首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2-Methyl-8-(phenylmethoxy)imidazo(1,2-a)pyridine-3acetonitrile+ ++ (SCH 28080) is a K+ site inhibitor specific for gastric H+,K+-ATPase and seems to be a counterpart of ouabain for Na+,K+-ATPase from the viewpoint of reaction pattern (i.e. reversible binding, K+ antagonism, and binding on the extracellular side). In this study, we constructed several chimeric molecules between H+,K+-ATPase and Na+,K+-ATPase alpha-subunits by using rabbit H+,K+-ATPase as a parental molecule. We found that the entire extracellular loop 1 segment between the first and second transmembrane segments (M1 and M2) and the luminal half of the M1 transmembrane segment of H+, K+-ATPase alpha-subunit were exchangeable with those of Na+, K+-ATPase, respectively, preserving H+,K+-ATPase activity, and that these segments are not essential for SCH 28080 binding. We found that several amino acid residues, including Glu-822, Thr-825, and Pro-829 in the M6 segment of H+,K+-ATPase alpha-subunit are involved in determining the affinity for this inhibitor. Furthermore, we found that a chimeric H+,K+-ATPase acquired ouabain sensitivity and maintained SCH 28080 sensitivity when the loop 1 segment and Cys-815 in the loop 3 segment of the H+,K+-ATPase alpha-subunit were simultaneously replaced by the corresponding segment and amino acid residue (Thr) of Na+,K+-ATPase, respectively, indicating that the binding sites of ouabain and SCH 28080 are separate. In this H+, K+-ATPase chimera, 12 amino acid residues in M1, M4, and loop 1-4 that have been suggested to be involved in ouabain binding of Na+, K+-ATPase alpha-subunit are present; however, the low ouabain sensitivity indicates the possibility that the sensitivity may be increased by additional amino acid substitutions, which shift the overall structural integrity of this chimeric H+,K+-ATPase toward that of Na+,K+-ATPase.  相似文献   

2.
Na(+),K(+)-ATPase is inhibited by cardiac glycosides such as ouabain, and palytoxin, which do not inhibit gastric H(+),K(+)-ATPase. Gastric H(+),K(+)-ATPase is inhibited by SCH28080, which has no effect on Na(+),K(+)-ATPase. The goal of the current study was to identify amino acid sequences of the gastric proton-potassium pump that are involved in recognition of the pump-specific inhibitor SCH 28080. A chimeric polypeptide consisting of the rat sodium pump alpha3 subunit with the peptide Gln(905)-Val(930) of the gastric proton pump alpha subunit substituted in place of the original Asn(886)-Ala(911) sequence was expressed together with the gastric beta subunit in the yeast Saccharomyces cerevisiae. Yeast cells that express this subunit combination are sensitive to palytoxin, which interacts specifically with the sodium pump, and lose intracellular K(+) ions. The palytoxin-induced K(+) efflux is inhibited by the sodium pump-specific inhibitor ouabain and also by the gastric proton pump-specific inhibitor SCH 28080. The IC(50) for SCH 28080 inhibition of palytoxin-induced K(+) efflux is 14.3 +/- 2.4 microm, which is similar to the K(i) for SCH 28080 inhibition of ATP hydrolysis by the gastric H(+),K(+)-ATPase. In contrast, palytoxin-induced K(+) efflux from cells expressing either the native alpha3 and beta1 subunits of the sodium pump or the alpha3 subunit of the sodium pump together with the beta subunit of the gastric proton pump is inhibited by ouabain but not by SCH 28080. The acquisition of SCH 28080 sensitivity by the chimera indicates that the Gln(905)-Val(930) peptide of the gastric proton pump is likely to be involved in the interactions of the gastric proton-potassium pump with SCH 28080.  相似文献   

