首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retinitis pigmentosa is a genetically heterogeneous form of retinal degeneration, which has X-linked, autosomal recessive and autosomal dominant forms. The disease genes in families with autosomal dominant retinitis pigmentosa (adRP) have been linked to six loci, on 3q, 6p, 7p, 7q, 8q and 19q. In a large American family with late-onset adRP, microsatellite markers were used to test for linkage to the loci on 3q, 6p, 7p, 7q and 8q. Linkage was found to 7q using the marker D7S480. Additional microsatellite markers from 7q were then tested. In total, five markers, D7S480, D7S514, D7S633, D7S650 and D7S677, show statistically significant evidence for link-age in this family, with a maximum two-point lod score of 5.3 at 0% recombination from D7S514. These results confirm an earlier report of linkage to an adRP locus (RP10) in an unrelated family of Spanish origin and indicate that RP10 may be a significant gene for inherited retinal degeneration. In addition, we used recently reported microsatellite markers from 7q to refine the linkage map of the RP10 locus.  相似文献   

2.
Retinitis pigmentosa (RP) is the name given to a heterogeneous group of retinal degenerations mapping to at least 16 loci. The autosomal dominant form (ARP), accounting for approximately 25% of cases, can be caused by mutations in two genes, rhodopsin and peripherin/RDS, and by at least six other loci identified by linkage analysis. The RP11 locus for adRP has previously been mapped to chromosome 19q13.4 in a large English family. This linkage has been independently confirmed in a Japanese family, and we now report three additional unrelated linked U.K. families, suggesting that this is a major locus for RP. Linkage analysis in the U.K. families refines the RP11 interval to 5 cM between markers D19S180 and AFMc001yb1. All linked families exhibit incomplete penetrance; some obligate gene carriers remain asymptomatic throughout their lives, whereas symptomatic individuals experience night blindness and visual field loss in their teens and are generally registered as blind by their 30s. This "bimodal expressivity" contrasts with the variable-expressivity RP mapping to chromosome 7p (RP9) in another family, which has implications for diagnosis and counseling of RP11 families. These results may also imply that a proportion of sporadic RP, previously assumed to be recessive, might result from mutations at this locus.  相似文献   

3.
Sjögren-Larsson syndrome (SLS) is a rare, autosomal recessive disorder that is characterized by congenital ichthyosis, mental retardation, and spastic diplegia or tetraplegia. Three United States families, three Egyptian families, and one Israeli Arab family were investigated for linkage of the SLS gene to a region of chromosome 17. Pairwise and multipoint linkage analysis with nine markers mapped the SLS gene to the same region of the genome as that reported in Swedish SLS pedigrees. Examination of recombinants by haplotype analysis showed that the gene lies in the region containing the markers D17S953, D17S805, D17S689, and D17S842. D17S805 is pericentromeric on 17p. Patients in two consanguineous Egyptian families were homozygous at the nine marker loci tested, and another patient from a third family was homozygous for eight of the nine, suggesting that within each of these families the region of chromosome 17 carrying the SLS gene is identical by descent. Linkage of the SLS gene to chromosome 17p in families of Arabic, mixed European, Native American, and Swedish descent provides evidence for a single SLS locus and should prove useful for diagnosis and carrier detection in worldwide cases.  相似文献   

4.
Linkage analysis was performed on a large Dutch family with autosomal dominant retinitis pigmentosa. Linkage was found to the RP17 locus on chromosome 17q22, which was previously described in two South African families by Bardien et al. (1995, 1997). Assuming that the disease phenotypes in these families are caused by the same gene, the RP17 critical region is refined to a 7.7-cM interval between markers D17S1607 and D17S948. Two positional candidate genes, the retina-specific amine oxidase (RAO) gene (AOC2) and the cone transducin γ gene (GNGT2), were excluded. Received: 7 September 1998 / Accepted: 23 November 1998  相似文献   

