首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Functional reconstitution of prokaryote and eukaryote membrane proteins   总被引:7,自引:0,他引:7  
A new strategy for the functional reconstitution of membrane proteins is described. This approach introduces a new class of protein stabilizing agents--osmolytes--whose presence at high concentration (10-20%) during detergent solubilization prevents the inactivations that normally occur when proteins are extracted from natural membranes. Osmolytes that act in this way include compounds such as glycerol and higher polyols (erythritol, xylitol, sorbitol), sugars (glucose, trehalose), and certain amino acids (glycine, proline, betaine). The beneficial effects of osmolytes are documented by reconstitution of a variety of prokaryote and eukaryote membrane proteins, including several proton- and calcium-motive ATPases, cation- and anion-linked solute carriers (symport and antiport), and a membrane-bound hydrolase from endoplasmic reticulum. In all cases, the presence of 20% glycerol or other osmolyte during detergent solubilization led to 10-fold or more increased specific activity in proteoliposomes. These positive effects did not depend on use of any specific detergent for protein solubilization, nor on any particular method of reconstitution, but for convenience most of the work reported here has used octylglucoside as the solubilizing agent, followed by detergent-dilution to form proteoliposomes. The overall approach outlined by these experiments is simple and flexible. It is now feasible to use reconstitution as an analytical tool to study the biochemical and physiological properties of membrane proteins.  相似文献   

2.
HopE is one of the smallest members of a family of 31 outer membrane proteins in Helicobacter pylori and has been shown to function as a porin. In this study it was cloned into Escherichia coli where it was expressed in the outer membrane, as confirmed by indirect immunofluorescence using HopE-specific antibodies. HopE purified from E. coli reconstituted channels in planar bilayer membranes that were the same size as those formed by HopE purified from H. pylori. A model of the membrane topology of HopE was constructed and indicated that this protein formed a beta-barrel with 16 transmembrane amphipathic beta-strands. The accuracy of this model was tested by linker insertion mutagenesis, assuming that, like other porins, amino acid insertions were not tolerated in the transmembrane beta-strands but were tolerated in the adjoining loop regions. Generally, the results obtained with a series of 12 insertions of the sequence RSKDV and two substitutions were consistent with the topological model. The preponderance of amino acids that were conserved in the extended family of HopE paralogs were predicted to be within the membrane and comprised 45% of all residues in the membrane.  相似文献   

3.
The TorD family of specific chaperones is divided into four subfamilies dedicated to molybdoenzyme biogenesis and a fifth one, exemplified by YcdY of Escherichia coli, for which no defined partner has been identified so far. We propose that YcdY is the chaperone of YcdX, a zinc protein involved in the swarming motility process of E. coli, since YcdY interacts with YcdX and increases its activity in vitro.  相似文献   

4.
Type 3 secretion systems (T3SSs) are critical for the virulence of numerous deadly Gram-negative pathogens. T3SS translocator proteins are required for effector proteins to traverse the host cell membrane and perturb cell function. Translocator proteins include two hydrophobic proteins, represented in enteropathogenic Escherichia coli (EPEC) by EspB and EspD, which are thought to interact and form a pore in the host membrane. Here we adapted a sequence motif recognized by a host kinase to demonstrate that residues on the carboxyl-terminal side of the EspB transmembrane domain are localized to the host cell cytoplasm. Using functional internal polyhistidine tags, we confirm an interaction between EspD and EspB, and we demonstrate, for the first time, an interaction between EspD and the hydrophilic translocator protein EspA. Using a panel of espB insertion mutations, we describe two regions on either side of a putative transmembrane domain that are required for the binding of EspB to EspD. Finally, we demonstrate that EspB variants incapable of binding EspD fail to adopt the proper host cell membrane topology. These results provide new insights into interactions between translocator proteins critical for virulence.  相似文献   

