首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Enterohemorrhagic E. coli (EHEC) is associated with severe gastrointestinal disease. Upon entering the gastrointestinal tract, EHEC is exposed to a fluctuating environment and a myriad of other bacterial species. To establish an infection, EHEC strains have to modulate their gene expression according to the GI tract environment. In order to explore the interspecies interactions between EHEC and an human intestinal commensal, the global gene expression profile was determined of EHEC O103:H25 (EHEC NIPH-11060424) co-cultured with B. thetaiotaomicron (CCUG 10774) or grown in the presence of spent medium from B. thetaiotaomicron. Microarray analysis revealed that approximately 1% of the EHEC NIPH-11060424 genes were significantly up-regulated both in co-culture (30 genes) and in the presence of spent medium (44 genes), and that the affected genes differed between the two conditions. In co-culture, genes encoding structural components of the type three secretion system were among the most affected genes with an almost 4-fold up-regulation, while the most affected genes in spent medium were involved in chemotaxis and were more than 3-fold up-regulated. The operons for type three secretion system (TTSS) are located on the Locus of enterocyte effacement (LEE) pathogenicity island, and qPCR showed that genes of all five operons (LEE1-LEE5) were up-regulated. Moreover, an increased adherence to HeLa cells was observed in EHEC NIPH-11060424 exposed to B. thetaiotaomicron. Expression of stx2 genes, encoding the main virulence factor of EHEC, was down-regulated in both conditions (co-culture/spent medium). These results show that expression of EHEC genes involved in colonization and virulence is modulated in response to direct interspecies contact between cells, or to diffusible factors released from B. thetaiotaomicron. Such interspecies interactions could allow the pathogen to recognize its predilection site and modulate its behaviour accordingly, thus increasing the efficiency of colonization of the colon mucosa, facilitating its persistence and increasing its virulence potential.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
Enterohaemorrhagic Escherichia coli (EHEC) causes life‐threatening infections in humans as a consequence of the production of Shiga‐like toxins. Lack of a good animal model system currently hinders in vivo study of EHEC virulence by systematic genetic methods. Here we applied the genetically tractable animal, Caenorhabditis elegans, as a surrogate host to study the virulence of EHEC as well as the host immunity to this human pathogen. Our results show that E. coli O157:H7, a serotype of EHEC, infects and kills C. elegans. Bacterial colonization and induction of the characteristic attaching and effacing (A/E) lesions in the intact intestinal epithelium of C. elegans by E. coli O157:H7 were concomitantly demonstrated in vivo. Genetic analysis indicated that the Shiga‐like toxin 1 (Stx1) of E. coli O157:H7 is a virulence factor in C. elegans and is required for full toxicity. Moreover, the C. elegans p38 mitogen‐activated protein kinase (MAPK) pathway, anevolutionarily conserved innate immune and stress response signalling pathway, is activated in the regulation of host susceptibility to EHEC infection in a Stx1‐dependent manner. Our results validate the EHEC–C. elegans interaction as suitable for future comprehensive genetic screens for both novel bacterial and host factors involved in the pathogenesis of EHEC infection.  相似文献   

10.
11.
12.
The ability to respond to stress is at the core of an organism''s survival. The hormones epinephrine and norepinephrine play a central role in stress responses in mammals, which require the synchronized interaction of the whole neuroendocrine system. Mammalian adrenergic receptors are G-coupled protein receptors (GPCRs); bacteria, however, sense these hormones through histidine sensor kinases (HKs). HKs autophosphorylate in response to signals and transfer this phosphate to response regulators (RRs). Two bacterial adrenergic receptors have been identified in EHEC, QseC and QseE, with QseE being downstream of QseC in this signaling cascade. Here we mapped the QseC signaling cascade in the deadly pathogen enterohemorrhagic E. coli (EHEC), which exploits this signaling system to promote disease. Through QseC, EHEC activates expression of metabolic, virulence and stress response genes, synchronizing the cell response to these stress hormones. Coordination of these responses is achieved by QseC phosphorylating three of the thirty-two EHEC RRs. The QseB RR, which is QseC''s cognate RR, activates the flagella regulon which controls bacteria motility and chemotaxis. The QseF RR, which is also phosphorylated by the QseE adrenergic sensor, coordinates expression of virulence genes involved in formation of lesions in the intestinal epithelia by EHEC, and the bacterial SOS stress response. The third RR, KdpE, controls potassium uptake, osmolarity, and also the formation of lesions in the intestine. Adrenergic regulation of bacterial gene expression shares several parallels with mammalian adrenergic signaling having profound effects in the whole organism. Understanding adrenergic regulation of a bacterial cell is a powerful approach for studying the underlying mechanisms of stress and cellular survival.  相似文献   

13.
Inactivation of luxS, encoding an AI-2 biosynthesis enzyme, in Campylobacter jejuni strain 81-176 significantly reduced colonization of the chick lower gastrointestinal tract, chemotaxis toward organic acids, and in vitro adherence to LMH chicken hepatoma cells. Thus, AI-2 production in C. jejuni contributes to host colonization and interactions with epithelial cells.  相似文献   

14.
15.
16.
More than 40% of nosocomial infections are those of the urinary tract, most of these occurring in catheterized patients. Bacterial colonization of the urinary tract and catheters results not only in infection, but also various complications, such as blockage of catheters with crystalline deposits of bacterial origin, generation of gravels and pyelonephritis. The diversity of the biofilm microbial community increases with duration of catheter emplacement. One of the most important pathogens in this regard is Proteus mirabilis. The aims of this study were to identify and assess particular virulence factors present in catheter-associated urinary tract infection (CAUTI) isolates, their correlation and linkages: three types of motility (swarming, swimming and twitching), the ability to swarm over urinary catheters, biofilm production in two types of media, urease production and adherence of bacterial cells to various types of urinary tract catheters. We examined 102 CAUTI isolates and 50 isolates taken from stool samples of healthy people. Among the microorganisms isolated from urinary catheters, significant differences were found in biofilm-forming ability and the swarming motility. In comparison with the control group, the microorganisms isolated from urinary catheters showed a wider spectrum of virulence factors. The virulence factors (twitching motility, swimming motility, swarming over various types of catheters and biofilm formation) were also more intensively expressed.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号