首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative study of fluorescence patterns of heterochromatin in mitotic and polytene chromosomes of seven species belonging to 3 subgroups melanogaster sub-group: D. melanogaster and D. simulans; montium sub-group: D. kikkawai and D. jambulina; ananassae sub-group: D. ananassae, D. malerkotliana and D. bipectinata) of the melanogaster species group of Drosophila (Sophophora) has been made. Hoechst 33258 (H) fluorescence patterns of mitotic chromosomes reveal differences correlated to the taxonomic groupings of these species. The melanogaster sub-group species have H-bright regions on heterochromatin of all chromosomes; the montium subgroup species have H-bright regions mainly on the 4th and Y-chromosomes; in the ananassae sub-group, while D. ananassae chromosomes do not show any H-bright regions, D. malerkotliana and D. bipectinata have small H-bright segments only on their 4th chromosomes. The H-and quinacrine mustard (QM) fluorescence patterns of larval salivary gland polytene chromocentre in these species, however, do not show the same taxonomic correlation. While D. ananassae and D. kikkawai polytene nuclei lack any H-or QMbright region in the chromocentre, the remaining species have prominent H-and/or QM-bright region(s). In D. jambulina, the QM-bright regions are generally bigger than H-bright regions, while in D. malerkotliana and D. bipectinata the situation is reversed. Actinomycin D counterstaining prior to H-staining of polytene preparations of each species confirms that the H-bright region/s in the chromocentre are composed of A-T rich sequences. In vivo labelling of salivary gland polytene nuclei with 5-bromodeoxyuridine for 24 to 48 h and subsequent H-staining reveals that in all the species, the H-bright regions do not replicate in 3rd instar stage and presumably represent the non-replicating alpha heterochromatin. Significantly, in all the species (excepting D. kikkawai and D. ananassae), the size, location and the number of H-and/or QM-bright regions were seen to vary in different polytene nuclei in the same gland. It seems that the organization and the extent of under-replication of alpha heterochromatin varies in different polytene nuclei. Present studies also show that even closely related species differ in the content and organization of H-bright heterochromatin. The 81 F band at the base of 3 R in D. melanogaster, but not in D. simulans, appears to contain non-replicating H-bright sequences in addition to replicating chromatin.  相似文献   

2.

Background  

Genes with sex-biased expression often show rapid molecular evolution between species. Previous population genetic and comparative genomic studies of Drosophila melanogaster and D. simulans revealed that male-biased genes have especially high rates of adaptive evolution. To test if this is also the case for other lineages within the melanogaster group, we investigated gene expression in D. ananassae, a species that occurs in structured populations in tropical and subtropical regions. We used custom-made microarrays and published microarray data to characterize the sex-biased expression of 129 D. ananassae genes whose D. melanogaster orthologs had been classified previously as male-biased, female-biased, or unbiased in their expression and had been studied extensively at the population-genetic level. For 43 of these genes we surveyed DNA sequence polymorphism in a natural population of D. ananassae and determined divergence to the sister species D. atripex and D. phaeopleura.  相似文献   

3.
《Chronobiology international》2013,30(9):1008-1016
Light and temperature are the major environmental cycles that can synchronize circadian rhythms in a variety of organisms. Previously, we have shown that under light/dark cycles of various photoperiods, the Drosophila species ananassae exhibits unimodal activity pattern with a prominent morning activity peak in contrast with Drosophila melanogaster and Drosophila malerkotliana, which show bimodal activity pattern with morning and evening activity peaks. Here we report that circadian clocks controlling activity/rest rhythm of these two less-studied species D. malerkotliana and D. ananassae can be synchronized by temperature cycles and that even under temperature cycles D. ananassae exhibits only a pronounced morning (thermophase onset) activity peak. Although D. melanogaster and D. ananassae exhibit differences in the phase of activity/rest rhythm under temperature cycles, circadian clocks of both show similar sensitivity to warm temperature pulses. Circadian period of activity/rest rhythm of D. ananassae differs from the other two species at some moderate-range temperatures; however, in conditions that are more extreme, circadian clocks of D. melanogaster, D. malerkotliana and D. ananassae appear to be largely temperature compensated.  相似文献   

