首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Room temperature transient EPR spectra of photosystem I (PS I) particles from Synechocystis 6803 are presented. Native PS I samples and preparations depleted in the A1-acceptor site by solvent extraction and then reconstituted with the quinones (Q) vitamin K1 (VK1), duroquinone (DQ and DQd12) and naphthoquinone (NQ) have been studied. Sequential electron transfer to P700+A1- (FeS) and P700+A1 (FeS)- is recovered only with VK1. With DQ and NQ electron transfer is restored to form the radical pair P700+Q- as specified by a characteristic electron spin polarization (ESP)-pattern, but further electron transfer is either slowed down or blocked. A qualitative analysis of the K-band spectrum suggests that the orientation of reconstituted NQ in PS I is different from the native acceptor A1 = VK1.  相似文献   

2.
Reaction center triplet states in photosystem I and photosystem II   总被引:3,自引:0,他引:3  
A photosystem I (PS I) particle has been prepared by lithium dodecyl sulfate digestion which lacks the acceptor X, and iron-sulfur centers B and A. Illumination of these particles at liquid helium temperature results in the appearance of a light-induced spin-polarized triplet signal observed by EPR. This signal is attributed to the triplet state of P-700, the primary donor, formed by recombination of the light induced radical pair P-700+ A1- (where A1 is the intermediate acceptor). Formation of the triplet does not occur if P-700 is oxidized or if A1 is reduced, prior to the illumination. A comparison of the P-700 triplet with that of P-680, the primary donor of Photosystem II, shows several differences. (1) The P-680 triplet is 1.5 mT (15 G) wider than the P-700 triplet. This is reflected by the zero-field splitting parameters, which indicate that P-700 is a slightly larger species than P-680. The zero-field splitting parameters do not indicate that either P-700 or P-680 are dimeric. (2) The P-700 triplet is induced by red and far-red light, while the P-680 triplet is induced only by red light. (3) The temperature dependences of the P-700 triplet and the P-680 triplet are different.  相似文献   

3.
Isamu Ikegami  Pierre S  tif  Paul Mathis 《BBA》1987,894(3):414-422
Flash-induced absorption changes were studied on different timescales (nanosecond to millisecond) and at different temperatures (10 to 278 K) in highly enriched spinach PS I particles lacking vitamin K-1 and in which the electron transfer from the primary acceptor to the secondary acceptors was blocked. At all temperatures, the initial absorption change at 820 nm was followed by a fast decay (t1/2 ≈ 47 ns at 278 K and ≈ 82 ns at 10 K) which is attributed to the decay of the primary radical pair (P-700+-A0). A slower phase of absorption decay is attributed to the P-700 triplet state, which was formed as a result of the biradical recombination, with a yield of about 30% at 278 K and about 75% at 10 K. Under air, the 3P-700 state decayed with a t1/2 of about 50 μs at 278 K, whereas in the absence of oxygen it decayed with t1/2 ≈ 560 μs. At 278 K, this yield was shown to depend on the presence of a magnetic field, with a maximum around 60 G. The 3P-700 decay halftime was nearly independent of temperature in the absence of oxygen (t1/2 ≈ 1 ms at 10 K). The implications for the mechanisms involved in this decay are discussed. Addition of vitamin K-1 to these particles resulted in a decrease in the amplitude of the fast submicrosecond decay and a concomitant increase in the amplitude of a slow phase, indicating an efficient transfer from A0 to vitamin K-1. However, most functional properties of the acceptor A1 were not reconstituted under these conditions.  相似文献   

