首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of L-carnitine on myocardial glycolysis, glucose oxidation, and palmitate oxidation were determined in isolated working rat hearts. Hearts were perfused under aerobic conditions with perfusate containing either 11 mM [2-3H/U-14C]glucose in the presence or absence of 1.2 mM palmitate or 11 mM glucose and 1.2 mM [1-14C]palmitate. Myocardial carnitine levels were elevated by perfusing hearts with 10 mM L-carnitine. A 60-min perfusion period resulted in significant increases in total myocardial carnitine from 4376 +/- 211 to 9496 +/- 473 nmol/g dry weight. Glycolysis (measured as 3H2O production) was unchanged in carnitine-treated hearts perfused in the absence of fatty acids (4418 +/- 300 versus 4547 +/- 600 nmol glucose/g dry weight.min). If 1.2 mM palmitate was present in the perfusate, glycolysis decreased almost 2-fold compared with hearts perfused in the absence of fatty acids. In carnitine-treated hearts this drop in glycolysis did not occur (glycolytic rates were 2911 +/- 231 to 4629 +/- 460 nmol glucose/g dry weight.min, in control and carnitine-treated hearts, respectively. Compared with control hearts, glucose oxidation rates (measured as 14CO2 production from [U-14C]glucose) were unaltered in carnitine-treated hearts perfused in the absence of fatty acids (1819 +/- 169 versus 2026 +/- 171 nmol glucose/g dry weight.min, respectively). In the presence of 1.2 mM palmitate, glucose oxidation decreased dramatically in control hearts (11-fold). In carnitine-treated hearts, however, glucose oxidation was significantly greater than control hearts under these conditions (158 +/- 21 to 454 +/- 85 nmol glucose/g dry weight.min, in control and carnitine-treated hearts, respectively). Palmitate oxidation rates (measured as 14CO2 production from [1-14C]palmitate) decreased in the carnitine-treated hearts from 728 +/- 61 to 572 +/- 111 nmol palmitate/g dry weight.min. This probably occurred secondary to an increase in overall ATP production from glucose oxidation (from 5.4 to 14.5% of steady state myocardial ATP production). The results reported in this study provide direct evidence that carnitine can stimulate glucose oxidation in the intact fatty acid perfused heart. This probably occurs secondary to facilitating the intramitochondrial transfer of acetyl groups from acetyl-CoA to acetylcarnitine, thereby relieving inhibition of the pyruvate dehydrogenase complex.  相似文献   

2.
Metabolism of triglyceride fatty acid by the perfused rat heart   总被引:6,自引:6,他引:0  
1. Chyle lipids, labelled with (14)C, are taken up and oxidized by the isolated perfused rat heart. 2. In recirculatory perfusions, when chyle lipids are the sole exogenous energy source, about 24% of the total oxygen uptake is accounted for by their oxidation. This proportion is not changed by starvation of the rats for 48hr. and falls when an external work load is imposed on the left ventricle. 3. With albumin in the perfusion medium, the rate of (14)CO(2) output is reduced by half and there is a rise in the proportion of (14)C-labelled free fatty acids in the medium. 4. Clearing-factor lipase appears in the perfusion medium when chyle lipids are perfused through the heart. In the absence of albumin, the activity of the medium enzyme is low and only a small proportion of the (14)CO(2) output can be accounted for by the oxidation of free fatty acids released by it. In the presence of albumin, the enzyme is more active in the medium. 5. When a substantial proportion of the total clearing-factor lipase is removed from the heart by a prior perfusion with heparin, (14)C-labelled chyle lipid perfused subsequently is oxidized at only half the normal rate.  相似文献   

3.
Fatty acid oxidation is usually measured by collecting CO from [C]-labelled lipid. An alternative technique is to estimate HO production from [H]-lipid substrate; this has been used in working rat heart with [H]fatty acid and [H]triacylglycerol. HO appearance was linear and rates of [H]oleate and [H]triolein oxidation similar to [C]palmitate and [C]tripalmitin oxidation. Measurement of [H]lipid oxidation by HO estimation is simple, accurate, and a practicable alternative to the CO technique.  相似文献   