5.
6.
The RecB subunit of the Escherichia coli RecBCD enzyme has both helicase and nuclease activities. The helicase function was localized to an N-terminal domain, whereas the nuclease activity was found in a C-terminal domain. Recent analysis has uncovered a group of proteins that have weak amino acid sequence similarity to the RecB nuclease domain and that are proposed to constitute a family of related proteins (Aravind, L., Walker, D. R., and Koonin, E. V. (1999) Nucleic Acids Res. 27, 1223-1242). One is the E. coli RecE protein (exonuclease VIII), an ATP-independent exonuclease that degrades the 5'-terminated strand of double-stranded DNA. We have made mutations in several residues of RecE that align with the critical residues of RecB, and we find that the mutations reduce or abolish the nuclease activity of RecE but do not affect the enzyme binding to linear double-stranded DNA. Proteolysis experiments with subtilisin show that a stable 34-kilodalton C-terminal domain that contains these critical residues has nuclease activity, whereas no stable proteolytic fragments accumulate from the N-terminal portion of RecE. These results show that RecE has a nuclease domain and active site that are similar to RecB, despite the very weak sequence similarity between the two proteins. These similarities support the hypothesis that the nuclease domains of the two proteins are evolutionarily related.  相似文献   

7.
8.
9.
10.
11.
In Escherichia coli, the binding protein-dependent transport system for maltose and maltodextrins is composed of five proteins — LamB, MaIE, MaIF, MaIG and MaIK — located in the three layers of the bacterial envelope. Proteins MaIF and MaIG are hydrophobic inner membrane components mediating the energy-dependent translocation of substrates into the cytoplasm. In this paper, we analyse the topology of the MaIG protein by using methods based on the properties of fusions between maIG and‘phoA, a truncated gene encoding alkaline phosphatase lacking its translation initiation and exportation signals. Fusions were obtained by using either phage λTnphoA or by constructing in vitro fusions located randomly within the maIG gene. The deduced topological model suggests that MaIG spans the membrane six times and has its amino- and carboxy-termini in the cytoplasm. These results will be helpful for the interpretation of the phenotypes of mutants in maIG.  相似文献   

12.
The ftsH gene is essential for cell viability in Escherichia coli. We cloned and sequenced the wild-type ftsH gene and the temperature-sensitive ftsH1(Ts) gene. It was suggested that FtsH protein was an integral membrane protein of 70.7 kDa (644 amino acid residues) with a putative ATP-binding domain. The ftsH1(Ts) gene was found to have two base substitutions within the coding sequence corresponding to the amino acid substitutions Glu-463 by Lys and Pro-587 by Ala. Homology search revealed that an approximately 200-amino-acid domain, including the putative ATP-binding sequence, is highly homologous (35 to 48% identical) to the domain found in members of a novel, eukaryotic family of putative ATPases, e.g., Sec18p, Pas1p, CDC48p, and TBP-1, which function in protein transport pathways, peroxisome assembly, cell division cycle, and gene expression, respectively. Possible implications of these observations are discussed.  相似文献   

13.
Summary Four pleiotropic transport mutants of Escherichia coli B/r with decreased affinity for the uptake of most nutrients were found to lack a major outer membrane protein of 36,500 daltons (porin) previously shown to produce transmembrane diffusion channels in in vitro reconstitution experiments. Consequent decrease in outer membrane permeability was confirmed by measuring the transmembrane diffusion rate of 6-aminopenicillanic acid. Quantitative considerations on the porin-dependent permeability of the outer membrane show that (a) there may be very large differences in the actual rates of penetration, even among the permeable substances and (b) the numbers of porin molecules present in wild type cells is several orders of magnitude higher than that necessary for the uptake of rapidly diffusing substrates such as glocose from ordinary culture media. The absence of porin and the pleiotropic transport defect were always contransduced, and the mutation was mapped at 73.7 min between aroB and malT by P1 transduction. When revertants able to grow on low concentrations of lactose were selected, in addition to true revertants suppressor strains with increased amounts of non-porin membrane proteins were isolated.This paper corresponds to paper XVI of the series dealing with the bacterial outer membrane from the laboratory of H.N. The preceding paper in the series is Nikaido, Bavoil, and Hirota, J. Bacteriol., in press  相似文献   