4.
M Polm  K Brettel 《Biophysical journal》1998,74(6):3173-3181
Photoinduced electron transfer in photosystem I (PS I) proceeds from the excited primary electron donor P700 (a chlorophyll a dimer) via the primary acceptor A0 (chlorophyll a) and the secondary acceptor A1 (phylloquinone) to three [4Fe-4S] clusters, Fx, FA, and FB. Prereduction of the iron-sulfur clusters blocks electron transfer beyond A1. It has been shown previously that, under such conditions, the secondary pair P700+A1- decays by charge recombination with t1/2 approximately 250 ns at room temperature, forming the P700 triplet state (3P700) with a yield exceeding 85%. This reaction is unusual, as the secondary pair in other photosynthetic reaction centers recombines much slower and forms directly the singlet ground state rather than the triplet state of the primary donor. Here we studied the temperature dependence of secondary pair recombination in PS I from the cyanobacterium Synechococcus sp. PCC6803, which had been illuminated in the presence of dithionite at pH 10 to reduce all three iron-sulfur clusters. The reaction P700+A1- --> 3P700 was monitored by flash absorption spectroscopy. With decreasing temperature, the recombination slowed down and the yield of 3P700 decreased. In the range between 303 K and 240 K, the recombination rates could be described by the Arrhenius law with an activation energy of approximately 170 meV. Below 240 K, the temperature dependence became much weaker, and recombination to the singlet ground state became the dominating process. To explain the fast activated recombination to the P700 triplet state, we suggest a mechanism involving efficient singlet to triplet spin evolution in the secondary pair, thermally activated repopulation of the more closely spaced primary pair P700+A0- in a triplet spin configuration, and subsequent fast recombination (intrinsic rate on the order of 10(9) s(-1)) forming 3P700.  相似文献   

5.
Photosystem I (PS I) mediates electron-transfer from plastocyanin to ferredoxin via a photochemically active chlorophyll dimer (P700), a monomeric chlorophyll electron acceptor (A0), a phylloquinone (A1), and three [4Fe-4S] clusters (FX/A/B). The sequence of electron-transfer events between the iron-sulfur cluster, FX, and ferredoxin is presently unclear. Owing to the presence of a 2-fold symmetry in the PsaC protein to which the iron-sulfur clusters F(A) and F(B) are bound, the spatial arrangement of these cofactors with respect to the C2-axis of symmetry in PS I is uncertain as well. An unequivocal determination of the spatial arrangement of the iron-sulfur clusters FA and FB within the protein is necessary to unravel the complete electron-transport chain in PS I. In the present study, we generate EPR signals from charge-separated spin pairs (P700+-FredX/A/B) in PS I and characterize them by progressive microwave power saturation measurements to determine the arrangement of the iron-sulfur clusters FX/A/B relative to P700. The microwave power at half saturation (P1/2) of P700+ is greater when both FA and FB are reduced in untreated PS I than when only FA is reduced in mercury-treated PS I. The experimental P1/2 values are compared to values calculated by using P700-FA/B crystallographic distances and assuming that either FA or FB is closer to P700+. On the basis of this comparison of experimental and theoretical values of spin relaxation enhancement effects on P700+ in P700+ [4Fe-4S]- charge-separated pairs, we find that iron-sulfur cluster FA is in closer proximity to P700 than the FB cluster.  相似文献   

