a c. 5% decrease in stratospheric ozone at 55.7?N,13.4?E. The photon flux densities of the photosyntheticallyactive radiation (PAR, 400–700 nm) were either 700 µmolm–2–1 (HL), 500, µmol m–2 s–1(ML) or 230 µmol m–2 s–1 PAR (LL). Under highlight (HL) conditions plus UV-B radiation, bean plants appearedmost resistant to the enhanced levels of UV-B radiation, andresponded only by increasing leaf thickness by c. 18%. A smallincrease in UV screening pigments was also observed. Both thelower irradiances (ML and LL) increased the sensitivity of theplants to UV-B radiation. Changes in leaf structure were alsoobserved. Photosystem II was inhibited under ML and LL togetherwith UV-B radiation, as determined by Chi fluorescence inductionand calculation of the fluorescence half-rise times. Leaf reflectivitymeasurements showed that the amount of PAR able to penetrateleaves of UV-B treated plants was reduced, and that a possiblecorrelation may exist between the reduced PAR levels, loss ofChi and lowered photosynthetic activity, especially for LL +UV-Bgrown plants, where surface reflection from leaves was highest.Changes in leaf chlorophyll content were mostly confined toplants grown under LL + UV-B, where a decrease of c. 20% wasfound. With regard to protective pigments (the carotenoids andUV screening pigments) plants subjected to different visiblelight conditions responded differently. Among the growth parametersmeasured, there was a substantial decrease in leaf area, particularlyunder LL + UV-B (c. 47% relative to controls), where leaf dryweight was also reduced by c. 25%. Key words: Chlorophyll fluorescence induction, bean, flavonoids, Phaseolus vulgaris, reflectance, UV-B radiation  相似文献   

9.
Pollen collected from maize plants raised under 0, 80, 120 and160 mequiv 1–1 salinity were used to determine the activitiesof amylase and invertase after 0 and 45 min of incubation inthe liquid basal germination medium. Amylase activity was higherin the ungerminated pollen collected from 120 and 160 mequiv1–1 salinity while those pollen from lower salinity didnot show detectable amylase activity. However, 45 min afterincubation, the trend was reversed. Pollen collected from plantsraised under saline conditions showed increased invertase activitywhich further increased after 45 min of incubation in the basalgermination medium. The significance of changes in the activitiesof these hydrolytic enzymes in relation to pollen tube growthis discussed. Zea mays, salinity, pollen, amylase, invertase  相似文献   

10.
Zinc Deficiency and Anther Development in Maize   总被引:1,自引:0,他引:1  
With the onset of male reproductive phase at 28 days, zinc waswithdrawn from fifty percent of maize (Zea mays L. cv. Ganga2) plants grown in refined sand at 0.13 mg Zn liter–1.Plants from which zinc was withdrawn developed zinc deficiencysymptoms in young leaves after 38 days and were low in tissuezinc. Their tassel formation and pollen development was retarded.Anthers failed to develop beyond freshly liberated young pollengrain stage and vessels were formed in place of sporogenoustissue in sixty percent anthers of the younger of the two florets.Anthers from these plants showed low zinc concentration andstimulated specific activities of catalase, peroxidase, ribonucleaseand acid phosphatase. On resuming normal zinc (0.13 mg Zn liter–1) through rootsto the plants from which it was withdrawn for 17 days, vegetativegrowth was partially renewed and short axillary buds were formedbut the development of anthers remained retarded. (Received April 11, 1986; Accepted October 15, 1986)  相似文献   

11.
Under submerged conditions the germination of maize seeds isinhibited. Under normal conditions, i.e. on moist filter paper,more than 80 per cent of the seeds can germinate whereas lessthan 24 per cent of the seeds germinate under submerged conditions.The inhibition of germination under submerged conditions canbe fully overcome by the application of an appropriate concentrationof GA2, and KN. The possible role of these hormones in overcomingthe inhibition of seed germination under an oxygen deficit dueto waterlogging is discussed. Zea mays L, maize, gibberellic acid, kinetin, germination  相似文献   

12.
Plants of two contrasting species of herbaceous annuals, thedicot sunflower (Helianthus annuusL.) and the monocot maize(Zea maysL.), grown in the glasshouse were subjected to regularunidirectional stem flexure. Differences in morphology and mechanicalproperties of roots and shoots were then investigated. Rootsystems were divided into quadrants around the axis of stimulationand differences in root morphology and mechanics between thezones were investigated. There were considerable differencesbetween roots in the leeward and windward zones compared withroots perpendicular to the axis of stimulation. First-orderlateral roots in both species were thicker, more rigid and morenumerous. These results suggest that plant roots respond locallyto mechanical stimulation. There were, however, also differencesin the responses of the two species. In sunflower, the tap rootand stem base became elliptical in cross section with the majoraxis lying in the plane of stimulation. The lateral roots offlexed sunflowers in both the leeward and windward zones showedsimilar growth responses: roots were thicker, more numerousand weighed more than those in the perpendicular zones. However,only leeward roots showed significant differences in their mechanicalproperties; roots were more rigid, stronger and stiffer. Incontrast, the leeward roots of maize were thicker and more numerous,with a greater biomass than the windward roots. However, onlyroots in the windward zone were stiffer than those in the perpendicularzone. These differences between sunflower and maize are relatedto their contrasting anchorage mechanics.Copyright 1998 Annalsof Botany Company Anchorage, biomechanics, adaptive growth, roots, thigmomorphogenesis,Helianthus annuusL.,Zea maysL.  相似文献   