3.
The phosphorylation of two isozymes (alpha(+) and alpha) of (Na+ + K+)-ATPase by 32Pi was studied under equilibrium conditions in various enzyme preparations from rat medulla oblongata, rat cerebral cortex, rat cerebellum, rat kidney, guinea pig kidney, and rabbit kidney. In ouabain-sensitive (Na+ + K+)-ATPases such as the brain, guinea pig kidney, and rabbit kidney enzymes, ouabain stimulated the Mg2+-dependent phosphorylation at lower concentrations, while a higher concentration was required for the stimulation of rat kidney (Na+ + K+)-ATPase, an ouabain-insensitive enzyme. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that two isozymes of the brain (Na+ + K+)-ATPase were also phosphorylated by 32Pi in the presence of ouabain. The properties of the phosphorylation were compared between the medullar oblongata (referred to as alpha(+] and the kidney (referred to as alpha) (Na+ + K+)-ATPases. The steady-state level of phosphorylation was achieved faster in the kidney enzymes than in the medulla oblongata enzyme. Phosphorylation without ouabain was greater in the kidney enzymes than in the brain enzymes. Furthermore, the former enzymes were inhibited by K+ much more than the latter. These findings suggest that the two isozymes of (Na+ + K+)-ATPase differ in their conformational changes during enzyme turnover.  相似文献   

4.
Glutaraldehyde treatment of the C12E8 solubilized H+/K(+)-ATPase crosslinks the catalytic subunit with an apparent molecular mass of 94 kDa in SDS polyacrylamide gels into two Coomassie stained particles migrating at approx. 147 and 173 kDa. The subunit composition of these particles was determined from the comparative distribution of FITC fluorescence, wheat germ agglutinin and anti-beta antibody reactivity in control and crosslinked preparations. FITC exclusively labelled the catalytic monomer of the native preparation and its fluorescence was initially distributed into two broad bands centered at approx. 147 and 173 kDa after crosslinking. These fluorescent bands coincided with the Coomassie stained particles. A glycoprotein(s) detected by wheat germ agglutinin reactivity was present in diffuse areas between 65 and 86 kDa and 95 to 134 kDa in the control preparation. This area was also labelled by the anti-beta antibodies. With crosslinking, the distribution of the wheat germ agglutinin reactive protein and anti-beta antibodies coincided with the crosslinked particles labelled by FITC. The presence of both the catalytic monomer and the beta subunit glycoprotein in the crosslinked particles indicated that these proteins were closely associated in the C12E8 solution. This suggests that the minimal structural particle of the H+/K(+)-ATPase is an alpha,beta-heterodimer.  相似文献   

5.
A long period of experimental work has led to the conclusion that Na+/K(+)-ATPase is the enzymatic version of the Na+/K+ pump. This enzymatic system is in charge of various important cell functions. Among them cationic equilibrium and recovering of resting membrane potential in neurons is relevant. A tetrameric ensemble of peptides conform the system known as alpha and beta subunits. The alpha subunit is subdivided in alpha 1, alpha 2 and alpha 3, according to different location and properties. Regulatory factors intrinsic to the Na+/K(+)-ATPase system are: ATP, Na+ and Mg2+ concentrations inside the cell, and K+ outside. The enzyme activity is also regulated by extrinsic factors like some hormones (insulin and thyroxine). Induction of gene expression or post-translational modifications of the preexisting pool of the enzyme are the basic mechanisms of regulation proposed. Other extrinsic factors that seem to regulate the enzyme activity are some neurotransmitters. Among them the most extensively studied are catecholamines, mainly norepinephrine (NE) and lately serotonin (5-HT). The mechanism suggested for NE activation of the enzyme seems to involve specific receptors or a non-specific chelating action related to the catechol group that would relieve the inhibition by divalent cations. Another possibility is that NE removes an endogenous inhibitory factor present in the cytoplasm. The Na+/K(+)-ATPase is activated also by 5-HT. In vivo pharmacological and nutriological manipulations of brain 5-HT are accompanied by parallel responses of Na+/K(+)-ATPase activity. Serotonin agonists do activate the enzyme and antagonists neutralize the activation. In vitro there is a different dose dependent activation, according to the brain region. The mechanism involved seems to implicate a specific receptor system. Serotonin-Na+/K(+)-ATPase interaction in the rat brain is probably of functional relevance because it disappears in amygdaloid kindling. Also it seems to influence the ionic regulation of the pigment transport mechanism in crayfish photoreceptors. In relation to other neurotransmitters, a weak response to histamine was observed with acetylcholine, GABA and glutamic acid, the results were negative.  相似文献   

