首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A common folding mechanism in the cytochrome c family   总被引:2,自引:0,他引:2  
Of the globular proteins, cytochrome c (cyt c) has been used extensively as a model system for folding studies. Here we analyse the folding pathway of different cyt c proteins from prokaryotes and eukaryotes, and attempt to single out general correlations between structural determinants and folding mechanisms. Recent studies provide evidence that the folding pathway of several cyt c proteins involves the formation of a partially structured intermediate. Using state-of-the-art kinetic analysis on published data, we show that such a folding intermediate is an obligatory on-pathway species that might represent either a defined local minimum in the reaction coordinate or an unstable high-energy state. Available data also indicate that some essential structural features of the folding intermediate and transition states are highly conserved across this protein family. Thus, cyt c proteins share a consensus folding mechanism in spite of large differences in physico-chemical properties and thermodynamic stability. This novel outlook on the folding of cyt c can shed light on much published data and might offer a general scheme by which to plan new experiments.  相似文献   

2.
Fast folding of cytochrome c.   总被引:5,自引:5,他引:0       下载免费PDF全文
Native iso-2 cytochrome c contains two residues (His 18, Met 80) coordinated to the covalently attached heme. On unfolding of iso-2, the His 18 ligand remains coordinated to the heme iron, whereas Met 80 is displaced by a non-native heme ligand, His 33 or His 39. To test whether non-native His-heme ligation slows folding, we have constructed a double mutant protein in which the non-native ligands are replaced by asparagine and lysine, respectively (H33N,H39K iso-2). The double mutant protein, which cannot form non-native histidine-heme coordinate bonds, folds significantly faster than normal iso-2 cytochrome c: gamma = 14-26 ms for H33N,H39K iso-2 versus gamma = 200-1,100 ms for iso-2. These results with iso-2 cytochrome c strongly support the hypothesis that non-native His-heme ligation results in a kinetic barrier to fast folding of cytochrome c. Assuming that the maximum rate of a conformational search is about 10(11) s-1, the results imply that the direct folding pathway of iso-2 involves passage through on the order of 10(9) or fewer partially folded conformers.  相似文献   

3.
Kinetics of intermolecular interaction between reduced cytochrome c (Cyt c) protein and solvent during the protein-refolding process is studied by monitoring the time dependence of apparent diffusion coefficient (D) using the pulsed-laser-induced transient grating technique. The refolding was triggered by photoinduced reduction of unfolded Fe(III) Cyt c in 3.5 M guanidine hydrochloride (GdnHCl) solution and the change in the diffusion coefficient was monitored in time domain. The relationship between D and the protein conformations under equilibrium condition were investigated at various GdnHCl concentrations using a photolabeling reagent. The time dependence of the observed transient grating signal was analyzed using these data and two models: a continuous change model of the intermolecular interaction and a two-state model. It was found that the TG signals in various time ranges can be consistently reproduced well by the two-state model. The dynamics of D is expressed well by a single exponential function with a rate constant of 22 +/- 7 s(-1) in a whole time range. The folding process of Cyt c is discussed based on these observations.  相似文献   

4.
5.
Understanding the role of partially folded intermediate states in the folding mechanism of a protein is a crucial yet very difficult problem. We exploited a kinetic approach to demonstrate that a transient intermediate of a thermostable member of the widely studied cytochrome c family (cytochrome c552 from Thermus thermophilus) is indeed on-pathway. This is the first clear indication of an obligatory intermediate in the folding mechanism of a cytochrome c. The fluorescence properties of this intermediate demonstrate that the relative position of the heme and of the only tryptophan residue cannot correspond to their native orientation. Based on an analysis of the three-dimensional structure of cytochrome c552, we propose an interpretation of the data which explains the residual fluorescence of the intermediate and is consistent with the established role played by some conserved interhelical interactions in the folding of other members of this family. A limited set of topologically conserved contacts may guide the folding of evolutionary distant cytochromes c through the same partially structured state, which, however, can play different kinetic roles, acting either as an intermediate or a transition state.  相似文献   