6.
The green sulfur bacterium Chlorobium vibrioforme was cultured in the presence of ethylene to selectively inhibit the synthesis of the chlorosome antenna BChl d. Use of these cells as starting material simplified the isolation of a photoactive antenna-depleted membrane fraction without the use of high concentrations of detergents. The preparation had a BChl alpha/P840 of 50, and the spectral properties were similar to those of preparations isolated from cells grown with a normal complement of chlorosomes. The membrane preparation was active in NADP+ photoreduction. This indicated that the fraction contained reaction centers with complete electron-transfer sequences which were then characterized further by flash kinetic spectrophotometry and EPR. We confirmed that cytochrome c553 is the endogenous donor to P840+, and at room temperature we observed a recombination reaction between the reduced terminal acceptor and P840+ with a t1/2 = 7 ms. Oxidative degradation of iron-sulfur centers using low concentrations of chaotropic salts introduced a faster recombination reaction of t1/2 = 50 microseconds which was lost at higher concentrations of chaotrope, indicating the participation of another iron-sulfur redox center earlier than the terminal acceptor. Cluster insertion using ferric chloride and sodium sulfide in the presence of 2-mercaptoethanol restored both the 50-microseconds and 7-ms recombination reactions, allowing definitive assignments of these centers as iron-sulfur centers. Following the suggestion of Nitschke et al. [(1990) Biochemistry 29, 3834-3842], we associate these two kinetic phases to back-reactions between P840+ and iron-sulfur centers FX and FAFB, respectively. The iron-sulfur cluster degradation and reconstitution protocols also led to inhibition and restoration of NADP+ photoreduction by the membrane preparation, providing unequivocal evidence for the function of the centers FX and FAFB in the physiological electron-transfer sequence on the acceptor side of the Chlorobium reaction center. At 77 K we observed a recombination reaction of t1/2 = 20 ms that we suggest occurs between Fx- and P840+. Degradation of the iron-sulfur clusters resulted in replacement of the 20-ms phase with a faster reaction of t1/2 = 80 microseconds that was most likely a recombination between the early acceptor A1- and P840+ or decay of 3P840. Analysis of the iron-sulfur centers in the preparation by EPR at cryogenic temperature supports the optical measurements. EPR signals originating from the terminal acceptor(s) were not observed following treatment of the membrane preparation by chaotropes, and a modified signal was restored following cluster reinsertion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The Photosystem I electron acceptor complex was characterized by optical flash photolysis and electron spin resonance (ESR) spectroscopy after treatment of a subchloroplast particle with lithium dodecyl sulfate (LDS). The following properties were observed after 60 s of incubation with 1% LDS followed by rapid freezing. (i) ESR centers A and B were not observed during or after illumination of the sample at 19 K, although the P-700+ radical at g = 2.0026 showed a large, reversible light-minus-dark difference signal. (ii) Center 'X', characterized by g factors of 2.08, 1.88 and 1.78, exhibited reversible photoreduction at 8 K in the absence of reduced centers A and B. (iii) The backreaction kinetics at 8 K between P-700, observed at g = 2.0026, and center X, observed at g = 1.78, was 0.30 s. (iv) The amplitudes of the reversible g = 2.0026 radical observed at 19 K and the 1.2 ms optical 698 nm transient observed at 298 K were diminished to the same extent when treated with 1% LDS at room temperature for periods of 1 and 45 min. We interpret the strict correlation between the properties and lifetimes of the optical P-700+ A2 reaction pair and the ESR P-700+ center X- reaction pair to indicate that signal A2 and center X represent the same iron-sulfur center in Photosystem I.  相似文献   

8.
S Itoh  M Iwaki 《Biochemistry》1991,30(22):5340-5346
One-carbonyl quinonoid compounds, fluorenone (fluoren-9-one), anthrone, and their derivatives are introduced into spinach photosystem (PS) I reaction centers in place of the intrinsic secondary electron acceptor phylloquinone (= vitamin K1). Anthrone and 2-nitrofluorenone fully mediated the electron-transfer reaction between the reduced primary electron acceptor chlorophyll A0- and the tertiary electron acceptor iron-sulfur centers. It is concluded that the PS I phylloquinone-binding site has a structure that enables various compounds with different molecular structures to function as the secondary acceptor and that the reactions of incorporated compounds are mainly determined by their redox properties rather than by their molecular structure. Carbonyl groups increase the binding affinity of the quinone/quinonoid compounds but do not seem to be essential to their function. The quinonoid compounds as well as quinones incorporated into the PS I phylloquinone-binding sites are estimated to function at redox potentials more negative than in organic solvents.  相似文献   