4.
5.
1. H2O2 formation associated with the metabolism of added fatty acids was quantitatively determined in isolated haemoglobin-free perfused rat liver (non-recirculating system) by two different methods. 2. Organ spectrophotometry of catalase Compound I [Sies & Chance (1970) FEBS Lett. 11, 172-176] was used to detect H2O2 formation (a) by steady-state titration with added hydrogen donor, methanol or (b) by comparison of fatty-acid responses with those of the calibration compound, urate. 3. In the use of the peroxidatic reaction of catalase, [14C]methanol was added as hydrogen donor at an optimal concentration of 1 mM in the presence of 0.2 mM-L-methionine, and 14CO2 production rates were determined. 4. Results obtained by the different methods were similar. 5. The yield of H2O2 formation, expressed as the rate of H2O2 formation in relation to the rate of fatty-acid supply, was less than 1.0 in all cases, indicating that, regardless of chain length, less than one acetyl unit was formed per mol of added fatty acid by the peroxisomal system. In particular, the standard substrate used with isolated peroxisomal preparations (C16:0 fatty acid) gave low yield (close to zero). Long-chain monounsaturated fatty acids exhibit a relatively high yield of H2O2 formation. 6. The hypolipidaemic agent bezafibrate led to slightly increased yields for most of the acids tested, but the yield with oleate was decreased to one-half the original yield. 7. It is concluded that in the intact isolated perfused rat liver the assayable capacity for peroxisomal beta-oxidation is used to only a minor degree. However, the observed rates of H2O2 production with fatty acids can account for a considerable share of the endogenous H2O2 production found in the intact animal.  相似文献   

6.
The effects of diltiazem on fatty acid metabolism were measured in the isolated perfused rat liver and in isolated mitochondria. In the perfused rat liver diltiazem inhibited oxygen uptake and ketogenesis from endogenous substrates. Ketogenesis from exogenously supplied palmitate was also inhibited. The β-hydroxybutyrate/acetoacetate ratio in the presence of palmitate alone was equal to 3·2. When the fatty acid and diltiazem were present simultaneously this ratio was decreased to 0·93, suggesting that, in spite of the inhibition of oxygen uptake, the respiratory chain was not rate limiting for the oxidation of the reducing equivalents coming from β-oxidation. In experiments with isolated mitochondria, incubated in the presence of all intermediates of the Krebs cycle, pyruvate or glutamate, no significant inhibition of oxygen uptake by diltiazem was detected. Inhibition of oxygen uptake in isolated mitochondria was found only when palmitoyl CoA was the source of the reducing equivalents. It was concluded that a direct effect on β-oxidation may be a major cause for the inhibition of oxygen uptake caused by diltiazem in the perfused liver. © 1997 John Wiley & Sons, Ltd.  相似文献   

7.
8.
9.
The aim of the present study was to investigate the actions of zymosan on glucose release and fatty acid oxidation in perfused rat livers and to determine if Kupffer cells and Ca2+ ions are implicated in these actions. Zymosan caused stimulation of glycogenolysis in livers from fed rats. In livers from fasted rats zymosan caused gradual inhibition of glucose production and oxygen consumption from lactate plus pyruvate. Ketogenesis, oxygen consumption, and [14C-]-CO2 production were inhibited by zymosan when the [1-14C]-palmitate was supplied exogenously. However, ketogenesis and oxygen consumption from endogenous sources were not inhibited. An interference with substrate-uptake by the liver may be the cause of the changes in gluconeogenesis and oxidation of fatty acids from exogenous sources. The pretreatment of the rats with gadolinium chloride and the removal of Ca2+ ions did not suppress the effects of zymosan on glucose release, a finding that argues against the participation of Kupffer cells or Ca2+ ions in the liver responses. The hepatic metabolic changes caused by zymosan could play a role in the systemic metabolic alterations reported to occur after in vivo zymosan administration.  相似文献   

