首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ujváry I  Nachman RJ 《Peptides》2002,23(4):795-799
A new, p -carborane containing analog of tyrosine, 3-[1-hydroxy-1,12-dicarba-closo-dodecaboran (12)-12-yl]alanine, was prepared from protected 3-[1-hydroxy-1,12-dicarba-closo-dodecaboran (12)-12-yl]propionic acid in five steps using Oppolzer's sultam methodology for asymmetric hydroxyamination as the key step. The tyrosine mimetic can function as a hydrophobic surrogate for tyrosine residues in insect and mammalian neuropeptides to enhance the lipophilicity, and therefore, the cuticle and/or tissue permeability properties of mimetic analogs. As an amino acid, insertion of the mimic is not limited to the N-terminus but can replace a tyrosine residue at any position within a peptide sequence.  相似文献   

2.
A potent androgen receptor (AR) antagonist, 3-(12-hydroxymethyl-1,12 dicarba-closo-dodecaboran-1-yl)benzonitrile (3a, BA341), contains a p-carborane cage as a hydrophobic pharmacophore. We elucidated the structural properties of 3a by means of single-crystal X-ray diffraction analysis and conducted a docking study of 3a with hAR LBD. The cyano group of 3a formed hydrogen bonds with Gln711 and Arg752 and the hydroxymethyl group did so with Asn705 and Thr877 in hAR LBD. The bulky p-carborane cage was accommodated in the hydrophobic pocket of hAR LBD. To understand the structure-activity relationship around the hydroxymethyl group of 3a, we designed, synthesized, and evaluated the biological activities of various novel AR ligands. Since the biological activities of carbonyl compounds 8a, 8b, and 8c were similar to or weaker than those of the parent hydroxyl compounds 3a, 7a, and 7b, it seems to be necessary to have not only a hydrogen bonding acceptor, but also a hydrogen bonding donor adjacent to the hydroxymethyl group of 3a for efficient interaction with hAR LBD.  相似文献   

3.
The tyrosine kinase activity associated with epidermal growth factor receptor (EGFR) has been a target in studies of pharmacological reagents to inhibit growth of cancer cells, which are mostly of epidermal origin. Lyso-GM3 dimer showed stronger inhibitory effect on the tyrosine kinase of EGFR than GM3, with minimal cytotoxicity [Y. Murozuka, et al. Lyso-GM3, its dimer, and multimer: their synthesis, and their effect on epidermal growth factor-induced receptor tyrosine kinase. Glycoconj. J. 24 (2007) 551-563]. Synthesis of lipids with sphingosine requires many steps, and the yield is low. A biocombinatory approach overcame this difficulty; however, products required a C(12) aliphatic chain, rather than the sphingosine head group [Y. Murozuka, et al. Efficient sialylation on azidododecyl lactosides by using B16 melanoma cells. Chemistry & Biodiversity 2 (2005) 1063-1078]. The present study was to clarify the effects of these lipid mimetics of GM3 and lyso-GM3 dimer on EGFR tyrosine kinase activity, and consequent changes of the A431 cell phenotype, as follows. (i) A lipid mimetic of lyso-GM3 dimer showed similar strong inhibitory effect on EGF-induced EGFR tyrosine kinase activity, and similar low cytotoxicity, as the authentic lyso-GM3 dimer. (ii) A lipid mimetic of lyso-GM3 dimer inhibited tyrosine phosphorylation of EGFR or its dimer to a level similar to that of the authentic lyso-GM3 dimer, but more strongly than GM3 or a lipid mimetic of GM3. (iii) Associated with the inhibitory effect of a lipid mimetic of lyso-GM3 dimer on EGF-induced EGFR kinase activity, only Akt kinase activity was significantly inhibited, but kinases associated with other signal transducers were not affected. (iv) The cell cycle of A431 cells, and the effects of GM3 and a lipid mimetic of lyso-GM3 dimer, were studied by flow cytometry, measuring the rate of DNA synthesis with propidium iodide. Fetal bovine serum greatly enhanced S phase and G(2)/M phase. Enhanced G(2)/M phase was selectively inhibited by pre-incubation of A431 cells with a lipid mimetic of lyso-GM3 dimer, whereas GM3 had only a minimal effect.  相似文献   