6.
Munson KB  Lambrecht N  Sachs G 《Biochemistry》2000,39(11):2997-3004
The effects of site-directed mutagenesis were used to explore the role of residues in M4 on the apparent Ki of a selective, K+-competitive inhibitor of the gastric H+,K+ ATPase, SCH28080. A double transfection expression system is described, utilizing HEK293 cells and separate plasmids encoding the alpha and beta subunits of the H+,K+-ATPase. The wild-type enzyme gave specific activity (micromoles of Pi per hour per milligram of expressed H+,K+-ATPase protein), apparent Km for ammonium (a K+ surrogate), and apparent Ki for SCH28080 equal to the H+, K+-ATPase purified from hog gastric mucosa. Amino acids in the M4 transmembrane segment of the alpha subunit were selected from, and substituted with, the nonconserved residues in M4 of the Na+, K+-ATPase, which is insensitive to SCH28080. Most of the mutations produced competent enzyme with similar Km,app values for NH4+ and Ki,app for SCH28080. SCH28080 affinity was decreased 2-fold in M330V and 9-fold in both M334I and V337I without significant effect on Km,app. Hence methionine 334 and valine 337 participate in binding but are not part of the NH4+ site. Methionine 330 may be at the periphery of the inhibitor site, which must have minimum dimensions of approximately 16 x 8 x 5 A and be accessible from the lumen in the E2-P conformation. Multiple sequence alignments place the membrane surface near arginine 328, suggesting that the side chains of methionine 334 and valine 337, on one side of the M4 helix, project into a binding cavity within the membrane domain.  相似文献   

7.
8.
Messenger RNA for the alpha subunit of Torpedo californica Na+/K(+)-ATPase was injected into Xenopus oocytes together with that of the beta subunit of rabbit H+/K(+)-ATPase. The Na+/K(+)-ATPase alpha subunit was assembled in the microsomal membranes with the H+/K(+)-ATPase beta subunit, and became resistant to trypsin. These results suggest that the H+/K(+)-ATPase beta subunit facilitates the stable assembly of the Na+/K(+)-ATPase alpha subunit in microsomes.  相似文献   

9.
A hydrophobic amine, SCH 28080, 2-methyl-8-(phenylmethoxy)imidazo(1,2a)pyridine-3-acetonitrile, previously shown to inhibit gastric acid secretion in vivo and in vitro, was also shown to inhibit basal and stimulated aminopyrine accumulation in isolated gastric glands when histamine, high K+ concentrations, or dibutyryl cAMP were used as secretagogues. Stimulated, but not basal, oxygen consumption was also inhibited. Neutralization of the acid space of the parietal cell by high concentrations of the weak base, imidazole, reduced the potency of the drug, suggesting that SCH 28080 was active when protonated. Studies on the isolated H+,K+-ATPase showed that the compound inhibited the enzyme competitively with K+, whether ATP or p-nitrophenyl phosphate were used as substrates. In contrast, the inhibition was mixed with respect to p-nitrophenyl phosphate and uncompetitive with respect to ATP. The drug reduced the steady state level of the phosphoenzyme but not the observed rate constant for phosphoenzyme formation in the absence of K+ nor the quantity of phosphoenzyme reacting with K+. The drug quenched the fluorescence of fluorescein isothiocyanate-modified enzyme and also inhibited the ATP-independent K+ exchange reaction of the H+,K+-ATPase. Its action on gastric acid secretion can be explained by inhibition of the H+,K+-ATPase by reversible complexation of the enzyme. This class of compound, therefore, acts as a reversible inhibitor of gastric acid secretion.  相似文献   

10.
The ontogeny of rat H+/K+-ATPase was studied between foetal day 18 and neonatal day 18, using a specific monoclonal antibody (95-111 mAb). The H+/K+-ATPase content of gastric subcellular membranes was assayed and the ATPase subunits were characterized by Western blot. The epithelium density in parietal cells was measured by immunohistochemistry. H+/K+-ATPase was present in the 18-day-old foetuses and parietal cells were detected on foetal day 19. The H+/K+-ATPase concentration remained stable from foetal day 18 to neonatal day 1, while the parietal cell density increased 2.5-fold. The H+/K+-ATPase concentration increased by 2.5-fold on day 6, then remained constant up to day 18. The parietal cell density remained unchanged during this period, suggesting that the concentration increase on day 6 was due to an increase in parietal cell ATPase content. The 95-111 mAb recognized a 95 kDa single band on foetal day 18 and a doublet at all the other stages of development. Previous studies had demonstrated that acid secretion drops critically at day 12 post partum in the rat and that H+/K+-ATPase activity is lost. The present study demonstrates that the H+/K+-ATPase is, however, present on day 12.  相似文献   