6.
The folding-unfolding transition of Fe(III) cytochrome c has been studied with the new technique of multifrequency calorimetry. Multifrequency calorimetry is aimed at measuring directly the dynamics of the energetic events that take place during a thermally induced transition by measuring the frequency dispersion of the heat capacity. This is done by modulating the folding/unfolding equilibrium using a variable frequency, small oscillatory temperature perturbation (approximately 0.05-0.1 degrees C) centered at the equilibrium temperature of the system. Fe(III) cytochrome c at pH 4 undergoes a fully reversible folding/unfolding transition centered at 67.7 degrees C and characterized by an enthalpy change of 81 kcal/mol and heat capacity difference between unfolded and folded states of 0.9 kcal/K*mol. By measuring the temperature dependence of the frequency dispersion of the heat capacity in the frequency range of 0.1-1 Hz it has been possible to examine the time regime of the enthalpic events associated with the transition. The multifrequency calorimetry results indicate that approximately 85% of the excess heat capacity associated with the folding/unfolding transition relaxes with a single relaxation time of 326 +/- 68 ms at the midpoint of the transition region. This is the first time that the time regime in which heat is absorbed and released during protein folding/unfolding has been measured.  相似文献   

7.
8.
Previous results indicate that the folding pathways of cytochrome c and other proteins progressively build the target native protein in a predetermined stepwise manner by the sequential formation and association of native-like foldon units. The present work used native state hydrogen exchange methods to investigate a structural anomaly in cytochrome c results that suggested the concerted folding of two segments that have little structural relationship in the native protein. The results show that the two segments, an 18-residue omega loop and a 10-residue helix, are able to unfold and refold independently, which allows a branch point in the folding pathway. The pathway that emerges assembles native-like foldon units in a linear sequential manner when prior native-like structure can template a single subsequent foldon, and optional pathway branching is seen when prior structure is able to support the folding of two different foldons.  相似文献   

9.
The kinetics of glucose repression of cytochrome c synthesis was measured by a radioimmune assay. When 5 or 10% glucose was added to a derepressed culture, the rate of cytochrome c synthesis was reduced to the repressed level with a half-life of 2 min. The addition of 1 or 0.5% glucose repressed the rate of cytochrome c synthesis to the same level as high glucose concentrations but with a longer half-life of 3 min. Glucose repression had no effect on the stability or function of the cytochrome c protein. Cellular levels of active cytochrome c mRNA during glucose repression were measured by translation of total cellular polyadenylic acid-containing RNA and immunoprecipitation cytochrome c from the translation products. The results of these measurements indicate that glucose represses the rate of cytochrome c synthesis through a reduction in the level of translatable cytochrome c mRNA.  相似文献   

10.
T Sakurai 《Biochemistry》1992,31(40):9844-9847
Rate constants have been determined for the electron-transfer reactions between reduced horse heart cytochrome c and resting Rhus vernicifera laccase as a function of pH, ionic strength, and temperature. The second-order rate constant for the oxidation of reduced cytochrome c was determined to be k = 125 M-1 s-1 at 25 degrees C in 0.2 M phosphate buffer at pH 6.0 with the activation parameters delta H++ = 16.2 kJ mol-1 and delta S++ = 28.9 J mol-1 K-1. The rate constants increased with decreasing buffer concentration, indicating that electron transfer from cytochrome c to laccase is favored by the local electrostatic interaction (ZAZB = -0.9 at pH 6 and -1.3 at pH 4.8) between the basic proteins with positive net charges. From the increase of the rate of electron transfer with decreasing pH, one of the driving forces of the reaction was suggested to be the difference in the redox potentials between the type 1 copper in laccase and the central iron in cytochrome c. Further, on addition of one hexametaphosphate anion per cytochrome c molecule, the rate of the electron transfer was increased, probably because the association of both proteins became more favorable.  相似文献   

11.
12.
Two models have been proposed to describe the folding pathways of proteins. The framework model assumes the initial formation of the secondary structures whereas the hydrophobic collapse model supposes their formation after the collapse of backbone structures. To differentiate between these models for real proteins, we have developed a novel CD spectrometer that enables us to observe the submillisecond time frame of protein folding and have characterized the timing of secondary structure formation in the folding process of cytochrome c (cyt c). We found that approximately 20% of the native helical content was organized in the first phase of folding, which is completed within milliseconds. Furthermore, we suggest the presence of a second intermediate, which has alpha-helical content resembling that of the molten globule state. Our results indicate that many of the alpha-helices are organized after collapse in the folding mechanism of cyt c.  相似文献   