4.
Positive and negative regulation of cytokines such as IFN-gamma are key to normal homeostatic function. Negative regulation of IFN-gamma in cells occurs via proteins called suppressors of cytokine signaling (SOCS)1 and -3. SOCS-1 inhibits IFN-gamma function by binding to the autophosphorylation site of the tyrosine kinase Janus kinase (JAK)2. We have developed a short 12-mer peptide, WLVFFVIFYFFR, that binds to the autophosphorylation site of JAK2, resulting in inhibition of its autophosphorylation as well as its phosphorylation of IFN-gamma receptor subunit IFNGR-1. The JAK2 tyrosine kinase inhibitor peptide (Tkip) did not bind to or inhibit tyrosine autophosphorylation of vascular endothelial growth factor receptor or phosphorylation of a substrate peptide by the protooncogene tyrosine kinase c-src. Tkip also inhibited epidermal growth factor receptor autophosphorylation, consistent with the fact that epidermal growth factor receptor is regulated by SOCS-1 and SOCS-3, similar to JAK2. Although Tkip binds to unphosphorylated JAK2 autophosphorylation site peptide, it binds significantly better to tyrosine-1007 phosphorylated JAK2 autophosphorylation site peptide. SOCS-1 only recognizes the JAK2 site in its phosphorylated state. Thus, Tkip recognizes the JAK2 autophosphorylation site similar to SOCS-1, but not precisely the same way. Consistent with inhibition of JAK2, Tkip inhibited the ability of IFN-gamma to induce an antiviral state as well as up-regulate MHC class I molecules on cells at a concentration of approximately 10 microM. This is similar to the K(d) of SOCS-3 for the erythropoietin receptor. These data represent a proof-of-concept demonstration of a peptide mimetic of SOCS-1 that regulates JAK2 tyrosine kinase function.  相似文献   

5.
Park J  Pei D 《Biochemistry》2004,43(47):15014-15021
Protein tyrosine phosphatases (PTPs) catalyze the hydrolysis of phosphotyrosyl (pY) proteins to produce tyrosyl proteins and inorganic phosphate. Specific PTPs inhibitors provide useful tools for studying PTP function in signal transduction processes and potential treatment for human diseases such as diabetes, inflammation, and cancer. In this work, trans-beta-nitrostyrene (TBNS) and its derivatives are found to be slow-binding inhibitors against protein tyrosine phosphatases PTP1B, SHP-1, and Yop with moderate potencies (K(I*) = 1-10 microM). Competition experiments with a substrate (pNPP) and iodoacetate indicate that TBNS is active site-directed. The mechanism of inhibition was investigated by UV-vis absorption spectroscopy, (1)H-(13)C heteronuclear single-quantum correlation NMR spectroscopy, and site-directed mutagenesis. These studies suggested a mechanism in which TBNS acts a pY mimetic and binds to the PTP active site to form an initial noncovalent E.I complex, followed by nucleophilic attack on the TBNS nitro group by Cys-215 of PTP1B to form a reversible, covalent adduct as the tighter E.I* complex. TBNS derivatives represent a new class of neutral pY mimetic inhibitors of PTPs.  相似文献   

6.
New treatment approaches are needed for patients with asthma. Apolipoprotein A-I (apoA-I), the major structural protein of high-density lipoproteins, mediates reverse cholesterol transport and has atheroprotective and anti-inflammatory effects. In this study, we hypothesized that an apoA-I mimetic peptide might be effective at inhibiting asthmatic airway inflammation. A 5A peptide, which is a synthetic, bihelical apoA-I mimetic, was administered to wild-type A/J mice via osmotic mini-pump prior to the induction of house dust mite (HDM)-induced asthma. HDM-challenged mice that received the 5A apoA-I mimetic peptide had significant reductions in the number of bronchoalveolar lavage fluid eosinophils, lymphocytes, and neutrophils, as well as in histopathological evidence of airway inflammation. The reduction in airway inflammation was mediated by a reduction in the expression of Th2- and Th17-type cytokines, as well as in chemokines that promote T cell and eosinophil chemotaxis, including CCL7, CCL17, CCL11, and CCL24. Furthermore, the 5A apoA-I mimetic peptide inhibited the alternative activation of pulmonary macrophages in the lungs of HDM-challenged mice. It also abrogated the development of airway hyperresponsiveness and reduced several key features of airway remodeling, including goblet cell hyperplasia and the expression of collagen genes (Col1a1 and Col3a1). Our results demonstrate that the 5A apoA-I mimetic peptide attenuates the development of airway inflammation and airway hyperresponsiveness in an experimental murine model of HDM-induced asthma. These data support the conclusion that strategies using apoA-I mimetic peptides, such as 5A, might be developed further as a possible new treatment approach for asthma.  相似文献   