11.
Experiments with the reconstituted (Na+ + K+)-ATPase show that besides the ATP-dependent cytoplasmic Na(+)-K+ competition for Na+ activation there is a high affinity inhibitory effect of cytoplasmic K+. In contrast to the high affinity K+ inhibition seen with the unsided preparation at a low ATP especially at a low temperature, the high affinity inhibition by cytoplasmic K+ does not disappear when the ATP concentration an-or the temperature is increased. The high affinity inhibition by cytoplasmic K+ is also observed with Cs+, Li+ or K+ as the extracellular cation, but the fractional inhibition is much less pronounced than with Na+ as the extracellular cation. The results suggest that either there are two populations of enzyme, one with the normal ATP dependent cytoplasmic Na(+)-K+ competition, and another which due to the preparative procedure has lost this ATP sensitivity. Or that the normal enzyme has two pathways for the transition from E2-P to E1ATP. One on which the enzyme with the translocated ion binds cytoplasmic K+ with a high affinity but not ATP, and another on which ATP is bound but not K+. A kinetic model which can accommodate this is suggested.  相似文献   

12.
Na+/K+-ATPase (EC 3.6.1.3) is an important membrane-bound enzyme. In this paper, kinetic studies on Na+/K+-ATPase were carried out under mimetic physiological conditions. By using microcalorimeter, a thermokinetic method was employed for the first time. Compared with other methods, it provided accurate measurements of not only thermodynamic data (deltarHm) but also the kinetic data (Km and Vmax). At 310.15K and pH 7.4, the molar reaction enthalpy (deltarHm) was measured as -40.514 +/- 0.9kJmol(-1). The Michaelis constant (Km) was determined to be 0.479 +/- 0.020 mM and consistent with literature data. The reliability of the thermokinetic method was further confirmed by colorimetric studies. Furthermore, a simple and reliable kinetic procedure was presented for ascertaining the true substrate for Na+/K+-ATPase and determining the effect of free ATP. Results showed that the MgATP complex was the real substrate with a Km value of about 0.5mM and free ATP was a competitive inhibitor with a Ki value of 0.253 mM.  相似文献   

13.
The reactivity towards Na+ and K+ of Na+/K+-ATPase phosphoenzymes formed from ATP and Pi during Na+-ATPase turnover and that obtained from Pi in the absence of ATP, Na+ and K+ was studied. The phosphoenzyme formed from Pi in the absence of cycling and with no Na+ or K+ in the medium showed a biphasic time-dependent breakdown. The fast component, 96% of the total EP, had a decay rate of about 4 s(-1) in K+-free 130 mm Na+, and was 40% inhibited by 20 mm K+. The slow component, about 0.14 s(-1), was K+ insensitive. Values for the time-dependent breakdown of the phosphoenzymes obtained from ATP and from Pi during Na+-ATPase activity were indistinguishable from each other. In K+-free medium containing 130 mm Na+, the decays followed a single exponential with a rate constant of 0.45 s(-1). The addition of 20 mm K+ markedly increased the decays and made them biphasic. The fast components had a rate of approximately 220 s-1 and accounted for 92-93% of the total phosphoenzyme. The slow components decayed at a rate of about 47-53 s(-1). A second group of experiments examined the reactivity towards Na+ of the E2P forms obtained with ATP and Pi when the enzyme was cycling. In both cases, the rate of dephosphorylation was a biphasic function of [Na+]: inhibition at low [Na+], with a minimum at about 5 mm Na+, followed by recovery at higher [Na+]. Although qualitatively similar, the phosphoenzyme formed from Pi showed slightly less inhibition and more pronounced recovery. These results indicate that forward and backward phosphorylation during Na+-ATPase turnover share the same intermediates.  相似文献   