9.
Electron paramagnetic resonance (EPR) power saturation and saturation recovery methods have been used to determine the spin lattice, T1, and spin-spin, T2, relaxation times of P-700+ reaction-center chlorophyll in Photosystem I of plant chloroplasts for 10 K less than or equal to T less than or equal to 100 K. T1 was 200 mus at 100 K and increased to 900 mus at 10 K. T2 was 40 ns at 40 K and increased to 100 ns at 10 K. T1 for 40 K less than or equal to T less than or equal to 100 K is inversely proportional to temperature, which is evidence of a direct-lattice relaxation process. At T = 20 K, T1 deviates from the 1/T dependence, indicating a cross relaxation process with an unidentified paramagnetic species. The individual effects of ascorbate and ferricyanide on T1 of P-700+ were examined: T1 of P-700+ was not affected by adding 10 mM ascorbate to digitonin-treated chloroplast fragments (D144 fragments). The P-700+ relaxation time in broken chloroplasts treated with 10 mM ferricyanide was 4-times shorter than in the untreated control at 40 K. Ferricyanide appears to be relaxing the P-700+ indirectly to the lattice by a cross-relaxation process. The possibility of dipolar-spin broadening of P-700+ due to either the iron sulfur center A or plastocyanin was examined by determining the spin-packet linewidth for P-700+ when center A and plastocyanin were in either the reduced or oxidized states. Neither reduced center A nor oxidized plastocyanin was capable of broadening the spin-packet linewidth of P-700+ signal. The absence of dipolar broadening indicates that both center A and plastocyanin are located at a distance at least 3.0 nm from the P-700+ reaction center chlorophyll. This evidence supports previous hypotheses that the electron donor and acceptor to P-700 are situated on opposite sides of the chloroplast membrane. It is also shown that the ratio of photo-oxidized P-700 to photoreduced centers A and B at low temperature is 2 : 1 if P-700 is monitored at a nonsaturating microwave power.  相似文献   

10.
The directionality of electron transfer in Photosystem I (PS I) is investigated using site-directed mutations in the phylloquinone (QK) and FX binding regions of Synnechocystis sp. PCC 6803. The kinetics of forward electron transfer from the secondary acceptor A1 (phylloquinone) were measured in mutants using time-resolved optical difference spectroscopy and transient EPR spectroscopy. In whole cells and PS I complexes of the wild-type both techniques reveal a major, slow kinetic component of tau approximately 300 ns while optical data resolve an additional minor kinetic component of tau approximately 10 ns. Whole cells and PS I complexes from the W697FPsaA and S692CPsaA mutants show a significant slowing of the slow kinetic component, whereas the W677FPsaB and S672CPsaB mutants show a less significant slowing of the fast kinetic component. Transient EPR measurements at 260 K show that the slow phase is approximately 3 times slower than at room temperature. Simulations of the early time behavior of the spin polarization pattern of P700+A1-, in which the decay rate of the pattern is assumed to be negligibly small, reproduce the observed EPR spectra at 260 K during the first 100 ns following laser excitation. Thus any spin polarization from P700+FX- in this time window is very weak. From this it is concluded that the relative amplitude of the fast phase is negligible at 260 K or its rate is much less temperature-dependent than that of the slow component. Together, the results demonstrate that the slow kinetic phase results from electron transfer from QK-A to FX and that this accounts for at least 70% of the electrons. Although the assignment of the fast kinetic phase remains uncertain, it is not strongly temperature dependent and it represents a minor fraction of the electrons being transferred. All of the results point toward asymmetry in electron transfer, and indicate that forward transfer in cyanobacterial PS I is predominantly along the PsaA branch.  相似文献   