4.
We present evidence for coexistence of three differentDrosophila species by rescheduling their life history traits in a natural population using the same resource, at the same time and same place.D. ananassae has faster larval development time (DT) and faster DT(egg-fly) than other two species thus utilizing the resources at maximum at both larval and adult stages respectively. Therefore,D. ananassae skips the interspecific competition at preadult stage but suffers more from intraspecific competition. However,D. melanogaster andD. biarmipes have rescheduled their various life history traits to avoid interspecific competition. Differences of ranks tests for various life history traits suggest that except for DT(egg-pupa), the difference of ranks is highest for the combination ofD. melanogaster andD. ananassae for all other life history traits. This difference is maintained by tradeoffs between larval development time and pupal period and between pupal period and DT(egg-pupa) inD. ananassae.  相似文献   

5.
Abstract Low desiccation resistance of Drosophila ananassae reflects its rarity outside the humid tropics. However, the ability of this sensitive species to evolve under seasonally varying subtropical areas is largely unknown. D. ananassae flies are mostly lighter during the rainy season but darker and lighter flies occur in the autumn season in northern India. We tested the hypothesis whether seasonally varying alternative body color phenotypes of D. ananassae vary in their levels of environmental stress tolerances and mating behavior. Thus, we investigated D. ananassae flies collected during rainy and autumn seasons for changes in body melanization and their genetic basis, desiccation‐related traits, cold tolerance and mating propensity. On the basis of genetic crosses, we found total body color dimorphism consistent with a single gene model in both sexes of D. ananassae. A significant increase in the frequency of the dark morph was observed during the drier autumn season, and body color phenotypes showed significant deviations from Hardy‐Weinberg equilibrium, which suggests climatic selection plays a role. Resistance to desiccation as well as cold stress were two‐ to three‐fold higher in the dark body color strain as compared with the light strain. On the basis of no‐choice mating experiments, we observed significantly higher assortative matings between dark morphs under desiccation or cold stress, and between light morphs under hot or higher humidity conditions. To the best of our knowledge, this is the first report on the ecological significance of seasonally varying total body color dimorphism in a tropical species, D. ananassae.  相似文献   

6.
A 2012–13 survey on Penang Island, Malaysia, revealed the existence of both Drosophila ananassae and Drosophila parapallidosa, the latter of which carries chromosomes Y and 4 from D. ananassae and thus is of hybrid origin. We collected the flies again from the same location in 2018. The hybrid population remained present, which suggests that the D. parapallidosa of hybrid origin does not represent a mere transient population but is stable. Why do these two species coexist irrespective of gene flow? We realized that body size is generally larger in D. ananassae than in D. parapallidosa, which constitutes a new character with which to discriminate these species; previously the number of sex comb teeth was the only diagnostic trait. Character displacement was not detected, however, for those traits. We crossed these two species, which resulted in offspring that had an altered genomic constitution. The body size of D. ananassae was dominant, and the presence of chromosomes Y and 4 did not have a significant effect on body size. By contrast, the presence of chromosome 4 from D. ananassae significantly affected the number of sex comb teeth. Even flies having a genomic constitution similar to that of the Penang D. parapallidosa exhibited a number of sex comb teeth that was intermediate between the two species. We propose that the D. parapallidosa sex comb character underwent selection during evolution of the Penang Island population. Reproductive interference between the species, presumably caused by signal jamming, was detected.  相似文献   

