首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rate-limiting processes of catalysis by eukaryotic molybdenum-containing nitrate reductase (NaR, EC 1.7.1.1-3) were investigated using two viscosogens (glycerol and sucrose) and observing their impact on NAD(P)H:NaR activity of corn leaf NaR and recombinant Arabidopsis and yeast NaR. Holo-NaR has two "hinge" sequences between stably folded regions housing its internal electron carriers: 1) Hinge 1 between the molybdenum-containing nitrate reducing module and cytochrome b domain containing heme and 2) Hinge 2 between cytochrome b and cytochrome b reductase (CbR) module containing FAD. Solution viscosity negatively impacted the activity of these holo-NaR forms, which suggests that the rate-limiting events in catalysis were likely to involve large conformational changes that restrict or "gate" internal electron-proton transfers (IET). Little effect of viscosity was observed on recombinant CbR module and methyl viologen nitrate reduction by holo-NaR, suggesting that these activities involved no large conformational changes. To determine whether Hinge 2 is involved in gating the first step in IET, the effects of viscosogen on cytochrome c and ferricyanide reductase activities of holo-NaR and ferricyanide reductase activity of the recombinant molybdenum reductase module (CbR, Hinge 2, and cytochrome b) were analyzed. Solution viscosity negatively impacted these partial activities, as if Hinge 2 were involved in gating IET in both enzyme forms. We concluded that both Hinges 1 and 2 appear to be involved in gating IET steps by restricting the movement of the cytochrome b domain relative to the larger nitrate-reducing and electron-donating modules of NaR.  相似文献   

2.
Mo reductase (MoR; formerly cytochrome c reductase) fragments of NADH:NO(3) reductase (NR; EC1.6.6.1) were cytosolically expressed in Pichia pastoris, a methylotrophic yeast, using spinach (Spinacia oleracea) and corn (Zea maize) cDNAs. In fermenter cultures, spinach MoR was expressed at 420 mg L(-1), corn MoR at 32 mg L(-1), and corn MoR plus with putative NR interface domain N terminus (MoR+) at 17 mg L(-1). Constitutively expressed MoR+ was structurally stable while it was degraded when expressed by methanol induction, which suggests methanol growth produces more proteinase. Methanol-induced expression yielded more target protein. All three MoR were purified to homogeneity and their polypeptides were approximately 41 (MoR) and approximately 66 (MoR+) kD. MoR was monomeric and MoR+ dimeric, confirming the predicted role for dimer interface domain of NR. MoR+, although differing in quaternary structure from MoR, has similar kinetic properties for ferricyanide and cytochrome c reductase activities and visible spectra, which were like NR. Redox potentials of MoR and MoR+ were similar for flavin, whereas MoR+ had a more negative potential for heme-iron. Reaction schemes for MoR catalyzed reactions were proposed based on fast-reaction rapid-scan stopped-flow kinetic analysis of MoR. P. pastoris is an excellent system for producing the large amounts of NR fragments needed for detailed biochemical studies.  相似文献   

3.
Nitrate reductase (NaR) linked to reduced methyl viologen from Clostridium perfringens was purified by ammonium sulfate precipitation. DEAE-cellulose chromatography, disc electrophoresis on polyacrylamide gel, and triple DEAE-Sephadex chromatography. The specific activity was increased 1,200-fold with a yield of 9%. The purified preparation was nearly homogeneous in disc electrophoresis. It was brown, and its spectrum showed a slight shoulder near 420 nm as well as a peak at 280 nm. The molecular weight was found to be 90,000 based on s020,w (5.8S) and 80,000 by Sephadex G-100 gel filtration. In SDS-polyacrylamide electrophoresis, it showed only a single band with a molecular weight of 90,000; it had no subunit structure. The isoelectric point was pH 5.5, and the optimum pH was 9. Mn2+, Fe2+, Mg2+, and Ca2+ stimulated the activity. Km for nitrate was 0.10 mM, and nitrate was stoichiometrically reduced to nitrite in the presence of 2 mM Mn2+. Ferredoxin fraction obtained from extracts of the bacterium was utilizable as an electron donor at pH 8. Cyanide and azide inhibited the enzyme. The formation of NaR was induced by nitrate and inhibited by 0.5 mM tungstate, but recovered in the presence of 0.1 mM molybdate; NaR of C. perfringens appears to be a molybdo-iron-sulfur protein.  相似文献   