14.
The rabbit H,K-ATPase alpha- and beta-subunits were transiently expressed in HEK293 T cells. The co-expression of the H,K-ATPase alpha- and beta-subunits was essential for the functional H,K-ATPase. The K+-stimulated H,K-ATPase activity of 0.82 +/- 0.2 micromol/mg/h saturated with a K0.5 (KCl) of 0.6 +/- 0.1 mM, whereas the 2-methyl-8-(phenylmethoxy)imidazo[1,2a]pyridine-3-acetonitrile (SCH 28080)-inhibited ATPase of 0.62 +/- 0.07 micromol/mg/h saturated with a Ki (SCH 28080) of 1.0 +/- 0.3 microM. Site mutations were introduced at the N,N-dicyclohexylcarbodiimide-reactive residue, Glu-857, to evaluate the role of this residue in ATPase function. Variations in the side chain size and charge of this residue did not inhibit the specific activity of the H,K-ATPase, but reversal of the side chain charge by substitution of Lys or Arg for Glu produced a reciprocal change in the sensitivity of the H,K-ATPase to K+ and SCH 28080. The K0.5 for K+stimulated ATPase was decreased to 0.2 +/-.05 and 0.2 +/-.03 mM, respectively, in Lys-857 and Arg-857 site mutants, whereas the Ki for SCH 28080-dependent inhibition was increased to 6.5 +/- 1.4 and 5.9 +/- 1.5 microM, respectively. The H,K-ATPase kinetics were unaffected by the introduction of Ala at this site, but Leu produced a modest reciprocal effect. These data indicate that Glu-857 is not an essential residue for cation-dependent activity but that the residue influences the kinetics of both K+ and SCH 28080-mediated functions. This finding suggests a possible role of this residue in the conformational equilibrium of the H,K-ATPase.  相似文献   

15.
Leishmania donovani has an active K+/H+ exchange system on the surface membrane. Modulation of external K+ concentration resulted in a corresponding change in internal pH (pHi) suggesting a link between proton and potassium transport. Although a Na+/H+ antiporter is present on the plasma membrane, its sensitivity to amiloride suggests that it operates independent of K+/H+ exchange. Reduction of cellular ATP with NaN3 and KCN inhibits K+/H+ exchange showing thereby that the process is energy dependent. The K+/H+ exchange is sensitive to inhibitors of the gastric K+/H+-ATPase. It is concluded that the H+-ATPase previously reported on the plasma membrane of L. donovani is in fact a K+/H+-ATPase. © 1994 wiley-Liss, Inc.  相似文献   

16.
We have cloned and sequenced a cDNA for the rabbit gastric proton-potassium pump (H+/K(+)-ATPase) alpha-subunit. The deduced peptide contains 1035 amino acids (Mr 114,201) and shows 97% sequence identity with the respective rat and hog proteins. A monoclonal antibody 146-14 has been shown previously to react with the extracytoplasmic side of the catalytic H+/K(+)-ATPase subunit and here we show that the epitope is in the region between amino acids 855 and 902 (the numbering of the H+/K(+)-ATPase catalytic subunit throughout the paper refers to the rabbit sequence). The localization of this epitope in conjunction with previously observed trypsin cleavage sites in the C-terminal one third of the enzyme and the hydrophobicity plot of the deduced peptide sequence are evidence for a structural model for the alpha-subunit of the H+/K(+)-ATPase which contains at least ten membrane spanning segments, similar to that deduced for the Ca(2+)-ATPase of sarcoplasmic reticulum.  相似文献   