11.
The X-ray crystal structure of photosystem I (PS I) depicts six chlorophyll a molecules (in three pairs), two phylloquinones, and a [4Fe-4S] cluster arranged in two pseudo C2-symmetric branches that diverge at the P700 special pair and reconverge at the interpolypeptide FX cluster. At present, there is agreement that light-induced electron transfer proceeds via the PsaA branch, but there is conflicting evidence whether, and to what extent, the PsaB branch is active. This problem is addressed in cyanobacterial PS I by changing Met688(PsaA) and Met668(PsaB), which provide the axial ligands to the Mg2+ of the eC-A3 and eC-B3-chlorophylls, to Leu. The premise of the experiment is that alteration or removal of the ligand should alter the midpoint potential of the A0-/A0 redox pair and thereby result in a change in the forward electron-transfer kinetics from A0- to A1. In comparison with the wild type, the PsaA-branch mutant shows: (i) slower growth rates, higher light sensitivity, and reduced amounts of PS I; (ii) a reduced yield of electron transfer from P700 to the FA/FB iron-sulfur clusters at room temperature; (iii) an increased formation of the 3P700 triplet state due to P700(+)A0- recombination; and (iv) a change in the intensity and shape of the polarization patterns of the consecutive radical pair states P700(+)A1- and P700(+)FX-. The latter changes are temperature dependent and most pronounced at 298 K. These results are interpreted as being due to disorder in the A0 binding site, which leads to a distribution of lifetimes for A0- in the PsaA branch of cofactors. This allows a greater degree of singlet-triplet mixing during the lifetime of the radical pair P700(+)A0-, which changes the polarization patterns of P700(+)A1- and P700(+)FX-. The lower quantum yield of electron transfer is also the likely cause of the physiological changes in this mutant. In contrast, the PsaB-branch mutant showed only minor changes in its physiological and spectroscopic properties. Because the environments of eC-A3 and eC-B3 are nearly identical, these results provide evidence for asymmetric electron-transfer activity primarily along the PsaA branch in cyanobacterial PS I.  相似文献   

12.
The mathematical analysis described in the preceding paper (Biochim. Biophys. Acta (1977) 460, 65-75), in which the steady-state photooxidation of P-700 was compared with overall electron flux in Photosystem I chloroplast fragments, was applied to membrane fragments from the blue-gree alga Nostoc muscorum (Strain 7119) noted for their high activity of both Photosystem I and Photosystem II. The same analysis, which gave good agreement between the photooxidation of P-700 and the overall light-induced electron flux (measured as NADP+ reduction) in Photosystem I chloroplast fragments, revealed in the algal membrane fragments two P-700 components: one responding to high light intensity (P-700 HI), the photooxidation of which was in good agreement with the overall electron flux (measured as NADP+ reduction by reduced 2,6-dichlorophenolindophenol), and the other component responding to low light intensity (P-700 LI), the photooxidation of which was not correlated with the reduction of NADP+ by reduced 2,6-dichlorophenolindophenol.  相似文献   

13.
The charge separation P700*A(0) --> P700(+)A(0)(-) and the subsequent electron transfer from the primary to secondary electron acceptor have been studied by subtracting absorption difference profiles for cyanobacterial photosystem I (PS I) complexes with open and closed reaction centers. Samples were excited at 660 nm, which lies toward the blue edge of the core antenna absorption spectrum. The resulting PS I kinetics were analyzed in terms of the relevant P700, P700(+), A(0), and A(0)(-) absorption spectra. In our kinetic model, the radical pair P700(+)A(0)(-) forms with 1.3 ps rise kinetics after creation of electronically excited P700*. The formation of A(1)(-) via electron transfer from A(0)(-) requires approximately 13 ps. The kinetics of the latter step are appreciably faster than previously estimated by other groups (20--50 ps).  相似文献   

14.
Mark S. Crowder  Alan Bearden 《BBA》1983,722(1):23-35
The reduction rate of oxidized reaction center chlorophyll of Photosystem I after laser-flash excitation at 25 K has been determined for D-144 subchloroplast fragments and chloroplasts. A maximum of 40% of Photosystem I reaction centers undergo irreversible charge separation (P-700, Cluster A: P-700+, Cluster A?) at 25 K, a percentage which is independent of laser-flash intensity. The remaining reaction centers in chloroplasts and D-144 fragments undergo reversible charge separation with biphasic recombination. Similar amplitudes and time constants (chloroplasts, 49 μs (61%); D-144 fragments, 90 μs (67%)) were obtained for the fast component, while the slower component differed considerably in time (chloroplasts, 2.9 ms; D-144 fragments, 170 ms). It is known that Fe-S Cluster A is photoreduced in less than 1 ms at 25 K. Data obtained support a model for Photosystem I involving a single intermediate in the decay path between the reduced primary electron acceptor (A?1) and P-700+ and a second intermediate in the decay path between a reduced secondary electron acceptor and P-700+. Dual laser-flash experiments to determine rate constants for these processes are included.  相似文献   