4.
Nitrate assimilation in autotrophs provides most of the reduced nitrogen on earth. In eukaryotes, reduction of nitrate to nitrite is catalyzed by the molybdenum-containing NAD(P)H:nitrate reductase (NR; EC 1.7.1.1-3). In addition to the molybdenum center, NR contains iron-heme and flavin adenine dinucleotide as redox cofactors involved in an internal electron transport chain from NAD(P)H to nitrate. Recombinant, catalytically active Pichia angusta nitrate-reducing, molybdenum-containing fragment (NR-Mo) was expressed in P. pastoris and purified. Crystal structures for NR-Mo were determined at 1.7 and 2.6 angstroms. These structures revealed a unique slot for binding nitrate in the active site and identified key Arg and Trp residues potentially involved in nitrate binding. Dimeric NR-Mo is similar in overall structure to sulfite oxidases, with significant differences in the active site. Sulfate bound in the active site caused conformational changes, as compared with the unbound enzyme. Four ordered water molecules located in close proximity to Mo define a nitrate binding site, a penta-coordinated reaction intermediate, and product release. Because yeast NAD(P)H:NR is representative of the family of eukaryotic NR, we propose a general mechanism for nitrate reduction catalysis.  相似文献   

5.
Enterobacter cloacae SLD1a-1 is capable of reductive detoxification of selenate to elemental selenium under aerobic growth conditions. The initial reductive step is the two-electron reduction of selenate to selenite and is catalyzed by a molybdenum-dependent enzyme demonstrated previously to be located in the cytoplasmic membrane, with its active site facing the periplasmic compartment (C. A. Watts, H. Ridley, K. L. Condie, J. T. Leaver, D. J. Richardson, and C. S. Butler, FEMS Microbiol. Lett. 228:273-279, 2003). This study describes the purification of two distinct membrane-bound enzymes that reduce either nitrate or selenate oxyanions. The nitrate reductase is typical of the NAR-type family, with alpha and beta subunits of 140 kDa and 58 kDa, respectively. It is expressed predominantly under anaerobic conditions in the presence of nitrate, and while it readily reduces chlorate, it displays no selenate reductase activity in vitro. The selenate reductase is expressed under aerobic conditions and expressed poorly during anaerobic growth on nitrate. The enzyme is a heterotrimeric (alphabetagamma) complex with an apparent molecular mass of approximately 600 kDa. The individual subunit sizes are approximately 100 kDa (alpha), approximately 55 kDa (beta), and approximately 36 kDa (gamma), with a predicted overall subunit composition of alpha3beta3gamma3. The selenate reductase contains molybdenum, heme, and nonheme iron as prosthetic constituents. Electronic absorption spectroscopy reveals the presence of a b-type cytochrome in the active complex. The apparent Km for selenate was determined to be approximately 2 mM, with an observed Vmax of 500 nmol SeO4(2-) min(-1) mg(-1) (kcat, approximately 5.0 s(-1)). The enzyme also displays activity towards chlorate and bromate but has no nitrate reductase activity. These studies report the first purification and characterization of a membrane-bound selenate reductase.  相似文献   

6.
Recombinant Arabidopsis thaliana NADH:nitrate reductase (NR; EC 1.6.6.1) was produced in the methylotrophic yeast Pichia pastoris and purified to near-electrophoretic homogeneity. Purified enzyme had the spectral and kinetic properties typical of highly purified NR from natural plant sources. Site-directed mutagenesis altering several key residues and regions was carried out, and the mutant enzyme forms were expressed in P. pastoris. When the invariant cysteine residue, cysteine-191, in the molybdo-pterin region of the A. thaliana NIA2 protein was replaced with serine or alanine, the NR protein was still produced but was inactive, showing that this residue is essential for enzyme activity. Deletions or substitutions of the conserved N terminus of NR retained activity and the ability to be inactivated in vitro when incubated with ATP. Enzyme with a histidine sequence appended to the N terminus was still active and was easily purified using metal-chelate affinity chromatography. These results demonstrate that P. pastoris is a useful and reliable system for producing recombinant holo-NR from plants.  相似文献   

7.
Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a kcat of 610 min(-1) and a Km of 610 microM using E. coli thioredoxin as substrate. The reported kcat is 25% of the kcat of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate.  相似文献   