7.
A series of phenylpropyloxyethylamines and cinnamyloxyethylamines were synthesized as deconstructed analogs of 14-phenylpropyloxymetopon and analyzed for opioid receptor binding affinity. Using the Conformationally Sampled Pharmacophore modeling approach, we discovered a series of compounds lacking a tyrosine mimetic, historically considered essential for μ opioid binding. Based on the binding studies, we have identified the optimal analogs to be N-methyl-N-phenylpropyl-2-(3-phenylpropoxy)ethanamine, with 1520 nM, and 2-(cinnamyloxy)-N-methyl-N-phenethylethanamine with 1680 nM affinity for the μ opioid receptor. These partial opioid structure analogs will serve as the novel lead compounds for future optimization studies.  相似文献   

8.
High-throughput screening of the P&GP corporate repository against several protein tyrosine phosphatases identified the sulfamic acid moiety as potential phosphotyrosine mimetic. Incorporation of the sulfamic acid onto a 1,2,3,4-tetrahydroisoquinoline scaffold provided a promising starting point for PTP1B inhibitor design.  相似文献   

9.
Vitamin D receptor (VDR) is a nuclear receptor for 1α,25-dihydroxyvitamin D(3) (1α,25(OH)(2)D(3)), and is an attractive target for multiple clinical applications. We recently developed novel non-secosteroidal VDR ligands bearing a hydrophobic p-carborane cage, thereby establishing the utility of this spherical hydrophobic core structure for development of VDR ligands. Here, we synthesized two series of novel non-secosteroidal VDR ligands with different spherical hydrophobic cores, that is, bicyclo[2.2.2]octane derivatives and p-carborane derivatives, and compared their biological activities in order to examine the difference between the interactions of the C-H hydrocarbon surface and the B-H carborane surface with the receptor. Carborane derivatives exhibited more potent differentiation-inducing activity toward HL-60 cells than did the corresponding bicyclo[2.2.2]octane derivatives. These results suggest that the hydrophobic carborane cage may interact more efficiently than the hydrocarbons with the hydrophobic surface of VDR. This finding further supports the view that carborane structure is a promising option for drug development.  相似文献   

10.
EGF-induced activation of EGFR tyrosine kinase is known to be inhibited by ganglioside GM3, its dimer, and other mimetics. However, details of the interaction, such as kinetic properties, have not yet been clarified. The direct interaction is now defined by the surface plasmon resonance (SPR) technique. To determine the affinity of EGFR for lyso-GM3 or lyso-GM3 mimetic, these glycolipid ligands were covalently immobilized onto a sensor chip, and binding affinities were investigated. Results of these studies confirmed the direct interaction of lyso-GM3 or its mimetic with EGFR. A strong interaction between EGFR and lyso-GM3 or its mimetic was indicated by increased binding of EGFR to glycolipid-immobilized surface, in an EGFR dose-dependent manner.  相似文献   

11.
12.
The novel phosphotyrosine (pTyr) mimetic 4'-carboxymethyloxy-3'-phosphonophenylalanine (Cpp) has been designed and incorporated into a series of nonpeptide inhibitors of the SH2 domain of pp60(c-Src) (Src) tyrosine kinase. A 2.2 A X-ray crystal structure of 1a bound to a mutant form of Lck SH2 domain provides insight regarding the structure-activity relationships and supports the design concept of this new pTyr mimetic.  相似文献   