10.
11.
Experiments were conducted to test the effects of age, sex, and level and type of dietary fat on the oxidation rates of carboxyl- and uniformly-labeled linoleate, oleate and palmitate. There were no significant differences due to age, sex, nor diet alone but a statistically significant (P < 0.05) interaction between sex and tissue was found. The latter appeared to be due to the slower rate displaced by liver homogenates from male rats than females. CO2 was more rapidly labeled from carboxyl- than from uniformly-labeled fatty acids. In heart, palmitate was oxidized at a faster rate than linoleate with oleate demonstrating the slowest rate. In liver, the relative rates were linoleate > palmitate ? oleate. Incubation conditions, tissue interactions, position of label and end products recovered are discussed in relation to interpretation of results in studies of fatty acid metabolism.  相似文献   

12.
The metabolic effects of pent-4-enoate were studied in beating and potassium-arrested perfused rat hearts. The addition of 0.8mm-pent-4-enoate to the fluid used to perfuse a potassium-arrested heart resulted in a 70% increase in the O(2) consumption and a 66% decrease in the glycolytic flux as measured in terms of the de-tritiation of [3-(3)H]glucose, although the proportion of the O(2) consumption attributable to glucose oxidation decreased from an initial 30% to 10%. The pent-4-enoate-induced increase in O(2) consumption was only 15% in the beating heart. In the potassium-arrested heart, pent-4-enoate stimulated palmitate oxidation by more than 100% when measured in terms of the production of (14)CO(2) from [1-(14)C]palmitate, but in the beating heart palmitate oxidation was inhibited. Perfusion of the heart with pent-4-enoate had no effect on the proportion of pyruvate dehydrogenase found in the active form, in spite of large changes in the CoASH and acetyl-CoA concentrations and changes in their concentration ratios. The effects of pent-4-enoate on the cellular redox state were dependent on the ATP consumption of the heart. In the beating heart, pent-4-enoate caused a rapid mitochondrial NAD(+) reduction that subsequently faded out, so that the final state was more oxidized than the initial state. The arrested heart, however, remained in a more reduced state than initially, even after the partial re-oxidation that followed the initial rapid NAD(+) reduction. The ability of pent-4-enoate to increase or decrease fatty acid oxidation can be explained on the basis of the differential effects of pent-4-enoate on the concentration of citric acid-cycle intermediates under conditions of high or low ATP consumption of the myocardial cell. The proportion of the fatty acids in the fuel consumed by the heart is probably primarily determined by the regulatory mechanisms of glycolysis. When pent-4-enoate causes an increase in the citric acid-cycle intermediates, feedback inhibition of glycolysis results in an increase in the oxidation of fatty acids.  相似文献   

13.
The contractility of hearts from normal fed rats is decreased by 70% during perfusion with 50 μM chloroquine, which is a potent inhibitor of endogenous lipolysis. In triacylglycerol-rich hearts, obtained by feeding rats rapeseed-oil, chloroquine depresses lipolysis much less, while contractility was found to be inhibited only 30%. In both groups of hearts the effect of chloroquine was decreased by adding fatty acids, prostaglandin E1, the Ca2+Mg2+ ionophore X-537A or more Ca2+ to the perfusion fluid. Norepinephrine and glucagon also stimulate chloroquine-depressed hearts. The conclusion is therefore reached that fatty acids act as Ca2+-vehicles in heart cells and that chloroquine, by inhibiting lipolysis, decreases Ca2+-transport by lowering unesterified fatty acid levels.  相似文献   

14.
15.
16.
In this work the microsomal lauric acid omega-hydroxylation, fatty acid peroxisomal beta-oxidation, and the levels of cytochrome P-450 IVA1 were studied in liver tissue from starved rats. Starvation increased the peroxisomal beta-oxidation and the microsomal hydroxylation of fatty acids. The correlation between these activities would support the proposal that both processes are linked, contributing in part to catabolism of fatty acids in liver of starved rats.  相似文献   