7.
B. N. Singh 《Genetica》1996,97(3):321-329
Drosophila ananassae is a cosmopolitan and domestic species. It occupies a nuique status among the Drosophila species due to certain peculiarities in its genetic behaviour. The most unusual feature of this species is spontaneous male recombination in appreciable frequency. The present review summarises the work done on population and behaviour genetics of D. ananassae from India. Population dynamics of three cosmopolitan inversions has been studied in Indian population of D. ananassae and it is evident from the results that there is a considerable degree of genetic divergence at the level of inversion polymorphism. In general, the populations from south India show more differentiation than those from the north. These three cosmopolitan inversions, which are coextensive with the species, exhibit heterosis. Interracial hybridization does not lead to beaakdown of heterosis, which suggests that evidence for coadaptation is lacking in geographic populations of D. ananassae. Heterosis appears to be simple luxuriance rather than populational heterosis (coadaptation). Unlinked inversions occur in random associations, indicating no interchromosomal interactions. However, two inversions of the third chromosome often show strong linkage disequilibrium in laboratory populations, which is due to epistatic gene interaction and suppression of crossing-over. Genetic variations for certain allozyme polymorphism and sternoleural bristle phenotypes in Indian populations of D. ananassae have also been observed.A number of investigations have also been carried out on certain aspects of behaviour genetics of Indian D. ananassae. There is evidence for sexual isolation within D. ananassae. Significant variations in mating propensity of several isofemale strains, inversion karyotypes, the diminishing effects of certain mutations on sexual activity of males and positive response to selection for high and low mating propensity provide evidence for genetic control of sexual behaviour in D. ananassae. Males contribute more to variation and thus are more subject to intra-sexual selection than females. Evidence for rare male mating advantage has also been presented. Geographic strains of D. ananassae show variation with respect to oviposition site preference. The results of studies on pupation site preference, which is an important component of larval behaviour, suggest that larval pupation behaviour in D. ananassae is under polygenic control with a substantial amount of additive genetic variation.  相似文献   

8.
Recently, in addition to quinacrine staining, fluorochrome techniques have been developed which brilliantly stain other heterochromatic regions. Two of these staining techniques are Distamycin/DAPI (DA/DAPI) and D287/170. We stained the chromosomes of all species of great apes and 14 species of primates (48 individuals) using these three fluorochrome techniques. Only african apes and man show brilliant quinacrine staining while, man and all the great apes show brilliant DA/DAPI staining and only species belonging to the hominoidea (including the siamang) showed bright D287/170 staining. In the lower primates a medium level of DA/DAPI fluorescence was found in some species with large amount of pericentromeric heterochromatin. Brilliant DA/DAPI staining could represent a derived trait linking all great apes and humans, while D287/170 may link all hominoidea. Fluorochrome staining is believed to be correlated with some satellite DNA sequences. However, data available on the chromosome location of satellite DNAs in non-human primates were derived from buoyant density fractions resulting in cross hybridization and now are not considered reliable. Before making any correlation between fluorochrome staining and satellite DNAs in non human primates there is need of data onin situ hybridization with cloned DNA sequences on primate chromosomes. These data would help clarify the evolution and relationship of satellite DNAs and heterochromatin in primates.  相似文献   

9.
Drosophila ananassae, a cosmopolitan and domestic species, belongs to theananassae subgroup of themelanogaster species group. Female remating was observed in ten mass culture stocks of this species, which were initiated from flies collected from different geographic localities. The frequency of female remating ranges from 24% to 56% in different strains. Strains show significant variation in remating latency (days). Significant variation has also been found in all the stocks for duration of copulation between first and second matings. The duration of copulation is shorter in second mating as compared to first mating inD. ananassae.  相似文献   

10.
11.
Summary The aim of our work was to compare the mechanisms of resistance to aminopterin, inhibitor of the dihydrofolate reductase enzyme, between different Drosophila species and those described for cultured cells. Moreover we compared the systematic species divisions based on morphological traits and those based on a molecular approach. For this purpose, the effect of aminopterin on viability and wing phenotype was studied in different Drosophila species. Dihydrofolate reductase was measured in adult flies. We found an important dihydrofolate reductase activity in the melanogaster sub-group compared to the other species studies. Wing effect was observed only in this sub-group. The effects of aminopterin on the wing phenotype were very similar to the phenotype of rudimentary mutants. Both deplete the pyrimidine pool and it has been shown by the studies of the structural genes of the nucleotide pyrimidine pathway that the wing tissue is very sensitive to every pertubation of this metabolism.The D. ananassae species was found to be fully resistant at the concentrations of the inhibitor tested. No or very little dihydrofolate reductase activity was detected. The binding of the enzyme to the inhibitor was comparable to that found in the Oregon strain of D. melanogaster. The purine and pyrimidine salvage pathways were investigated and the D. ananassae species displayed an important thymidine kinase activity. The D. ananassae flies were sensitive on Sang medium compared to the Oregon flies but were able to use exogenous bases or nucleosides more efficiently. Therefore the mechanism of resistance to aminopterin in Drosophila may be different from those described for methotrexate in mammalian cultured cells, as indicated by the results obtained for D. ananassae.  相似文献   