5.
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in Americans and is the second leading cause of cancer mortality. Only a minority ( approximately 5%) of familial CRC can be explained by known genetic variants. To identify susceptibility genes for familial colorectal neoplasia, the colon neoplasia sibling study conducted a comprehensive, genome-wide linkage scan of 194 kindreds. Clinical information (histopathology, size and number of polyps, and other primary cancers) was used in conjunction with age at onset and family history for classification of the families into five phenotypic subgroups (severe histopathology, oligopolyposis, young, colon/breast, and multiple cancer) prior to analysis. By expanding the traditional affected-sib-pair design to include unaffected and discordant sib pairs, analytical power and robustness to type I error were increased. Sib-pair linkage statistics and Haseman-Elston regression identified 19 linkage peaks, with interesting results for chromosomes 1p31.1, 15q14-q22, 17p13.3, and 21. At marker D1S1665 (1p31.1), there was strong evidence for linkage in the multiple-cancer subgroup (p = 0.00007). For chromosome 15q14-q22, a linkage peak was identified in the full-sample (p = 0.018), oligopolyposis (p = 0.003), and young (p = 0.0009) phenotypes. This region includes the HMPS/CRAC1 locus associated with hereditary mixed polyposis syndrome (HMPS) in families of Ashkenazi descent. We provide compelling evidence linking this region in families of European descent with oligopolyposis and/or young age at onset (相似文献   

6.
"Autosomal dominant retinitis pigmentosa" (adRP) refers to a genetically heterogeneous group of retinal dystrophies, in which 54% of all cases can be attributed to 17 disease loci. Here, we describe the localization and identification of the photoreceptor cell-specific nuclear receptor gene NR2E3 as a novel disease locus and gene for adRP. A heterozygous mutation c.166G-->A (p.Gly56Arg) was identified in the first zinc finger of NR2E3 in a large Belgian family affected with adRP. Overall, this missense mutation was found in 3 families affected with adRP among 87 unrelated families with potentially dominant retinal dystrophies (3.4%), of which 47 were affected with RP (6.4%). Interestingly, affected members of these families display a novel recognizable NR2E3-related clinical subtype of adRP. Other mutations of NR2E3 have previously been shown to cause autosomal recessive enhanced S-cone syndrome, a specific retinal phenotype. We propose a different pathogenetic mechanism for these distinct dominant and recessive phenotypes, which may be attributed to the dual key role of NR2E3 in the regulation of photoreceptor-specific genes during rod development and maintenance.  相似文献   

7.
Retinitis pigmentosa (RP) is a genetically heterogeneous disease and an important cause of blindness in the state of Andhra Pradesh in India. In an attempt to identify the disease locus in families with the recessive form of the disease, we used the approach of screening for homozygosity by descent in offspring of consanguineous and nonconsanguineous families with RP. Microsatellite markers closely flanking 21 known candidate genes for RP were genotyped in parents and affected offspring to determine whether there was homozygosity at these loci that was shared by affected individuals of a family. This screening approach may be a rapid preliminary method to test known loci for possible cosegregation with disease.  相似文献   

8.
Autosomal recessive congenital ichthyosis (ARCI) comprises a group of severe disorders of keratinization, characterized by variable erythema and skin scaling. It is known for its high degree of genetic and clinical heterogeneity. Mutations in the gene for keratinocyte transglutaminase (TGM1) on chromosome 14q11 were shown in patients with ARCI, and a second locus was described, on chromosome 2q, in families from northern Africa. Three other loci for ARCI, on chromosomes 3p and 19p, were identified recently. We have embarked on a whole-genome scan for further loci for ARCI in four families from Germany, Turkey, and the United Arab Emirates. A novel ARCI locus was identified on chromosome 17p, between the markers at D17S938 and D17S1856, with a maximum LOD score of 3.38, at maximum recombination fraction 0.00, at D17S945, under heterogeneity. This locus is linked to the disease in the Turkish family and in the German family. Extensive genealogical studies revealed that the parents of the German patients with ARCI were eighth cousins. By homozygosity mapping, the localization of the gene could then be refined to the 8.4-cM interval between D17S938 and D17S1879. It could be shown, however, that ARCI in the two Arab families is linked neither to the new locus on chromosome 17p nor to one of the five loci known previously. Our findings give evidence of further genetic heterogeneity that is not linked to distinctive phenotypes.  相似文献   