8.
The ability to transport net nitrate was conferred upon transformant cells of the non-nitrate-assimilating yeast Pichia pastoris after the introduction of two genes, one encoding nitrate reductase and the other nitrate transport. It was observed that cells of this lower eukaryote transformed with the nitrate transporter gene alone failed to display net nitrate transport despite having the ability to produce the protein. In addition, loss-of-function nitrate reductase mutants isolated from several nitrate-assimilating fungi appeared to be unable to accumulate nitrate. Uptake assays using the tracer (13)NO(3)(-) showed that nitrate influx is negligible in cells of a nitrate reductase null mutant. In parallel studies using a higher eukaryotic plant, Arabidopsis thaliana, loss-of-function nitrate reductase strains homozygous for both NIA1 insertion and NIA2 deletion were found to have no detectable nitrate reductase mRNA or nitrate reductase activity but retained the ability to transport nitrate. The reasons for these fundamental differences in nitrate transport into the cells of representative members of these two eukaryotic kingdoms are discussed.  相似文献   

9.
Xylose reductase from the xylose-fermenting yeast Pichia stipitis was purified to electrophoretic and spectral homogeneity via ion-exchange, affinity and high-performance gel chromatography. The enzyme was active with various aldose substrates, such as DL-glyceraldehyde, L-arabinose, D-xylose, D-ribose, D-galactose and D-glucose. Hence the xylose reductase of Pichia stipitis is an aldose reductase (EC 1.1.1.21). Unlike all aldose reductases characterized so far, the enzyme from this yeast was active with both NADPH and NADH as coenzyme. The activity with NADH was approx. 70% of that with NADPH for the various aldose substrates. NADP+ was a potent inhibitor of both the NADPH- and NADH-linked xylose reduction, whereas NAD+ showed strong inhibition only with the NADH-linked reaction. These results are discussed in the context of the possible use of Pichia stipitis and similar yeasts for the anaerobic conversion of xylose into ethanol.  相似文献   

10.
The assimilatory nitrate reductase from the yeast Rhodotorula glutinus has been purified 740-fold, its different catalytic activities have been characterized and some inhibitors studied. The purified enzyme (150 units per mg protein) contains a cytochrome of the b-557 type. An S20,w of 7.9 S was found by the use of sucrose density gradient centrifugation, and a Stokes radius of 7.05 nm was determined by gel filtration. From these values, a molecular weight of 230 000 was estimated for the native enzyme. The purified preparation consisted of two electrophoretically distinguishable proteins, both of which exhibited nitrate reductase activity. The species with the higher electrophoretic mobility which represented the great majority of the total nitrate reductase gave a positive stain for heme and was shown to be composed of subunits with a molecular weight of about 118 000. Thus the molecule contains two subunits of the same size.  相似文献   

11.
12.
A maize root fraction which inactivates nitrate reductase has been shown to have protease activity which can be measured by the hydrolysis of azocasein. This inactivating enzyme was also found to inactivate yeast tryptophan synthase. Yeast proteases A and B, which inactivate this latter enzyme, also gave a specific inactivation of the maize nitrate reductase. The maize root inactivating enzyme, like yeast protease B, degraded casein, and was inhibited by phenylmethylsulphonyl fluoride. A partially-purified yeast inhibitor prevented catalysis by the yeast proteases and maize root inactivating enzyme, but purified yeast inhibitors were without effect on the latter protein. The level of nitrate reductase-inactivating activity, and associated azocasein-degrading activity, increased with age of the maize root. Evidence was obtained for a heat stable inhibitor which maintained them in an inactive state, especially in the young root tip cells.  相似文献   

13.
Na,K-ATPase is a crucial enzyme for ion homeostasis in human tissues. Different isozymes are produced by assembly of four alpha- and three beta-subunits. The expression of the alpha3/beta1 isozyme is confined to brain and heart. Its heterologous production has so far never been attempted in a lower eukaryote. In this work we explored whether the methylotrophic yeast Pichia pastoris is capable of expressing the alpha3/beta1 isoform of human Na,K-ATPase. cDNAs encoding the alpha(3) and the beta(1)-subunits were cloned under the control of the inducible promoter of Pichia pastoris alcohol oxidase 1. Pichia pastoris could express the single alpha3- and beta1-subunits and even coexpress them after methanol induction. beta1-subunit was produced as a major 44-kDa glycosylated polypeptide and alpha3 as a 110-kDa unglycosylated polypeptide. Expression at the plasma membrane was limited in shaking flask cultures but by cultivating P. pastoris cells in a fermenter there was a 10-fold increase of the number of ouabain binding sites per cell. The exported enzyme was estimated to be about 0.230 mg L(-1) at the end of a bioreactor run. Na,K-ATPase proved active and the dissociation constant of the recombinant enzyme-ouabain interaction was determined.  相似文献   