13.
Aniline blue fluorescence was used to study the growth of maizepollen tubes in the stigmas of 13 diverse sorghum accessions.In 12, only short maize pollen tubes were formed, but in thesingle exception (Sorghum nervosum Nr481) maize pollen tubesgrew at least as far as the base of the style. The S. bicolorgenotypes S9B and CMS (a cytoplasmic male sterile line) werehybridized with Nr481, and analysis of maize pollen tube growthin F1 plants, and BC1 plants using Nr481 as the recurrent parent,suggested that differences in inhibition of pollen tube growthwere due to variation at a single locus, which we propose todesignate lap (Inhibition of alien pollen tubes). AccessionNr481 appears to be homozygous for a recessive allele permittingmaize pollen tube growth. Attempts were made to produce sorghumx maize hybrids using Nr481 and CMS derivatives which were knownto allow maize pollen tube growth to the base of the style.A putative hybrid endosperm was obtained in one Nr481 x Seneca60 maize cross, but this was not repeatable and no hybrid plantswere produced. A fundamental problem may be the large size ofthe maize pollen tube, which could have difficulty growing throughthe sorghum ovary and in entering the micropyle. Sorghum bicolor spp. bicolor (L.) Moench, Zea mays L, sorghum, maize, pollen tube growth, hybridization barriers  相似文献   

14.
MOORE  RANDY 《Annals of botany》1990,65(2):213-216
Columella cells of seedlings of Zea mays L. cv. Bear Hybridgrown in the microgravity of orbital flight allocate significantlylarger relative-volumes to hyaloplasm and lipid bodies, andsignificantly smaller relative-volumes to dictyosomes, plastids,and starch than do columella cells of seedlings grown at I g.The ultrastructure of columella cells of seedlings grown atI g and on a rotating clinostat is not significantly different.However, the ultrastructure of cells exposed to these treatmentsdiffers significantly from that of seedlings grown in microgravity.These results indicate that the actions of a rotating clinostatdo not mimic the ultrastructural effects of microgravity incolumella cells of Z. mays. Zea mays L., gravity, microgravity, ultrastructure, clinostat, space shuttle, space biology  相似文献   

15.
The germination performance of maize seeds (Zea mays L. cv.Partap-1) pre-treated individually with the substituted phthalimideAC 94,377 (1-(3-chlorophthalimido)-cyclohexanecarboxamide),GA4+7 and ABA was markedly improved under sub- and supra-optimaltemperature regimes. ABA was especially stimulatory at the sub-optimaltemperature. Metabolic alterations in the germinating embryosof treated seeds revealed an increased accumulation of solublesugars and proteins compared with the controls under stressingtemperatures. The activities of acid phosphatase, invertase,catalase and peroxidase were seemingly related to the alleviationmetabolism. It is suggested that gibberellins and abscisic acidmay have positive regulatory effects in triggering the systemfor stress alleviation. Germination, Zea mays, temperature, growth regulators, embryos, metabolism  相似文献   

16.
The relations between leaf age and polyribosome levels werestudied with dark-and light-grown maize (Zea mays L.) seedlings.In general, polyribosome levels decline with the period of growthin darkness. Light induces an increase in the polyribosome levelin dark-grown seedlings. The response can be detected after30 min exposure to light. Seven or eight-day-old dark-growncorn seedlings, used in the present study, have high levelsof polyribosomes when greened in the light. This is indicativeof healthy seedlings, competent in protein synthesis. The polyribosomelevels in iron deficient maize plants were significantly differentfrom plants grown under complete nutrient solution, while thereis no significant difference among plants suffering differentdegrees of iron deficiency. (Received November 18, 1977; )  相似文献   

17.
Radioimmunoassays and enzyme-linked immunosorbent assays formethyl esters of gibberellins A1, A3, A4, and A7 were establishedusing an antiserum specific for GA1-Me. The antiserum was characterizedby high titer and specificity for such C19-GAs with 3ß-hydroxylgroup as GA1, GA3, GA4 and GA7. Combination of this antiserumand HPLC enabled us to identify and quantify GA, and GA4 fromthe pollen of Zea mays with a high degree of reliability. Similarly,identification and quantification of GA9 and GA20 were alsomade possible by use of an antiserum specific for GA20-Me. Combineduse of immunoassays and GC/MS enabled us to identify nine GAsfrom the pollen and four from the anthers of Zea mays. The identificationof non-13-hydroxylated GAs, such as GA4 and GA9, in additionto 13-hydroxylated GAs from the pollen and the anthers suggeststhat the early-non-hydroxylation pathway, as well as the early-13-hydrox-ylationpathway, operates in the male reproductive organs of Zea mays,and that the organ-specific biosynthesis and/or localizationof GAs in Zea mays is similar to that in Oryza saliva. (Received May 7, 1990; Accepted August 20, 1990)  相似文献   