9.
Linkage analysis in familial breast and ovarian cancer and studies of allelic deletion in sporadic ovarian tumors have identified a region on chromosome 17q containing a candidate tumor-suppressor gene (referred to as BRCA1) of likely importance in ovarian carcinogenesis. We have examined normal and tumor DNA samples from 32 patients with sporadic and 8 patients with familial forms of the disease, for loss of heterozygosity (LOH) at 21 loci on chromosome 17 (7 on 17p and 14 on 17q). LOH on 17p was 55% (22/40) for informative 17pl3.1 and 17pl3.3 markers. When six polymorphic markers flanking the familial breast/ovarian cancer susceptibility locus on 17ql2-q21 were used, LOH was 58% (23/40), with one tumor showing telomeric retention. Evaluation of a set of markers positioned telomeric to BRCA1 resulted in the highest degree of LOH, 73% (29/40), indicating that a candidate locus involved in ovarian cancer may reside distal to BRCA1. Five of the tumors demonstrating allelic loss for 17q markers were from individuals with a strong family history of breast and ovarian cancer. More important, two of these tumors (unique patient number [UPN] 57 and UPN 79) retained heterozygosity for all informative markers spanning the BRCA1 locus but showed LOH at loci distal to but not including the anonymous markers CMM86 (D17S74) and 42D6 (D17S588), respectively. Deletion mapping of seven cases (two familial and five sporadic) showing limited LOH on 17q revealed a common region of deletion, distal to GH and proximal to D17S4, that spans −25 cM. These results suggest that a potential tumor-suppressor gene involved in both sporadic and familial ovarian cancer may reside on the distal portion of chromosome 17q and is distinct from the BRCA1 gene.  相似文献   

10.
This group has previously reported the mapping of a novel locus for autosomal dominant retinitis pigmentosa (adRP) in a South African kindred to 17q. Using a new series of microsatellite markers in this study, two-point and multipoint analysis provide evidence for the localization of the disease gene to the 17q22 region. In addition, a second South African adRP family is shown to be linked to this 17q22 locus. Disease-associated haplotypes constructed for both families and multipoint linkage analysis place the gene in the 10-cM interval between D17S1607 and D17S1874. Three candidate genes on 17q were investigated: PDEG, the gamma subunit of rod phosphodiesterase; TIMP2, tissue inhibitor of metalloproteinases-2; and PRKCA, protein kinase C alpha. Recombination events between the adRP locus and: (1) a single-stranded conformation polymorphism in PDEG; and (2) a restriction fragment length polymorphism in TIMP2 provided evidence for the exclusion of these candidate genes as being responsible for adRP in the South African kindred. Received: 6 December 1996 / Accepted: 19 July 1997  相似文献   

11.
Genetic studies have revealed that 25 to 30% of autosomal dominant retinitis pigmentosa (adRP) families have mutations in the rhodopsin gene, while the remainder do not. More recently linkage data and mutation detection have demonstrated two further loci implicated in adRP, at an as yet unidentified gene on chromosome 8p and at the human gene homologue of the mouse Rds (Retinal Degeneration Slow) gene on chromosome 6p. We have previously reported exclusion of adRP from the rhodopsin locus on 3q in two large adRP families. We now report exclusion data for both families, on chromosomes 6 and 8, demonstrating that the adRP phenotype results from mutations in at least four locations.  相似文献   