14.
NADH:nitrate reductase (EC 1.6.6.1) from Chlorella vulgaris has been purified 640-fold with an over-all yield of 26% by a combination of protamine sulfate fractionation, ammonium sulfate fractionation, gel chromatography, density gradient centrifugation, and DEAE-chromatography. The purified enzyme is stable for more than 2 months when stored at minus 20 degrees in phosphate buffer (pH 6.9) containing 40% (v/v) glycerol. After the initial steps of the purification, a constant ratio of NADH:nitrate reductase activity to NADH:cytochrome c reductase and reduced methyl viologen:nitrate reductase activities was observed. One band of protein was detected after polyacrylamide gel electrophoresis of the purified enzyme. This band also gave a positive stain for heme, NADH dehydrogenase, and reduced methyl viologen:nitrate reductase. One band, corresponding to a molecular weight of 100, 000, was detected after sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme contains FAD, heme, and molybdenum in a 1:1:0.8 ratio. One "cyanide binding site" per molybdenum was found. No non-heme-iron or labile sulfide was detected. From a dry weight determination of the purified enzyme, a minimal molecular weight of 152, 000 per molecule of heme or FAD was calculated. An s20, w of 9.7 S for nitrate reductase was found by the use of sucrose density gradient centrifugation and a Stokes radius of 89 A was estimated by gel filtration techniques. From these values, and the assumption that the partial specific volume is 0.725 cc/g, a molecular weight of 356, 000 was estimated for the native enzyme. These data suggest that the native enzyme contains a minimum of 2 molecules each of FAD, heme, and molybdenum and is composed of at least three subunits.  相似文献   

15.
NADH-nitrate reductase has been highly purified from leaves of 8-day-old wheat (Triticum aestivum L. cv. Olympic) seedlings by affinity chromatography, using blue dextran-Sepharose 4B. Purification was assessed by polyacrylamide gel electrophoresis. The enzyme was isolated with a specific activity of 23 micromoles nitrite produced per minute per milligram protein at 25 C. At pH 7.5, the optimum pH for stability of NADH-nitrate reductase, this enzyme, and a component enzyme reduced flavin adenine mononucleotide (FMNH2)-nitrate reductase has a similar stability at both 10 and 25 C. Two other component enzymes—methylviologen-nitrate reductase and NADH-ferricyanide reductase—also have a similar but higher stability. At this pH the Arrhenius plot for decay of NADH-nitrate reductase and methylviologen-nitrate reductase indicates a transition temperature at approximately 30 C above which the energy of activation for denaturation increases. FMNH2-nitrate reductase and NADH-ferricyanide reductase do now show this transition. The energy of activation for denaturation (approximately 9 kcal per mole) of each enzyme is similar between 15 and 30 C. The optimum pH for stability of the component enzymes was: NADH-ferricyanide reductase, 6.6; FMNH2-nitrate reductase and methylviologen-nitrate reductase, 8.9. All of our studies indicate that the NADH-ferricyanide reductase was the most stable component of the purified nitrate reductase (at pH 6.6, t½ [25 C] = 704 minutes). Data are presented which suggest that methylviologen and FMNH2 do not donate electrons to the same site of the nitrate reductase protein.  相似文献   