14.
We previously reported that a region of the Escherichia coli chromosome at 18 min increased E sigma E activity when cloned in multicopy (J. Mecsas, P. E. Rouviere, J. W. Erickson, T. J. Donohue, and C. A. Gross, Genes Dev. 7:2618-2628, 1993). In the present report, we identify and characterize the gene responsible for the increase in E sigma E activity. This gene is in a monocistronic operon with two promoters and a rho-independent terminator. Sequence analysis of this gene indicated that it encodes an outer membrane protein which is 83% identical to OmpX in Enterobacter cloacae, leading us to name this gene ompX. There are four other proteins that are homologous to OmpX. Several of these proteins, Ail of Yersinia enterocolitica and Rck and PagC of Salmonella typhimurium, have properties that allow bacteria to adhere to mammalian cells, survive exposure to human serum, and/or survive within macrophages. We therefore characterized strains deleted for ompX for their growth phenotypes, E sigma E activity, serum resistance, and adherence to mammalian cells. No differences in growth rates, serum resistance, or adherence to mammalian cells were observed; however, E sigma E activity was dependent on expression of OmpX in certain strain backgrounds.  相似文献   

15.
This study aimed to elucidate determinants of heat resistance in Escherichia coli by comparing the composition of membrane lipids, as well as gene expression, in heat-resistant E. coli AW1.7 and heat-sensitive E. coli GGG10 with or without heat shock. The survival of E. coli AW1.7 at late exponential phase was 100-fold higher than that of E. coli GGG10 after incubation at 60°C for 15 min. The cytoplasmic membrane of E. coli AW1.7 contained a higher proportion of saturated and cyclopropane fatty acids than that of E. coli GGG10. Microarray hybridization of cDNA libraries obtained from exponentially growing or heat-shocked cultures was performed to compare gene expression in these two strains. Expression of selected genes from different functional groups was quantified by quantitative PCR. DnaK and 30S and 50S ribosomal subunits were overexpressed in E. coli GGG10 relative to E. coli AW1.7 upon heat shock at 50°C, indicating improved ribosome stability. The outer membrane porin NmpC and several transport proteins were overexpressed in exponentially growing E. coli AW1.7. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of membrane properties confirmed that NmpC is present in the outer membrane of E. coli AW1.7 but not in that of E. coli GGG10. Expression of NmpC in E. coli GGG10 increased survival at 60°C 50- to 1,000-fold. In conclusion, the outer membrane porin NmpC contributes to heat resistance in E. coli AW1.7, but the heat resistance of this strain is dependent on additional factors, which likely include the composition of membrane lipids, as well as solute transport proteins.  相似文献   

16.
W D Thomas  Jr  S P Wagner    R A Welch 《Journal of bacteriology》1992,174(21):6771-6779
The hydrophobic-rich NH2-terminal 34 amino acids of a tetracycline resistance determinant (TetC) were fused to the COOH-terminal 240 amino acids of the hemolysin transporter, HlyB, which contains a putative ATP-binding domain. This hybrid protein replaced the NH2-terminal 467-amino-acid portion of HlyB and could still export the Escherichia coli hemolysin (HlyA). Export by the hybrid protein was approximately 10% as efficient as transport by HlyB. Extracellular secretion of HlyA by the TetC-HlyB hybrid required HlyD and TolC. The extracellular and periplasmic levels of beta-galactosidase and beta-lactamase in strains that produced the hybrid were similar to the levels in controls. Thus, HlyA transport was specific and did not appear to be due to leakage of cytoplasmic contents alone. Antibodies raised against the COOH terminus of HlyB reacted with the hybrid protein, as well as HlyB. HlyB was associated with membrane fractions, while the hybrid protein was found mainly in soluble extracts. Cellular fractionation studies were performed to determine whether transport by the hybrid occurred simultaneously across both membranes like wild-type HlyA secretion. However, we found that HlyA was present in the periplasm of strains that expressed the TetC-HlyB hybrid. HlyA remained in the periplasm unless the hlyD and tolC gene products were present in addition to the hybrid.  相似文献   