18.
Sugars in Natural and Artificial Pollen Germination Substrates   总被引:1,自引:0,他引:1  
The stigmatic exudates and pollen grains of five unrelated specieswere tested for sugars. Glucose, fructose, and sucrose werefound in the stigmatic fluid of Yucca aloifolia L. and glucoseand fructose in that of Oenothera adrummondii Hook. In in vitroexperiments with Y. aloifolia pollen, high germination percentageswere obtained in artificial media containing glucose or sucrose.Fructose, which is present in the stigmatic fluid of the Yuccasp. resulted in high in vitro pollen germination only when borateand calcium were added to the medium. Presence of bound sugarsis indicated in the stigmatic secretion of Citrus aurantiumL. and pollen of the single plant tested germinated at a lowpercentage in artificial sugar media. No sugars were detectedin the stigmatic fluids of Hemerocallis fulva L. and Zea maysL. and in these two species in vitro pollen germination in sugarymedia was negligible or absent. The pollen grains of all five species contain sucrose and thoseof Oenothera and Citrus also reducing sugars.  相似文献   

19.
Cell and chloroplast structural changes in palisade cells from mature leaves of Brassica napus L. cv. Paroll were quantified following exposure of plants to enhanced ultraviolet-B (280–320 nm; 13 kJ m?2 day?1 biologically effective UV-B) radiation at two different levels of photosynthetically active radiation (PAR, 400–700 nm; 200 and 700 μmol m?2 s?1). Short-term changes in leaf ultrastructure after 30 min and longer term changes after one day and one week were analyzed using stereological techniques incorporating light and electron microscopy and mathematical reconstruction of a mean cell for each sample. Ultraviolet-B together with either relatively high or low PAR resulted in cell structural changes resembling those typical of plants under shade conditions, with the most marked response occurring after 30 min of UV-B radiation. The ultrastructural changes at the cellular level were generally similar in both the relatively high and low PAR plus UV-B radiation treatments. The surface areas of all three thylakoid types, the appressed, non-appressed and margin thylakoids increased in the palisade tissue under supplemental UV-B irradiation. Although the appressed and non-appressed thylakoids increased in surface area, they did not increase equally, leaving open the possibility that the two thylakoid types have independent regulatory systems or different sensitivity to UV-B radiation. Increased thylakoid packing (mm2 thylakoid membrane per mm2 leaf surface) in UV-B-exposed plants may increase the statistical probability of photon interception. An increased level of UV-absorbing pigments after one week of supplemental UV-B radiation did not prevent or significantly ameliorate UV effects. Our data supported the assumption that UV-B radiation may have a regulatory role besides damaging effects and that an increased UV-B environment will likely increase this regulatory influence of UV-B radiation.  相似文献   

20.
Nuclear DNA content in mature pollen was measured with a flowcytometer Pollen of Lilium longiflorum, Dendranthema grandiflora(syn Chrysanthemum monfolium) and Zea mays was chopped and stainedwith the DNA fluorochrome DAPI DNA levels, expressed as arbitraryC values, were compared with those of nuclei isolated from leafor root material of the same plants In mature tricellulate pollen the generative cell is dividedafter second pollen mitosis into two sperm cells Tricellulatepollen from maize and chrysanthemum gave rise to one large 1Cpeak and, only in the case of chrysanthemum, a much smallerone at the 2C level These results suggest that the haploid nucleiof the vegetative as well as both sperm cells in tricellulatepollen are arrested in the G1 stage of nuclear division Thesmall 2C peak in the case of chrysanthemum probably arose froma fraction of pollen with the sporophytic chromosome number(2n pollen) In contrast to this, mature bicellulate lily pollengave rise to two identical peaks at the 1C and the 2C levelFrom this result it was concluded that in bicellulate pollen,the 1C peak is caused by the signal of the haploid vegetativenucleus arrested in the G1 stage of nuclear division, whereasthe 2C peak originates from the haploid generative nucleus whichhas already undergone DNA synthesis and is arrested in G2 Lilium longiflorumThunb, lily, Dendranthema grandiflora Tzelev (syn Chrysanthemum morifolium Ramat ), chrysanthemum, Zea maysL, maize, male gametophytic cells, vegetative cells, generative cells, sperm cells, unreduced pollen, sporophytic cells, relative nuclear DNA contents, replication stage  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号