16.
17.
NADPH-cytochrome P-450 oxidoreductase (EC 1.6.2.4) was purified from the microsomal fraction of tobacco (Nicotiana tabacum) BY2 cells by chromatography on two anion-exchange columns and 2′,5′ ADP-Sepharose 4B column. The purified enzyme showed a single protein band with a molecular weight of 79 kDa on SDS-PAGE and exhibited a typical flavoprotein redox spectrum, indicating the presence of an equimolar quantity of FAD and FMN. This enzyme followed Michaelis-Menten Kinetics with Km values of 24 μM for NADPH and 16 μM for cytochrome c. An in vitro reconstituted system of the purified reductase with a partially purified tobacco cytochrome P-450 preparation showed the cinnamic acid 4-hydroxylase activity at the rate of 14 pmol min −1nmol−1 P-450 protein and with a purified rabbit P-4502C14 catalyzed N-demethylation of aminopyrine at the rate of 6 pmol min−1 lnmo−1 P-450 protein. Polyclonal antibodies raised against the purified reductase reacted with tobacco reductase but not with yeast reductase on Western blot analysis. Anti-yeast reductase antibodies did not react with the tobacco reductase. This result indicate that the tobacco reductase was immunochemically different from the yeast reductase. The anti-tobacco reductase antibodies totally inhibited the tobacco reductase activity, but not the yeast reductase. Also, Western blot analyses using the anti-tobacco reductase antibodies revealed that leaves, roots and shoots of Nicotiana tabacum plants contained an equal amount of the reductase protein. From these results, it was suggested that there are different antibody binding sites, which certainly participate in enzyme activity, between tobacco and yeast reductase.  相似文献   

18.
Nitrogen (N) availability is a major factor limiting plant production in many terrestrial ecosystems and is a key regulator of plant response to elevated CO2. Plant N status is a function of both soil N availability and plant N uptake and assimilation capacity. As a rate-limiting step in nitrate assimilation, the reduction of nitrate is an important component of plant physiological response to elevated CO2 and terrestrial carbon sequestration. We examine the effects of elevated CO2 and N availability on the activity of nitrate reductase, the enzyme catalyzing the reduction of nitrate to nitrite, in two temperate forests—a closed canopy sweetgum (Liquidambar styraciflua) plantation in Tennessee (Oak Ridge National Laboratory (ORNL)) and a loblolly pine (Pinus taeda) stand in North Carolina (Duke). Both CO2 and N enrichment had species specific impacts on nitrate reductase activity (NaR). Elevated CO2 and N fertilization decreased foliar NaR in P. taeda, but there were no treatment effects on L. styraciflua NaR at ORNL or Duke. NaR in 1-year P. taeda needles was significantly greater than in 0-year old needles across treatments. P. taeda NaR was negatively correlated with bio-available molybdenum concentrations in soils, suggesting that CO2 and N-mediated changes in soil nutrient status may be altering soil-plant N-dynamics. The variation in response among species may reflect different strategies for acquiring N and suggests that elevated CO2 may alter plant N dynamics through changes in NaR.  相似文献   

19.
We resolved from spinach (Spinacia oleracea) leaf extracts four Ca2+-independent protein kinase activities that phosphorylate the AMARAASAAALARRR (AMARA) and HMRSAMSGLHLVKRR (SAMS) peptides, originally designed as specific substrates for mammalian AMP-activated protein kinase and its yeast homolog, SNF1. The two major activities, HRK-A and HRK-C (3-hydroxy-3-methylglutaryl-coenzyme A reductase kinase A and C) were extensively purified and shown to be members of the plant SnRK1 (SNF1-related protein kinase 1) family using the following criteria: (a) They contain 58-kD polypeptides that cross-react with an antibody against a peptide sequence characteristic of the SnRK1 family; (b) they have similar native molecular masses and specificity for peptide substrates to mammalian AMP-activated protein kinase and the cauliflower homolog; (c) they are inactivated by homogeneous protein phosphatases and can be reactivated using the mammalian upstream kinase; and (d) they phosphorylate 3-hydroxy-3-methylglutaryl-coenzyme A reductase from Arabidopsis at the inactivating site, serine (Ser)-577. We propose that HRK-A and HRK-C represent either distinct SnRK1 isoforms or the same catalytic subunit complexed with different regulatory subunits. Both kinases also rapidly phosphorylate nitrate reductase purified from spinach, which is associated with inactivation of the enzyme that is observed only in the presence of 14-3-3 protein, a characteristic of phosphorylation at Ser-543. Both kinases also inactivate spinach sucrose phosphate synthase via phosphorylation at Ser-158. The SNF1-related kinases therefore potentially regulate several major biosynthetic pathways in plants: isoprenoid synthesis, sucrose synthesis, and nitrogen assimilation for the synthesis of amino acids and nucleotides.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号