12.
We recently reported the localization of a gene for late-onset autosomal dominant retinitis pigmentosa (adRP; RP6), on the short arm of chromosome 6, by linkage analysis in a large family of Irish origin. It is notable that the gene encoding peripherin-RDS, a photoreceptor-specific protein, recently has been physically mapped on 6p. In our own analysis, an intrageneic marker derived from this gene cosegregated with the adRP disease locus with zero recombination (lod score 5.46 at q = .00). Using the CEPH reference panel, we now report the mapping of the peripherin-RDS gene relative to other 6p markers in the CEPH data base. Incorporation of these data into a multipoint analysis produced a lod score for adRP of 8.21, maximizing at the peripherin-RDS locus. This study provides strong evidence suggesting a role for peripherin-RDS in the etiology of one form of adRP.  相似文献   

13.
A form of autosomal dominant retinitis pigmentosa (adRP) mapping to chromosome 7p was recently reported by this laboratory, in a single large family from southeastern England. Further sampling of the family and the use a number of genetic markers from 7p have facilitated the construction of a series of multipoint linkage maps of the region with the most likely disease gene location. From this and haplotype data, the locus can now be placed between the markers D7S484 and D7S526, in an interval estimated to be 1.6-4 cM. Genetic distances between the markers previously reported to be linked to this region and those described in the recent whole-genome poly-CA map were estimated from data in this and other families. These data should assist in the construction of a physical map of the region and will help to identify candidate genes for the 7p adRP locus.  相似文献   

14.
Chromosome region 17p13.3 is rich in genes, with 223 expressed sequence tags (ESTs) within the last 15 cM (7 Mb) of chromosome 17p in the GeneMap database. Loci for dominant retinitis pigmentosa (RP13), central areolar choroidal dystrophy (CACD), anterior polar cataract (CTAA2), Miller-Dieker lissencephaly syndrome (MDLS), and a region of tumour loss of heterozygosity (LOH) distinct from TP53 all map into the region adjacent to the 17p telomere. To date, however, there is no physical map of the region, which has resisted the efforts of the CEPH and Whitehead physical mapping programmes to generate contiguous clones across it. We have created a physical map covering approximately 3.5 Mb (6 cM)in this region, spanning the RP13 interval and extending distally to the gene MDCR (formerly, LIS1), which, when deleted, leads to the MDLS phenotype. The region covered is also the point of maximum LOH in lung cancer and has been implicated in the pathogenesis of many other human cancers. The map orders 47 sequence tagged sites, including 32 genes or ESTs, nine genetic markers, four anonymous sequences, and two YAC end clones, and highlights new candidate ESTs for involvement in RP13, MDLS, CTAA2, and a tumour-susceptibility gene.  相似文献   

15.
Retinitis pigmentosa (RP) is a debilitating disease of the retina affecting ∼1.5 million people worldwide. RP shows remarkable heterogeneity both clinically and genetically, with more than 40 genetic loci implicated, 12 of which account for the autosomal dominant form (adRP) of inheritance. We have recently identified a French Canadian family that presents with early onset adRP. After exclusion of all known loci for adRP, a genome-wide search established firm linkage with a marker from the short arm of chromosome 9 (LOD score of 6.3 at recombination fraction θ=0). The linked region is flanked by markers D9S285 and D9S1874, corresponding to a genetic distance of 31 cM, in the region 9p22-p13.  相似文献   

16.
Autosomal dominant polycystic kidney disease (ADPKD) is a genetically heterogeneous disorder. At least two distinct forms of ADPKD are now well defined. In approximately 86% of affected European families, a gene defect localized to 16p13.3 was responsible for ADPKD, while a second locus has been recently localized to 4q13-q23 as candidate for the disease in the remaining families. We present confirmation of linkage to microsatellite markers on chromosome 4q in eight Spanish families with ADPKD, in which the disease was not linked to 16p13.3. By linkage analysis with marker D4S423, a maximum lod score of 9.03 at a recombination fraction of .00 was obtained. Multipoint linkage analysis, as well as a study of recombinant haplotypes, placed the PKD2 locus between D4S1542 and D4S1563, thereby defining a genetic interval of approximately 1 cM. The refined map will serve as a genetic framework for additional genetic and physical mapping of the region and will improve the accuracy of presymptomatic diagnosis of PKD2.  相似文献   