12.
13.
Twelve Indian natural populations of Drosophila ananassae, a cosmopolitan and domestic species, were sampled and laboratory populations (mass cultures) were established from naturally impregnated females. These populations were maintained in the laboratory for some generations and were analysed chromosomally to know the frequency of different inversions. The chromosomal analysis revealed the presence of three cosmopolitan inversions. The data on the whole show that there are significant differences in the frequencies of different chromosome arrangements in these populations. Body size (wing length and thorax length) was measured in both sexes (50 females and 50 males), in all the 12 geographical populations of D. ananassae. There are statistically significant differences in wing length as well as in thorax length of both sexes among different geographical populations. Five geographical strains were crossed reciprocally and body size (wing length and thorax length) was measured in F1 and F2 progeny. The comparison of body size (both traits) between mid‐parent, F1 and F2 shows that there is an increase in body size in F1 and F2 progeny as compared with parents. Thus, there is no break down of heterosis in F2, which suggests absence of coadaptation in geographical populations of D. ananassae. Scaling test statistical analysis showed additive, dominance and epistatic effects in certain crosses involving geographical strains of D. ananassae. Correlation between chromosome arrangement frequency and body size has also been tested and significant negative correlation has been found between 2L – ST chromosome arrangement and male thorax.  相似文献   

14.
The C- and N-banding patterns of D. melanogaster, D. simulans, D. virilis, D. texana, D. ezoana and D. hydei were studied in comparison with quinacrine and Hoechst banding patterns. In all these Drosophila species the C bands correspond to the heterochromatin as revealed by the positive heteropycnosis in the prometaphase chromosomes. The N bands have the following characteristics: 1) they are always localized on the heterochromatin and generally do not correspond to the C bands; 2) they do not correspond to the nucleolar organizing regions; 3) they are inversely correlated with fluorescence, i.e., they correspond to regions which are scarcely, if at all, fluorescent after Hoechst 33258 or quinacrine staining; 4) they are localized both on regions containing AT rich satellite DNA and on those containing GC rich satellite DNA.  相似文献   

15.
Halos were detected with epifluorescence microscopy around penetration sites of Colletotrichum dematium f. circinans and Botrytis allii in onion epidermal cell walls as areas of less intense fluorescence or negatively stained areas in fluorescing cell walls following treatments with berberin sulphate and acridine orange but not with brilliant sulphaflavine (which stained the cell wall), ninhydrin, dansylchloride, or analine blue. Since pectin, pectic acid, avacil (microcrystaline cellulose super fine), filter paper, and Sephadex G-100–120 fluoresced with acridine orange and berberin sulphate, it was inferred that the halos were negatively stained or appeared as areas with less intense fluorescence because enzymes from these pathogens degraded cell wall pectin and cellulose at the point of penetration. Spores of both pathogens fluoresced when stained with brilliant sulphaflavine, acridine orange, ninhydrin, and dansylchloride. These stains and berberin sulphate caused germ tubes, appressoria, and primary infection mycelia to fluoresce. Nuclei in these fungal structures fluoresced when stained with acridine orange and brilliant sulphaflavine.  相似文献   

16.
Previous studies indicate that the tandemly repeated members of the amylase (Amy) gene family evolved in a concerted manner in the melanogaster subgroup and in some other species. In this paper, we analyzed all of the 49 active and complete Amy gene sequences in Drosophila, mostly from subgenus Sophophora. Phylogenetic analysis indicated that the two types of diverged Amy genes in the Drosophila montium subgroup and Drosophila ananassae, which are located in distant chromosomal regions from each other, originated independently in different evolutionary lineages of the melanogaster group after the split of the obscura and melanogaster groups. One of the two clusters was lost after duplication in the melanogaster subgroup. Given the time, 24.9 mya, of divergence between the obscura and the melanogaster groups (Russo et al. 1995), the two duplication events were estimated to occur at about 13.96 ± 1.93 and 12.38 ± 1.76 mya in the montium subgroup and D. ananassae, respectively. An accelerated rate of amino acid changes was not observed in either lineage after these gene duplications. However, the G+C contents at the third codon positions (GC3) decreased significantly along one of the two Amy clusters both in the montium subgroup and in D. ananassae right after gene duplication. Furthermore, one of the two types of the Amy genes with a lower GC3 content has lost a specific regulatory element within the montium subgroup species and D. ananassae. While the tandemly repeated members evolved in a concerted manner, the two types of diverged Amy genes in Drosophila experienced frequent gene duplication, gene loss, and divergent evolution following the model of a birth-and-death process.  相似文献   