13.
Cárdenas AE  Elber R 《Proteins》2003,51(2):245-257
The vast range of time scales (from nanoseconds to seconds) during protein folding is a challenge for experiments and computations. To make concrete predictions on folding mechanisms, atomically detailed simulations of protein folding, using potentials derived from chemical physics principles, are desired. However, due to their computational complexity, straightforward molecular dynamics simulations of protein folding are impossible today. An alternative algorithm is used that makes it possible to compute approximate atomically detailed long time trajectories (the Stochastic Difference Equation in Length). This algorithm is used to compute 26 atomically detailed folding trajectories of cytochrome c (a millisecond process). The early collapse of the protein chain (with marginal formation of secondary structure), and the earlier formation of the N and C helices (compare to the 60's helix) are consistent with the experiment. The existence of an energy barrier upon entry to the molten globule is examined as well. In addition to (favorable) comparison to experiments, we show that non-native contacts drive the formation of the molten globule. In contrast to popular folding models, the non-native contacts do not form off-pathway kinetic traps in cytochrome c.  相似文献   

14.
Cytochrome c, a "mobile electron carrier" of the mitochondrial respiratory chain, also occurs in detectable amounts in the cytosol, and can receive electrons from cytochromes present in endoplasmic reticulum and plasma membranes as well as from superoxide and ascorbate. The pigment was found to dissociate from mitochondrial membranes in liver and kidney when rats were subjected to heat exposure and starvation, respectively. Treating cytochrome c with hydroxylamine gives a partially deaminated product with altered redox properties; decreased stimulation of respiration by deficient mitochondria, increased reduction by superoxide, and complete loss of reducibility by plasma membranes. Mitochondria isolated from brown adipose tissue of cold-exposed rats are found to be sub-saturated with cytochrome c. The ability of cytochrome c to reactivate reduced ribonuclease is now reinterpreted as a molecular chaperone role for the hemoprotein.  相似文献   

15.
Participation of the protein ligands in the folding of cytochrome c   总被引:5,自引:0,他引:5  
J Babul  E Stellwagen 《Biochemistry》1972,11(7):1195-1200
  相似文献   

16.
Stable submolecular folding units in a non-compact form of cytochrome c.   总被引:14,自引:0,他引:14  
Studies of structure, dynamics, and stability of cytochrome c (cyt c) at low pH in a non-compact pre-molten globule state indicate that the protein contains submolecular folding units that are independently stable. In high salt, acid cyt c (pD 2.2; where D is deuterium) is nearly as compact as the native form. Nuclear magnetic resonance (n.m.r.) line broadening typical of the molten globule form is seen, indicating loosened packing and increased mobility not only for side-chains but also for the main chain. As NaCl concentration is decreased below 0.05 M, cyt c expands due to the deshielding of electrostatic repulsions, attaining a linear extent perhaps double that of the native protein (viscosity, fluorescence). In the extended form, tertiary structural hydrogen bonds are largely broken (hydrogen exchange rate), some normally buried parts of the protein are exposed to water (fluorescence), and many of the native side-chain contacts must be lost. Nevertheless, almost all of the helical content is retained (circular dichroism). The helices involve the same amino acid residues that are helical in the native state (hydrogen exchange labeling monitored by 2-dimensional n.m.r.). The equilibrium constant for helix formation at 20 degrees C (0.02 M-NaCl, pD 2.2) is about 10 (hydrogen exchange rate), even though the individual helical segments when isolated have little or no structure. Additional experiments were done to check assumptions and calibrate parameters that underlie the hydrogen exchange analysis of protein folding. These results indicate that the native-like helical segments in the expanded non-globular form of cyt c exist as part of somewhat larger submolecular folding units that possess significant equilibrium stability. Results from equilibrium and kinetic studies of protein folding support the generality of this conclusion. This view is contrary to the two-state paradigm for equilibrium folding and inconsistent with the idea that side-chain packing constraints determine folding motifs. The result suggests an extension of the thermodynamic hypothesis for protein structure to kinetic folding processes, so that the amino acid code for equilibrium and kinetic folding may be the same, and also seems pertinent to the biological evolution of contemporary protein structures.  相似文献   

17.
18.
19.
20.
Hydrogen exchange results for cytochrome c have been interpreted in terms of transient hydrogen bond-breaking reactions that include large unfolding reactions and small fluctuational distortions. The differential sensitivity of these opening reactions to denaturant, temperature, and protein stability makes it possible to distinguish the different opening reactions and to characterize their structural and thermodynamic parameters. The partially unfolded forms (PUFs) observed are few and discrete, evidently because they are produced by the reversible unfolding of the protein's several intrinsically cooperative secondary structural elements. The PUFs are robust, evidently because the structural elements do not change over a wide range of conditions. The discrete nature of the PUFs and their small number is as expected for classical folding intermediates but not for theoretically derived folding models apparently because the simplified non-protein models usually analyzed in theoretical studies encompass only a single cooperative unit rather than multiple separable units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号