17.
Autosomal dominant retinitis pigmentosa (adRP) has shown linkage to the chromosome 3q marker C17 (D3S47) in two large adRP pedigrees known as TCDM1 and adRP3. On the basis of this evidence the rhodopsin gene, which also maps to 3q, was screened for mutations which segregated with the disease in adRP patients, and several have now been identified. However, we report that, as yet, no rhodopsin mutation has been found in the families first linked to C17. Since no highly informative marker system is available in the rhodopsin gene, it has not been possible to measure the genetic distance between rhodopsin and D3S47 accurately. We now present a linkage analysis between D3S47 and the rhodopsin locus (RHO) in five proven rhodopsin-retinitis pigmentosa (rhodopsin-RP) families, using the causative mutations as highly informative polymorphic markers. The distance, between RHO and D3S47, obtained by this analysis is theta = .12, with a lod score of 4.5. This contrast with peak lod scores between D3S47 and adRP of 6.1 at theta = .05 and 16.5 at theta = 0 in families adRP3 and TCDM1, respectively. These data would be consistent with the hypothesis that TCDM1 and ADRP3 represent a second adRP locus on chromosome 3q, closer to D3S47 than is the rhodopsin locus. This result shows that care must be taken when interpreting adRP exclusion data generated with probe C17 and that it is probably not a suitable marker for predictive genetic testing in all chromosome 3q-linked adRP families.  相似文献   

18.
Vance et al. have reported linkage of hereditary motor and sensory neuropathy type I (HMSN I) to the pericentromeric region of chromosome 17. We have studied eight families with HMSN I (also called the hypertrophic form of Charcot-Marie-Tooth disease) for linkage of the disease locus to polymorphic loci in the centromeric region of chromosome 17. Linkage has been confirmed for D17S58 (EW301) with a maximum lod score of 5.89 at theta = 0.08 and for D17S71 (pA10-41) with a maximum lod score of 3.22 at theta = 0.08. EW301 is on 17p, 5.5 centimorgans from the centromere. Two families, previously reported as being linked to the Duffy blood group locus on chromosome 1, were included in this study, and one now provides positive lod scores for chromosome 17 markers. There was no evidence of heterogeneity.  相似文献   

19.
Since the initial report of linkage of autosomal dominant retinitis pigmentosa (adRP) to the long arm of chromosome 3, several mutations in the gene encoding rhodopsin, which also maps to 3q, have been reported in adRP pedigrees. However, there has been some discussion as to the possibility of a second adRP locus on 3q. This suggestion has important diagnostic and research implications and must raise doubts about the usefulness of linked markers for reliable diagnosis of RP patients. In order to address this issue we have performed an admixture test (A-test) on 10 D3S47-linked adRP pedigrees and have found a likelihood ratio of heterogeneity versus homogeneity of 4.90. We performed a second A-test, combining the data from all families with known rhodopsin mutations. In this test we obtained a reduced likelihood ratio of heterogeneity versus homogeneity, of 1.0. On the basis of these statistical analyses we have found no significant support for two adRP loci on chromosome 3q. Furthermore, using 40 CEPH families, we have localized the rhodopsin gene to the D3S47-D3S20 interval, with a maximum lod score (Zm) of 20 and have found that the order qter-D3S47-rhodopsin-D3S20-cen is significantly more likely than any other order. In addition, we have mapped (Zm = 30) the microsatellite marker D3S621 relative to other loci in this region of the genome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号