17.
Larval pupation site preference (PSP) of different species of Drosophila was analyzed on fruit in the laboratory. The larvae of D. melanogaster, D. ananassae, D. virilis, D. novamexicana and D. hydei pupated on the surface of glass vials; D. simulans, D. yakuba, D. mauritiana and D. malerkotliana pupated in/on fruit; and D. rajasekari pupated on cotton plugs in all experiments. D. bipectinata larvae changed their preference from fruit in the control to glass surface for all of the fruits tested. The statistical analysis of PSP (glass and fruit) found a significant result in that compared to other species, D. mauritiana and D. ananassae preferred to pupate on cotton compared to the control.  相似文献   

18.
We investigated the role of cuticular lipids, body melanisation and body size in conferring contrasting levels of desiccation resistance in latitudinal populations of Drosophila melanogaster and Drosophila ananassae on the Indian subcontinent. Contrary to the well known role of cuticular lipids in water proofing in diverse insect taxa, there is lack of geographical variations in the amount of cuticular lipids per fly in both the species. In D. ananassae, quite low levels of body melanisation are correlated with lower desiccation resistance. By contrast, increased levels of desiccation resistance are correlated with quite high melanisation in D. melanogaster. Thus, species specific cuticular melanisation patterns are significantly correlated with varying levels of desiccation resistance within as well as between populations and across species. Role of body melanisation in desiccation resistance is further supported by the fact that assorted dark and light flies differ significantly in cuticular water loss, hemolymph and dehydration tolerance. However, similar patterns of body size variation do not account for contrasting levels of desiccation resistance in these two Drosophila species. Climatic selection is evidenced by multiple regression analysis with seasonal amplitude of thermal and humidity changes (Tcv and RHcv) along latitude on the Indian subcontinent. Finally, the contrasting levels of species specific distribution patterns are negatively correlated with RHcv of sites of origin of populations i.e. a steeper negative slope for D. ananassae corresponds with its desiccation sensitivity as compared with D. melanogaster. Thus, evolutionary changes in body melanisation impact desiccation resistance potential as well as distribution patterns of these two Drosophila species on the Indian subcontinent.  相似文献   

19.
Interracial hybridization in Drosophila ananassae   总被引:3,自引:3,他引:0  
B. N. Singh 《Genetica》1981,57(2):139-142
Crosses were made between strains of Drosophila ananassae, homozygous for the ST or AL gene sequences in the second chromosome, and originating from geographically distant localities in India. All interracial crosses were maintained separately in culture bottles for ten generations. After ten generations it was observed that the inversion heterozygotes were heterotic. Thus it was found that interracial hybridization does not lead to breakdown of heterosis. Therefore, it has been suggested that localised coadaptation is absent in the natural populations of Indian D. ananassae. Thus D. ananassae does not show the pattern of some other species.  相似文献   

20.
Reaction norms of wing length, thorax length, and ovariole number were studied according to growth temperature in the circumtropical Drosophila ananassae, and compared to similar data from the cosmopolitan D. melanogaster. In the two species convex reaction norms were observed, but they were not parallel and sometimes exhibited intersections either at high (wing) or at low (thorax) temperature. On average, D. ananassae may be considered as a species with a bigger thorax but shorter wings than D. melanogaster. The shapes of reaction norms were analyzed and compared after quadratic polynomial adjustments. Significant differences were observed, in several cases between polynomial parameters, and in all cases between characteristic points that is, Maximum Value (MV) and Temperature of Maximum Value (TMV). The wing/thorax ratio may also be considered as a specific trait related to wing loading. Major differences were observed between the two species for the mean value and the shape of the response curves of this trait. The main observation of this work was however a shift of TMVs for wing and thorax length and ovariole number in D. ananassae toward higher temperatures. These variations in the reaction norms corresponded to a shift in the species thermal range, suggesting that temperature adaptation was accompanied by a modification of the shape of the response curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号