共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The genome of Staphylococcus aureus is constantly in a state of flux, acquiring genes that enable the bacterium to maintain resistance in the face of antibiotic pressure. The acquisition of the mecA gene from an unknown origin imparted S. aureus with broad resistance to beta-lactam antibiotics, with the resultant strain designated as methicillin-resistant S. aureus (MRSA). Epidemiological and genetic evidence suggests that the gene encoding PBP 2a of MRSA might have originated from Staphylococcus sciuri, an animal pathogen, where it exists as a silent gene of unknown function. We synthesized, cloned, and expressed the mecA gene of S. sciuri in Escherichia coli, and the protein product was purified to homogeneity. Biochemical characterization and comparison of the protein to PBP 2a of S. aureus revealed them to be highly similar. These characteristics start with sequence similarity but extend to biochemical behavior in inhibition by beta-lactam antibiotics, to the existence of an allosteric site for binding of bacterial peptidoglycan, to the issues of the sheltered active site, and to the need for conformational change in making the active site accessible to the substrate and the inhibitors. Altogether, the evidence strongly argues that the kinship between the two proteins is deep-rooted on the basis of many biochemical attributes quantified in this study. 相似文献
4.
Transcription of the gene mediating methicillin resistance in Staphylococcus aureus (mecA) is corepressed but not coinduced by cognate mecA and beta-lactamase regulators. 总被引:1,自引:0,他引:1
下载免费PDF全文

Tanya K. McKinney Vijay K. Sharma William A. Craig Gordon L. Archer 《Journal of bacteriology》2001,183(23):6862-6868
5.
Severin A Tabei K Tenover F Chung M Clarke N Tomasz A 《The Journal of biological chemistry》2004,279(5):3398-3407
Recently, for the first time in the history of this bacterial species, methicillin-resistant Staphylococcus aureus (MRSA) carrying the enterococcal vanA gene complex and expressing high level resistance to vancomycin was identified in clinical specimens (CDC (2002) MMWR 51, 565-567). The purpose of our studies was to understand how vanA is expressed in the heterologous background of S. aureus and how it interacts with the mecA-based resistance mechanism, which is also present in these strains and is targeted on cell wall biosynthesis. The vanA-containing staphylococcal plasmid was transferred from the clinical vancomycin-resistant S. aureus (VRSA) strain HIP11714 (CDC (2002) MMWR 51, 565-567) to the methicillin-resistant S. aureus (MRSA) strain COL for which extensive genetic and biochemical information is available on staphylococcal cell wall biochemistry and drug resistance mechanisms. The transconjugant named COLVA showed high and homogeneous resistance to both oxacillin and vancomycin. COLVA grown in vancomycin-containing medium produced an abnormal peptidoglycan: all pentapeptides were replaced by tetrapeptides, and the peptidoglycan contained at least 22 novel muropeptide species that frequently showed a deficit or complete absence of pentaglycine branches. The UDP-MurNAc-pentapeptide, the major component of the cell wall precursor pool in vancomycin-sensitive cells was replaced by UDP-MurNAc-depsipeptide and UDP-MurNAc-tetrapeptide. Transposon inactivation of the beta-lactam resistance gene mecA caused complete loss of beta-lactam resistance but had no effect on the expression of vancomycin resistance. The two major antibiotic resistance mechanisms encoded by mecA and vanA residing in the same S. aureus appear to use different sets of enzymes for the assembly of cell walls. 相似文献
6.
Genetic Organization of the mecA Region in Methicillin-Susceptible and Methicillin-Resistant Strains of Staphylococcus sciuri
下载免费PDF全文

A homolog of the Staphylococcus aureus methicillin resistance gene mecA was recently shown to be ubiquitous in independent isolates of the animal species Staphylococcus sciuri. The mecA gene homolog and regions flanking it were cloned and sequenced from four strains of S. sciuri: strain K1 (ATCC 29062), a representative of S. sciuri subsp. sciuri; two strains (K3 and K8) representing S. sciuri subsp. rodentius; and strain K11, a representative of S. sciuri subsp. carnaticum. Strains K1 and K11 were susceptible to methicillin, while strains K3 and K8 showed heterogeneous resistance. The mecA genes of strains K1 and K11 and one of the two copies of mecA (mecA1) present in strain K3 had virtually identical DNA sequences in the mecA gene and were similar in genetic organization in the flanking regions. In contrast, the single copy of mecA in strain K8 and the second copy of mecA (mecA2) in strain K3 had mecA DNA sequences identical to that of S. aureus mecA, and the mecA region in these two strains was also similar to that of the same region in the S. aureus strain used for comparison. Interestingly, an open reading frame defining an N-terminal truncated polypeptide, NTORF101, with a high degree of homology to a DNA segment in the hypervariable region of methicillin-resistant S. aureus (and also similar to the Escherichia coli gene ugpQ) was also identified downstream of the mecA homolog of strain K11, representing S. sciuri subsp. carnaticum. The ugpQ-like gene is not present in methicillin-susceptible strains of S. aureus. The presence of such a ugpQ-like gene together with the homolog of mecA in strain K11 supports the speculation that these genetic elements may be evolutionary relatives and/or precursors of the genetic determinant of methicillin resistance in S. aureus. 相似文献
7.
Conditional mutants of Staphylococcus aureus defective in cell wall precursor synthesis 总被引:1,自引:6,他引:1
下载免费PDF全文