15.
A mathematical analysis is described which measures the effects of actinic light intensity and concentration of an artificial electron donor on the steady-state light-induced redox level of a reaction-center pigment (e.g. P-700) and on the overall light-induced electron flux (e.g. reduction of NADP+). The analysis led to a formulation (somewhat similar to the Michaelis-Menten equation for enzyme kinetics) in which a parameter, I1/2, is defined as the actinic light intensity that, at a given concentration of electron donro, renders the reaction-center pigment half oxidized and half reduced. To determine the role of a presumed reaction-center pigment, I1/2 is compared with another parameter, equivalent to I1/2, that is obtained independently of the reaciton-center pigment by measuring the effect of actinic light intensity and concentration of electron donor on the overall electron flow. The theory was tested and validated in a model system with spinach Photosystem I chloroplast fragments by measurements of photooxidation of P-700 and light-induced reduction of NADP+ by reduced 2,6-dichlorophenolindophenol. A possible extension of this mathematical analysis to more general electron-transport systems is discussed.  相似文献   

16.
Photosystem I preparations were irradiated with UV to destroy vitamin K1 in situ. The depletion of vitamin K1 resulted in inactivation of NADP+ photoreduction and introduction of a 220 ms component in the flash generated P700+ re-reduction at room temperature. The photoreduction of the terminal FeS centers FA and FB in control and vitamin K1-depleted preparations at 7 K were comparable. The data confirm that vitamin K1 is functionally implicated in primary electron transfer reactions in PS I at physiological temperature, and that the anomalous results at cryogenic temperature may be explicable in terms of a by-pass of the vitamin K1 acceptor site or heterogeneity introduced into the photosystem by quinone removal.  相似文献   

17.
The back-reaction kinetics in Photosystem I (PS I) were studied on the microsecond-to-s time scale in cyanobacterial preparations, which differed in the number of iron-sulfur clusters to assess the contributions of particular components to the reduction of P700+. In membrane fragments and in trimeric P700-FA/FB complexes, the major contribution to the absorbance change at 820 nm (delta A820) was the back-reaction of FA- and/or FB- with lifetimes of approximately 10 and 80 ms (approximately 10% and 40% relative amplitude). The decay of photoinduced electric potential (delta psi) across a membrane with directionally incorporated P700-FA/FB complexes had similar kinetics. HgCl2-treated PS I complexes, which contain FA but no FB, retain both of these kinetic components, indicating that neither can be assigned uniquely to a specific acceptor. These results suggest that FA- reduces P700+ directly and argue for a rapid electron equilibration between FA and FB, which would eliminate their kinetic distinction in a back-reaction. In PsaC-depleted P700-Fx cores, as well as in P700-FA/FB complexes with chemically reduced FA and FB, the major contribution to the delta A820 and the delta psi decay is a biphasic back-reaction of F-X (approximately 400 microseconds and 1.5 ms) with some contribution from A-1 (approximately 10 microseconds and 100 microseconds), the latter of which is variable depending on experimental conditions. The delta A820 decay in a P700-A1 core devoid of all iron-sulfur clusters comprises two phases with lifetimes of 10 microseconds and 130 microseconds (2.7:1 ratio). The biexponential back-reaction kinetics found for each of the electron acceptors may be related to existence of different conformational states of the PS I complex. In all preparations studied, excitation at 532 nm with flash energies exceeding 10 mJ gives rise to formation of antenna 3Chl, which also contributes to delta A820 decay on the tens-of-microsecond time scale. A distinction between delta A820 components related to back-reactions and to 3Chl decay can be made by analysis of flash saturation dependencies and by measurements of kinetics with preoxidized P700.  相似文献   