17.
Energy-coupled reactions of the Escherichia coli outer membrane transport proteins BtuB and Cir require the tonB product. Some point mutations in a region of btuB and cir that is highly conserved in TonB-dependent transport proteins led to loss of TonB-coupled uptake of vitamin B12 and colicin Ia, whereas binding was unaffected. Most other point mutations in this region had no detectable effect on transport activity. Mutations in tonB that suppressed the transport defect phenotype of these btuB mutations were isolated. All carried changes of glutamine 165 to leucine, lysine, or proline. The various tonB mutations differed markedly in their suppression activities on different btuB or cir mutations. This allele specificity of suppression indicates that TonB interacts directly with the outer membrane transport proteins in a manner that recognizes the local conformation but not specific side chains within this conserved region. An effect of the context of the remainder of the protein was seen, since the same substitution (valine 10----glycine) in btuB and cir responded differently to the suppressors. This finding supports the proposal that TonB interacts with more of the transport proteins than the first conserved domain alone.  相似文献   

18.
We have carried out a genetic analysis of Escherichia coli HlyB using in vitro(hydroxylamine) mutagenesis and regionally directed mutagenesis. From random mutagenesis, three mutants, temperature sensitive (Ts) for secretion, were isolated and the DNA sequenced: Glyl0Arg close to the N-terminus, Gly408Asp in a highly conserved small periplasmic loop region PIV, and Pro624Leu in another highly conserved region, within the ATP-binding region. Despite the Ts character of the Gly10 substitution, a derivative of HlyB, in which the first 25 amino acids were replaced by 21 amino acids of the λ Cro protein, was still active in secretion of HlyA. This indicates that this region of HlyB is dispensable for function. Interestingly, the Gly408Asp substitution was toxic at high temperature and this is the first reported example of a conditional lethal mutation in HlyB. We have isolated 4 additional mutations in PIV by directed mutagenesis, giving a total of 5 out of 12 residues substituted in this region, with 4 mutations rendering HlyB defective in secretion. The Pro624 mutation, close to the Walker B-site for ATP binding in the cytoplasmic domain is identical to a mutation in HisP that leads to uncoupling of ATP hydrolysis from the transport of histidine. The expression of a fully functional haemolysin translocation system comprising HlyC,A,B and D increases the sensitivity of E. coli to vancomycin 2.5-fold, compared with cells expressing HlyB and HlyD alone. Thus, active translocation of HlyA renders the cells hyperpermeable to the drug. Mutations in hlyB affecting secretion could be assigned to two classes: those that restore the level of vancomycin resistance to that of E. coli not secreting HlyA and those that still confer hypersensitivity to the drug in the presence of HlyA. We propose that mutations that promote vancomycin resistance will include mutations affecting initial recognition of the secretion signal and therefore activation of a functional transport channel. Mutations that do not alter HlyA-dependent vancomycin sensitivity may, in contrast, affect later steps in the transport process.  相似文献   

19.
The nucleotide sequence of tnaB of the tryptophanase operon of Escherichia coli is presented. TnaB is a tryptophan-specific permease that is homologous to Mtr, a second tryptophan-specific permease, and to TyrP, a tyrosine-specific permease. Each member of this family appears to contain 11 membrane-spanning domains.  相似文献   

20.
We used the cloned tolC gene to identify, locate, and purify its gene product. Strains carrying pPR13 or pPR42 overproduced a cell envelope protein (molecular weight, 52,000). A protein of the same molecular weight was identified in radioactively labeled minicells carrying pPR13; this protein was absent in pPR11-carrying minicells. This protein was the tolC gene product, since pPR11 differed from pPR13 in having a Tn10 insertion in the tolC gene. The protein seen in cell envelopes of whole cells (TolC protein) was found to exist in an aggregated state in the outer membrane; under conditions in which OmpC and OmpF were peptidoglycan associated, TolC protein was not likewise associated. Using these properties, we purified the TolC protein and determined the sequence of twelve amino acids from the amino-terminal end. The location of the TolC protein in the outer membrane was consistent with the proposed function for the tolC gene product as a processing protein in the outer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号