Temperature-sensitive (ts) mutants of Staphylococcus aureus with defective cell wall biosynthesis have been differentiated from other ts mutants by their ability to grow at the restrictive temperature (43 C) in the presence of 1 m NaCl. Under all conditions they possess normal colonial and cellular morphology at the level of resolution of the light microscope and are, therefore, not protoplasts. However, differences between mutant and wild-type cells can be seen by scanning electron microscopy. Many of the mutants contained concentrations of nucleotide precursors of peptidoglycan synthesis in excess of those present in wild-type cells, at both 30 and 43 C. The types of peptidoglycan precursors accumulated by six of the mutants have been determined, and specific enzymatic defects in three of these have been identified. 相似文献
8.
Characterization of Staphylococcus aureus plasmids introduced by transformation into Bacillus subtilis. 总被引:56,自引:91,他引:56
下载免费PDF全文

Covalently closed circular DNA from five Staphylococcus aureus plasmids has been introduced into Bacillus subtilis. Four of these plasmids (pUB110, pCM194, pSA2100, and pSA0501) have been selected for further study. These plasmids replicate as multicopy autonomous replicons in both Rec+ and Rec- B. subtilis strains. They may be transduced between B. subtilis strains or transformed at a frequency of 10(4) to 10(5) transformants per microgram of DNA. The molecular weights of these plasmids were estimated, and restriction endonuclease cleavage site maps are presented. Evidence is given that pSA2100, an in vivo recombinant of pSA0501 and pCM194 (S. Iord?nescu, J. Bacteriol. 124:597-601, 1975), arose by a fusion of the latter plasmids, possibly by insertion of one element into another as a translocatable element. Genetic information from three other S. aureus plasmids (pK545, pSH2, and pUB101) has also been introduced into B. subtilis, although no covalently closed circular plasmid DNA was recovered. 相似文献
9.
10.
Francius G Domenech O Mingeot-Leclercq MP Dufrêne YF 《Journal of bacteriology》2008,190(24):7904-7909
The advent of Staphylococcus aureus strains that are resistant to virtually all antibiotics has increased the need for new antistaphylococcal agents. An example of such a potential therapeutic is lysostaphin, an enzyme that specifically cleaves the S. aureus peptidoglycan, thereby lysing the bacteria. Here we tracked over time the structural and physical dynamics of single S. aureus cells exposed to lysostaphin, using atomic force microscopy. Topographic images of native cells revealed a smooth surface morphology decorated with concentric rings attributed to newly formed peptidoglycan. Time-lapse images collected following addition of lysostaphin revealed major structural changes in the form of cell swelling, splitting of the septum, and creation of nanoscale perforations. Notably, treatment of the cells with lysostaphin was also found to decrease the bacterial spring constant and the cell wall stiffness, demonstrating that structural changes were correlated with major differences in cell wall nanomechanical properties. We interpret these modifications as resulting from the digestion of peptidoglycan by lysostaphin, eventually leading to the formation of osmotically fragile cells. This study provides new insight into the lytic activity of lysostaphin and offers promising prospects for the study of new antistaphylococcal agents. 相似文献
11.
A close homologue of the acquired Staphylococcus aureus mecA gene is present as a native gene in Staphylococcus sciuri. We determined the patterns of penicillin-binding proteins (PBPs) and the peptidoglycan compositions of several S. sciuri strains to explore the functions of this mecA homologue, named pbpD, in its native S. sciuri environment. The protein product of pbpD was identified as PBP4 with a molecular mass of 84 kDa, one of the six PBPs present in representatives of each of three subspecies of S. sciuri examined. PBP4 had a low affinity for nafcillin, reacted with a monoclonal antibody raised against S. aureus PBP2A, and was greatly overproduced in oxacillin-resistant clinical isolate S. sciuri SS37 and to a lesser extent in resistant laboratory mutant K1M200. An additional PBP inducible by oxacillin and corresponding to S. aureus PBP2A was identified in another oxacillin-resistant clinical isolate, S. sciuri K3, which harbors an S. aureus copy of mecA. Oxacillin resistance depended on the overtranscribed S. sciuri pbpD gene in strains SS37 and K1M200, while the resistance of strain K3 depended on the S. aureus copy of mecA. Our data provide evidence that both S. aureus mecA and S. sciuri pbpD can function as resistance determinants in either an S. aureus or an S. sciuri background and that the protein products of these genes, S. aureus PBP2A and S. sciuri PBP4, can participate in the biosynthesis of peptidoglycan, the muropeptide composition of which depends on the bacterium “hosting” the resistance gene. 相似文献
12.
Structure of the Staphylococcus aureus cell wall determined by the freeze-substitution method. 总被引:5,自引:4,他引:5
下载免费PDF全文