13.
Liu D  Ling X  Wen J  Liu J 《Journal of neurochemistry》2000,75(5):2144-2154
To determine whether reactive nitrogen species contribute to secondary damage in CNS injury, the time courses of nitric oxide, peroxynitrite, and nitrotyrosine production were measured following impact injury to the rat spinal cord. The concentration of nitric oxide measured by a nitric oxide-selective electrode dramatically increased immediately following injury and then quickly declined. Nitro-L-arginine reduced nitric oxide production. The extracellular concentration of peroxynitrite, measured by perfusing tyrosine through a microdialysis fiber into the cord and quantifying nitrotyrosine in the microdialysates, significantly increased after injury to 3.5 times the basal level, and superoxide dismutase and nitro-L-arginine completely blocked peroxynitrite production. Tyrosine nitration examined immunohistochemically significantly increased at 12 and 24 h postinjury, but not in sham-control sections. Mn(III) tetrakis(4-benzoic acid)-porphyrin (a novel cell-permeable superoxide dismutase mimetic) and nitro-L-arginine significantly reduced the numbers of nitrotyrosine-positive cells. Protein-bound nitrotyrosine was significantly higher in the injured tissue than in the sham-operated controls. These results demonstrate that traumatic injury increases nitric oxide and peroxynitrite production, thereby nitrating tyrosine, including protein-bound tyrosine. Together with our previous report that trauma increases superoxide, our results suggest that reactive nitrogen species cause secondary damage by nitrating protein through the pathway superoxide + nitric oxide peroxynitrite protein nitration.  相似文献   

14.
A series of novel pyridazine analogues were prepared and the structure-activity relationship of their behavior as inhibitors of PTP1B was evaluated. Most of the analogues had potencies in the low micromolar range. The in vitro kinetics of this compound series demonstrated that they were reversible non-competitive binders. This indicates that there may exist another site in the enzyme through which enzyme activity can be inhibited, which is not a recognized interaction domain. Some of the analogues exhibited high selectivity for other PTPases, for example, compound 12 mp showed 20-fold selectivity for PTP1B (IC50=5.6 microM) versus both TCPTP and LAR (>100 microM, respectively). In contrast to many tyrosine phosphatase mimetic inhibitors, this compound class lacks negative charge and thus showed high permeability across cell membranes. Selective analogues in the series were analyzed in an in vitro cellular assay, which showed increased insulin-stimulated insulin receptor phosphorylation.  相似文献   

15.
16.
Platelets respond to various stimuli with rapid changes in shape followed by aggregation and secretion of their granule contents. Platelets lacking the alpha-subunit of the heterotrimeric G protein Gq do not aggregate and degranulate but still undergo shape change after activation through thromboxane-A2 (TXA2) or thrombin receptors. In contrast to thrombin, the TXA2 mimetic U46619 led to the selective activation of G12 and G13 in Galphaq-deficient platelets indicating that these G proteins mediate TXA2 receptor-induced shape change. TXA2 receptor-mediated activation of G12/G13 resulted in tyrosine phosphorylation of pp72(syk) and stimulation of pp60(c-src) as well as in phosphorylation of myosin light chain (MLC) in Galphaq-deficient platelets. Both MLC phosphorylation and shape change induced through G12/G13 in the absence of Galphaq were inhibited by the C3 exoenzyme from Clostridium botulinum, by the Rho-kinase inhibitor Y-27632 and by cAMP-analogue Sp-5,6-DCl-cBIMPS. These data indicate that G12/G13 couple receptors to tyrosine kinases as well as to the Rho/Rho-kinase-mediated regulation of MLC phosphorylation. We provide evidence that G12/G13-mediated Rho/Rho-kinase-dependent regulation of MLC phosphorylation participates in receptor-induced platelet shape change.  相似文献   

17.
Exploitation of the biologic activity of neurotrophins is desirable for medical purposes, but their protein nature intrinsically bears adverse pharmacokinetic properties. Here, we report synthesis and biologic characterization of a novel class of low molecular weight, non-peptidic compounds with NGF (nerve growth factor)-mimetic properties. MT2, a representative compound, bound to Trk (tropomyosin kinase receptor)A chain on NGF-sensitive cells, as well as in cell-free assays, at nanomolar concentrations and induced TrkA autophosphorylation and receptor-mediated internalization. MT2 binding involved at least two amino-acid residues within TrkA molecule. Like NGF, MT2 increased phosphorylation of extracellular signal-regulated kinase1/2 and Akt proteins and production of MKP-1 phosphatase (dual specificity phosphatase 1), modulated p38 mitogen-activated protein kinase activation, sustained survival of serum-starved PC12 or RDG cells, and promoted their differentiation. However, the intensity of such responses was heterogenous, as the ability of maintaining survival was equally possessed by NGF and MT2, whereas the induction of differentiation was expressed at definitely lower levels by the mimetic. Analysis of TrkA autophosphorylation patterns induced by MT2 revealed a strong tyrosine (Tyr)490 and a limited Tyr785 and Tyr674/675 activation, findings coherent with the observed functional divarication. Consistently, in an NGF-deprived rat hippocampal neuronal model of Alzheimer Disease, MT2 could correct the biochemical abnormalities and sustain cell survival. Thus, NGF mimetics may reveal interesting investigational tools in neurobiology, as well as promising drug candidates.  相似文献   