17.
Choline chloride, 100 mM, stimulates Na+/K(+)-ATPase activity of a purified dog kidney enzyme preparation when Na+ is suboptimal (9 mM Na+ and 10 mM K+) and inhibits when K+ is suboptimal (90 mM Na+ and 1 mM K+), but has a negligible effect at optimal concentrations of both (90 mM Na+ and 10 mM K+). Stimulation occurs at low Na+ to K+ ratios, but not at those same ratios when the actual Na+ concentration is high (90 mM). Stimulation decreases or disappears when incubation pH or temperature is increased or when Li+ is substituted for K+ or Rb+. Choline+ also reduces the Km for MgATP at the low ratio of Na+ to K+ but not at the optimal ratio. In the absence of K+, however, choline+ does not stimulate at low Na+ concentrations: either in the Na(+)-ATPase reaction or in the E1 to E2P conformational transition. Together, these observations indicate that choline+ accelerates the rate-limiting step in the Na+/K(+)-ATPase reaction cycle, K(+)-deocclusion; consequently, optimal Na+ concentrations reflect Na+ accelerating that step also. Thus, the observed K0.5 for Na+ includes high-affinity activation of enzyme phosphorylation and low-affinity acceleration of K(+)-deocclusion. Inhibition of Na+/K(+)-ATPase and K(+)-nitrophenylphosphatase reactions by choline+ increases as the K(+)-concentration is decreased; the competition between choline+ and K+ may represent a similar antagonism between conformations selected by choline+ and by K+.  相似文献   

18.
The mechanism of the Na+/K(+)-ATPase activation by trypsin (from bovine pancreas) and kallikrein (from human plasma) was investigated on enzyme preparations from different sources (beef heart and dog kidney) and at different degrees of purification (beef heart). Kallikrein was effective on both beef and dog enzymes, whereas trypsin stimulated only the beef-heart Na+/K(+)-ATPase. The extent of activation by the proteinases was inversely related to the degree of purification (maximal enzyme activation about 60 and 20% on the partially purified and the more purified enzymes, respectively). Enzyme activation was observed up to 0.5-0.6 microgram/ml of proteinase. At higher concentrations the activation decreased and was converted into inhibition at proteinase concentrations above 1.0 micrograms/ml. Na+/K(+)-ATPase stimulation was due to an increase in the Vmax of the enzyme reaction. Km for ATP remained unaffected. The activating effect was favoured by sodium and counteracted by potassium. Accordingly, Na(+)-ATPase activity was stimulated to a greater extent (up to 350%), whereas K(+)-dependent p-nitrophenylphosphatase activity proved to be insensitive to the actions of the proteinases. The Na+/K(+)-ATPase stimulation by both proteinases was antagonized by either ouabain or canrenone, two drugs that bind on the extracellular side of the Na+/K(+)-ATPase molecule. On the contrary, the enzyme inactivation observed at high proteinase concentrations was not counteracted by these two drugs. The stimulation of either Na+/K(+)- or Na(+)-ATPase activity was shown to be an irreversible effect without any significant protein degradation detectable by SDS gel electrophoresis. The results obtained suggest that proteinases exert their stimulatory effects by interacting preferentially with the E2 conformation of Na+/K(+)-ATPase at site(s) located on the extracellular moiety of the enzyme.  相似文献   

19.
The H+/ATP stoichiometry of the (H+ +K+)-ATPase of dog gastric microsomes   总被引:1,自引:0,他引:1  
Gastric microsomal vesicles isolated from dog fundic mucosa were shown to be relatively ion tight and have a low level of proton permeability. The H+ translocase, basal ATPase and K+-activated ATPase activities of these vesicles were measured and the H+/ATP stoichiometry calculated using either the total K+-ATPase or the K+-stimulatable component (total K+-ATPase--basal ATPase). The former estimations consistently gave stoichiometric of approximately one, whereas the use of only the K+-stimulatable component gave widely differing values. Measurement of the dephosphorylation of the enzyme under basal conditions revealed both a labile and a stable phosphoenzyme component. The rate of decay of the labile component completely accounted for the basal ATPase activity observed. We conclude that the basal ATPase associated with our preparations is a spontaneous dephosphorylation of the phosphoenzyme occurring in the absence of K+ and that the H+/ATP stoichiometry of the gastric ATPase is one.  相似文献   

20.
It is proposed that the hydronium ion, H3O+, binds to the E1 conformation of the alpha-subunit of gastric proton pump. The H3O+ binding cavities are characterized parametrically based on valence, sequence, geometry, and size considerations from comparative modeling. The cavities have scope for accommodating monovalent cations of different ionic radii. The H3O+ transport is proposed to be aided by arenes which are arranged regularly along the pump starting from N-domain through the transmembrane region. Step-by-step structural changes accompanying H3O+ occlusion are studied in detail. The observations corroborate well with earlier experimental studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号