18.
This review considers the state-of-the-art on mechanisms and alternative pathways of electron transfer in photosynthetic electron transport chains of chloroplasts and cyanobacteria. The mechanisms of electron transport control between photosystems (PS) I and II and the Calvin–Benson cycle are considered. The redistribution of electron fluxes between the noncyclic, cyclic, and pseudocyclic pathways plays an important role in the regulation of photosynthesis. Mathematical modeling of light-induced electron transport processes is considered. Particular attention is given to the electron transfer reactions on the acceptor side of PS I and to interactions of PS I with exogenous acceptors, including molecular oxygen. A kinetic model of PS I and its interaction with exogenous electron acceptors has been developed. This model is based on experimental kinetics of charge recombination in isolated PS I. Kinetic and thermodynamic parameters of the electron transfer reactions in PS I are scrutinized. The free energies of electron transfer between quinone acceptors A1A/A1B in the symmetric redox cofactor branches of PS I and iron–sulfur clusters FX, FA, and FB have been estimated. The second-order rate constants of electron transfer from PS I to external acceptors have been determined. The data suggest that byproduct formation of superoxide radical in PS I due to the reduction of molecular oxygen in the A1 site (Mehler reaction) can exceed 0.3% of the total electron flux in PS I.  相似文献   

19.
A new photosystem I core has been isolated that is devoid of the bound iron-sulfur clusters but preserves electron flow from P700 to the intermediate electron acceptor A1. The particle is prepared by incubation of a Synechococcus sp. PCC 6301 photosystem I core protein (which contains electron acceptors A0, A1, and FX) with 3 M urea and 5 mM K3Fe(CN)6 to oxidatively denature the FX iron-sulfur cluster to the level of zero-valence sulfur. In this apo-FX preparation, over 90% of the flash-induced absorption change at 820 nm decays with a 10-microseconds half-time characteristic of the decay of the P700 triplet state formed from the backreaction of P700+ with an acceptor earlier than FX. Chemical reduction at high pH values with aminoiminomethanesulfinic acid results in kinetics identical with those seen in the P700 chlorophyll a protein prepared with sodium dodecyl sulfate (SDS-CP1, which contains only electron acceptor A0); the flash-induced absorption change decays primarily with a 25-ns half-time characteristic of the backreaction between P700+ and A0-, and the magnitude of the total absorption change is larger than can be accounted for by the P700 content alone. Addition of oxygen results in a reversion to the 10-microseconds kinetic decay component attributed to the decay of the P700 triplet state. At 77 K, the optical transient in the apo-FX preparation decays with a 200-microseconds half-time characteristic of the backreaction between P700+ and A1-.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Pierre Stif  Paul Mathis  Tore Vnngrd 《BBA》1984,767(3):404-414
Electron transport has been studied by flash absorption and EPR spectroscopies at 10–30 K in Photosystem I particles prepared with digitonin under different redox conditions. In the presence of ascorbate, an irreversible charge separation is progressively induced at 10 K between P-700 and iron-sulfur center A by successive laser flashes, up to a maximum which corresponds to about two-thirds of the reaction centers. In these centers, heterogeneity of the rate for center A reduction is also shown. In the other third of reaction centers, the charge separation is reversible and relaxes with a t1/2 ≈ 120 μs. When the iron-sulfur centers A and B are prereduced, the 120 μs relaxation becomes the dominant process (70–80% of the reaction centers), while a slow component (t1/2 = 50–400 ms) reflecting the recombination between P-700+ and center X occurs in a minority of reaction centers (10–15%). Flash absorption and EPR experiments show that the partner of P-700+ in the 120 μs recombination is neither X nor a chlorophyll but more probably the acceptor A1 as defined by Bonnerjea and Evans (Bonnerjea, J. and Evans, M.C.W. (1982) FEBS Lett. 148, 313–316). The role of center X in low-temperature electron flow is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号