The fine structure of the Staphylococcus aureus cell wall was determined by electron microscopy with the new technique of rapid freezing and substitution fixation. The surface of the cell wall was covered with a fuzzy coat which consisted of fine fibers or an electron-dense mass. Morphological examination of the cell wall, which was treated sequentially with sodium dodecyl sulfate, trypsin, and trichloroacetic acid, revealed that this coat was partially removed by trypsin digestion and was completely removed by trichloroacetic acid extraction but was not affected by sodium dodecyl sulfate treatment, suggesting that the fuzzy coat consists mostly of a complex of teichoic acids and proteins. This was confirmed by the application of the concanavalin A-ferritin technique for teichoic acid and antiferritin immunoglobulin G technique for protein A. 相似文献
13.
14.
15.
16.
The site of inhibition of cell wall synthesis by 3-amino-3-deoxy-D-glucose in Staphylococcus aureus.
The inhibition of growth and cell wall synthesis by 3-amino-3-deoxy-D-glucose (3-AG), which is known to be one of the constituents of the kanamycin molecule and a metabolite of Bacillus sp., was almost completely overcome by glucosamine and N-acetylglucosamine in Staphylococcus aureus but scarcely affected by D-glucose and D-fructose. The antibiotic did not inhibit the incorporation of [14C]glucosamine and [3H]N-acetylglucosamine into the acid-insoluble fraction, but rather enhanced the incorporation of [14C]glucosamine. On the other hand, it inhibited the incorporation of D-[14C]fructose into the cell wall fraction but hardly affected the incorporation of D-[14C]fructose into the acid-insoluble fraction in the presence of pencillin G. Based on these results, it is suggested that the site of primary action of 3-AG is the formation of glucosamine-6-phosphate from D-fructose-6-phosphate, which is catalyzed by glucosamine synthetase [EC 2.6.1.16]. 相似文献
17.
18.
Cegelski L Kim SJ Hing AW Studelska DR O'Connor RD Mehta AK Schaefer J 《Biochemistry》2002,41(43):13053-13058
Cross-polarization magic-angle spinning and rotational-echo double resonance 13C and 15N NMR experiments have been performed on intact cells of Staphylococcus aureus labeled with D-[1-13C]alanine and [15N]glycine or with [1-13C]glycine and L-[epsilon-15N]lysine. The cells were harvested during stationary or exponential growth conditions, the latter in media with and without the addition of vancomycin. The results of these experiments allowed the in situ determination of the relative concentrations of peptidoglycan cross-links (the number of peptide-stem D-alanines covalently linked to a pentaglycyl bridge) and bridge-links (the number of peptide-stem lysines covalently linked to a pentaglycyl bridge). The concentration of cross-links remained constant in the presence of vancomycin, whereas the number of bridge-links decreased. These changes suggest that vancomycin (at therapeutic levels) interrupts peptidoglycan synthesis in S. aureus by interference with transglycosylation. 相似文献
19.
20.
Hydrolysis of Staphylococcus aureus 209 P cell wall peptidoglycan was accompanied by the liberation of 1.3 mol of C-terminal and 1.2 mol of N-terminal glycine per mole of Glu as well as of 0.5 mol of N-terminal and 0.3 mol of C-terminal alanine. Gel chromatography on Sephadex G-25, ion-exchange chromatography on QAE-Sephadex A-50 and paper electrophoresis of S. aureus peptidoglycan hydrolysates gave seven homogeneous fractions; these fractions were structurally defined. Lysoamidase hydrolyzed bonds Mur-Ala, Gly-Gly and Mur-GlcN in the peptidoglycan molecule. Hydrolysis of glycan chains was accompanied by the formation of large fragments, (GlcN-Mur)9 and (GlcN-Mur)28. The lytic effect of lysoamidase on S. aureus peptidoglycan is coupled with bacteriolytic enzymes of lysoamidase: acetmuramyl amidase, glycyl--glycine endopeptidase and acetyl--muramidase. 相似文献