18.
Tyrosine hydroxylase was purified from bovine adrenal chromaffin cells and rat pheochromocytoma using a rapid (less than 2 days) procedure performed at room temperature. Rabbits were immunized with purified enzyme that was denatured with sodium dodecylsulfate, and antibodies to tyrosine hydroxylase were affinity-purified from immune sera. A Western blot procedure using the affinity-purified antibodies and 125I-protein A demonstrated a selective labeling of a single Mr approximately 62,000 band in samples from a number of different tissues. The relative lack of background 125I-protein A binding permitted the development of a quantitative spot immunolabeling procedure for tyrosine hydroxylase protein. The sensitivity of the assay is 1-2 ng of enzyme. Essentially identical standard curves were obtained with tyrosine hydroxylase purified from rat pheochromocytoma, rat corpus striatum, and bovine adrenal medulla. An extract of PC 12 cells (clonal rat pheochromocytoma cells) was calibrated against purified rat pheochromocytoma tyrosine hydroxylase and used as an external standard against which levels of tyrosine hydroxylase in PC12 cells and other tissue were quantified. With this procedure, qualitative assessment of tyrosine hydroxylase protein levels can be obtained in a few hours and quantitative assessment can be obtained in less than a day.  相似文献   

19.
Phenylalanine hydroxylation is necessary for the conversion of phenylalanine to tyrosine and disposal of excess phenylalanine. Studies of in vivo regulation of phenylalanine hydroxylation suffer from the lack of a method to determine intrahepatocyte enrichment of phenylalanine and tyrosine. apoB-100, a hepatic export protein, is synthesized from intrahepatocyte amino acids. We designed an in vivo multi-isotope study, [(15)N]phenylalanine and [2H2]tyrosine to determine rates of phenylalanine hydroxylation from plasma enrichments in free amino acids and apoB-100. For independent verification of apoB-100 as a reflection of enrichment in the intrahepatocyte pool, [1-(13)C]lysine was used as an indicator amino acid (IAA) to measure in vivo changes in protein synthesis in response to tyrosine supplementation. Adult men (n = 6) were fed an amino acid-based diet with low phenylalanine (9 mg.kg(-1).day(-1), 4.54 mumol.kg(-1).,h(-1)) and seven graded intakes of tyrosine from 2.5 (deficient) to 12.5 (excess) mg.kg(-1).day(-1). Gas chromatography-quadrupole mass spectrometry did not detect any tracer in apoB-100 tyrosine. A new and more sensitive method to measure label enrichment in proteins using isotope ratio mass spectrometry demonstrated that phenylalanine hydroxylation measured in apoB-100 decreased linearly in response to increasing tyrosine intake and reached a break point at 6.8 mg.kg(-1).day(-1). IAA oxidation decreased with increased tyrosine intake and reached a break point at 6.0 mg.kg(-1).day(-1). We conclude: apoB-100 is an accurate and useful measure of changes in phenylalanine hydroxylation; the synthesis of tyrosine via phenylalanine hydroxylation is regulated to meet the needs for protein synthesis; and that plasma phenylalanine does not reflect changes in protein synthesis.  相似文献   

20.
Different molecular mechanisms of the two broadly neutralizing anti-HIV-1 antibodies b12 and VRC01, as evidenced by their converse effects on the interaction of HIV-1 envelope glycoprotein gp120 with cellular coreceptors, were demonstrated using a synthetic CXCR4 mimetic peptide (CX4-M1) as coreceptor surrogate. While the interaction of gp120 with CX4-M1 was distinctly enhanced by VRC01, b12 was shown to have the contrary effect, and also to inhibit the VRC01-induced enhancement of gp120 binding to the CXCR4 mimetic peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号