17.
Studies have been conducted on the uptake and metabolism of unesterified oleic acid and lipoprotein triacylglycerol by the perfused rat heart, and of oleic acid, free glycerol and lipoprotein triacylglycerol by rat cardiac myocytes. The perfused heart efficiently extracted and metabolized unesterified fatty acid and the fatty acid released during lipolysis of the recirculating triacylglycerol. The released glyceride glycerol, however, was largely accumulated in the perfusion media. Cardiac myocytes also extracted and rapidly metabolized unesterified fatty acid. As with the intact heart, free glycerol was poorly utilized by cardiac myocytes. Although the cells appeared to extract a small amount of available extracellular triacylglycerol presented as very low density lipoprotein, this was shown to be unmetabolized, suggesting adsorption rather than surface lipolysis and uptake of the released fatty acid. The data suggest that myocytes are unable to metabolize triacylglycerol fatty acids without prior lipolysis by extracellular (capillary endothelial) lipoprotein lipase.  相似文献   

18.
19.
Rates of transamination and decarboxylation of [1-14C]leucine at a physiological concentration (0.1 mM) were measured in the perfused rat heart. In hearts from fasted rats, metabolic flux through the branched-chain 2-oxo acid dehydrogenase reaction was low initially, but increased gradually during the perfusion period. The increase in 14CO2 production was accompanied by an increase in the amount of active branched-chain 2-oxo acid dehydrogenase complex present in the tissue. In hearts from rats fed ad libitum, extractable branched-chain dehydrogenase activity was low initially, but increased rapidly during perfusion, and high rates of decarboxylation were attained within the first 10 min. Infusion of glucagon, adrenaline, isoprenaline, or adrenaline in the presence of phentolamine all produced rapid, transient, inhibition (40-50%) of the formation of 4-methyl-2-oxo[1-14C]pentanoate and 14CO2 within 1-2 min, but the specific radioactivity of 4-methyl-2-oxo[14C]pentanoate released into the perfusate remained constant. Glucagon and adrenaline infusion also resulted in transient decreases (16-24%) in the amount of active branched-chain 2-oxo acid dehydrogenase. In hearts from fasted animals, infusion for 10 min of adrenaline, phenylephrine, or adrenaline in the presence of propranolol, but not infusion of glucagon or isoprenaline, stimulated the rate of 14CO2 production 3-fold, and increased 2-fold the extractable branched-chain 2-oxo acid dehydrogenase activity. These results demonstrate that stimulation of glucagon or beta-adrenergic receptors in the perfused rat heart causes a transient inhibition of branched-chain amino acid metabolism, whereas alpha-adrenergic stimulation causes a slower, more sustained, enhancement of branched-chain amino acid metabolism. Both effects reflect interconversion of the branched-chain 2-oxo acid dehydrogenase complex between active and inactive forms. Also, these studies suggest that the concentration of branched-chain 2-oxo acid available for decarboxylation can be regulated by adrenaline and glucagon.  相似文献   

20.
The role of the metabolite disposal mechanisms in the regulation of the tricarboxylic acid cycle pool size was studied in isolated perfused rat hearts oxidizing 2 mM propionate. Malate and succinate accumulated during the propionate metabolism. A further 118% increase in the malate concentration and 600% increase in the succinate concentration and a slight inhibition of the propionate uptake were observed during a subsequent KCl-induced arrest of the heart metabolizing propionate. When the mechanical activity of the heart was restored, the malate and succinate concentrations returned to the same levels as before the arrest of the heart, but the propionate uptake did not rise significantly. The mean disposal rates of the tricarboxylic acid cycle metabolites during the cardiac arrest and subsequent restoration of the activity were 1.4 and 2.4 μmol/min per g dry weight, respectively. During cardiac arrest the malate carbon disposed was almost totally recovered as C3 compounds, whereas after the increase in the ATP-consumption most of it was oxidized. The results show that propionate is oxidized by heart muscle at an appreciable rate but the disposal rate of the tricarboxylic acid cycle intermediates is not tightly regulated by the cellular energy state. Although the metabolite pool size of the tricarboxylic acid cycle responds to change in the ATP consumption, the energy state appears to have a greater effect on the fate of the C3 compounds formed than on the actual rate of C4 compound disposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号