首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The sporicidal activity of chlorhexidine gluconate in aqueous and alcoholic solution against spores of Bacillus subtilis was examined over a broad temperature range. Activity was not observed at 20 degrees C even with concentrations as high as 10% chlorhexidine. Temperatures of 37 degrees-70 degrees C in combination with such high concentrations were required for reductions in spore viability. No viable spores were recoverable after 4 h contact at 55 degrees C with 10% aqueous chlorhexidine and none after 3 h contact with the alcoholic solution. Because of the high concentrations necessary for activity and the possibility of sporostasis occurring from inefficient chlorhexidine inactivation, existing inactivation systems were examined and modified to obtain satisfactory results. The spores of other Bacillus species examined (B. cereus, B. megaterium and B. stearothermophilus) proved to be considerably less resistant than those of B. subtilis. Presence of organic matter had little effect on the activity.  相似文献   

2.
Aims:  The aim of this work was to investigate the germination and inactivation of spores of Bacillus species in buffer and milk subjected to high pressure (HP) and nisin.
Methods and Results:  Spores of Bacillus subtilis and Bacillus cereus suspended in milk or buffer were treated at 100 or 500 MPa at 40°C with or without 500 IU ml−1 of nisin. Treatment at 500 MPa resulted in high levels of germination (4 log units) of B. subtilis spores in both milk and buffer; this increased to >6 logs by applying a second cycle of pressure. Viability of B. subtilis spores in milk and buffer was reduced by 2·5 logs by cycled HP, while the addition of nisin (500 IU ml−1) prior to HP treatment resulted in log reductions of 5·7 and 5·9 in phosphate buffered saline and milk, respectively. Physical damage of spores of B. subtilis following HP was apparent using scanning electron microscopy. Treating four strains of B. cereus at 500 MPa for 5 min twice at 40°C in the presence of 500 IU ml−1 nisin proved less effective at inactivating the spores of these isolates compared with B. subtilis and some strain-to-strain variability was observed.
Conclusions:  Although high levels of germination of Bacillus spores could be achieved by combining HP and nisin, complete inactivation was not achieved using the aforementioned treatments.
Significance and Impact of the Study:  Combinations of HP treatment and nisin may be an appealing alternative to heat pasteurization of milk.  相似文献   

3.
Spores of Bacillus subtilis SA22 harvested after 22 d incubation on nutrient agar at 30°C were more resistant to 0–04% peracetic acid at 20°C than spores harvested following 2 d incubation. Similarly, spores of B. subtilis globigii B17, harvested after 7 d incubation on a sporulation agar were up to 10 times less resistant to 0.04% peracetic acid at 20°C than spores harvested after 35 d incubation. An increase in resistance to heating at 100°C and to exposure to 17.7% hydrogen peroxide at 20°C occurred as the age of B. subtilis SA22 spores prior to harvesting increased, whereas differences in resistance were not observed with spores of B. subtilis globigii B17.  相似文献   

4.
A range of Bacillus subtilis strains and other Bacillus species were screened for mannanase, β-mannosidase and galactanase activities. Maximum mannanase activity, 106.2 units/ml, was produced by B. subtilis NRRL 356. β-Mannosidase and galactanase activities from all strains were relatively low. The effect of carbon and nitrogen source on mannanase and galactanase production by B. brevis ATCC 8186, B. licheniformis ATCC 27811, B. polymyxa NRRL 842 and B. subtilis NRRL 356 was investigated. Highest mannanase production was observed in the four strains tested when the mannan substrate, locust bean gum, was used as carbon source. Induction was most dramatic in the case of B. subtilis NRRL 356 where only basal enzyme levels were produced in the presence of other carbon sources. β-Mannosidase was induced in the four Bacillus cultures by locust bean gum. Results indicated that galactose acted as an inducer for production of galactanase. Organic and inorganic nitrogen sources resulted in induction of high mannanase titres in B. subtilis. Highest galactanase activity was produced by each organism in media containing sodium nitrate as nitrogen source. Mannanases from B. brevis, B. licheniformis, B. polymyxa and B. subtilis retained 100% residual activity after a 3 h incubation at 65°C, 65°C, 60°C and 55°C respectively. Galactanases retained more than 95% activity at 55°C after 3 h. The pH optima of mannanases ranged from 6.5–6.8 whereas galactanases ranged from 5.1 in the case of B. brevis to 7.0 for B. polymyxa.  相似文献   

5.
The feasibility of utilizing vapor-phase hydrogen peroxide (VPHP) as a surface decontaminant and sterilant was evaluated in a centrifuge application. The prototype VPHP decontamination system, retrofitted into a Beckman L8-M ultracentrifuge, was designed to vaporize a 30% (wt/wt) solution of aqueous hydrogen peroxide continuously injecting and withdrawing VPHP in a deep-vacuum flow-through system. VPHP cycles of 4, 8, 16, and 32 min were examined for cidal activity against spores of Bacillus subtilis subsp. globigii and Bacillus stearothermophilus. Spore inocula (approximately 10(6)/coupon) were dried onto 0.5-in. (1.27-cm)-square stainless-steel coupons, and coupons were suspended in the centrifuge chamber, the space between the refrigeration can and the barrier ring (inner gap), and the space between the barrier ring and the vacuum ring (outer gap). At a chamber temperature of 4 degrees C, B. subtilis subsp. globigii spores were inactivated within 8 min, while inactivation of spores located in the outer gap at 27 degrees C required 32 min. The elevated temperature and high surface area/volume ratios in the outer gap may serve to decompose the gas more rapidly, thus reducing cidal efficacy. Of the two test spores, B. stearothermophilus was more resistant to VPHP. Nonetheless, VPHP was shown to possess significant sporicidal capability. For practical decontamination applications of the type described, VPHP shows promise as an effective and safer alternative to currently used ethylene oxide or formaldehyde vapors.  相似文献   

6.
Vapor-phase hydrogen peroxide as a surface decontaminant and sterilant   总被引:2,自引:0,他引:2  
The feasibility of utilizing vapor-phase hydrogen peroxide (VPHP) as a surface decontaminant and sterilant was evaluated in a centrifuge application. The prototype VPHP decontamination system, retrofitted into a Beckman L8-M ultracentrifuge, was designed to vaporize a 30% (wt/wt) solution of aqueous hydrogen peroxide continuously injecting and withdrawing VPHP in a deep-vacuum flow-through system. VPHP cycles of 4, 8, 16, and 32 min were examined for cidal activity against spores of Bacillus subtilis subsp. globigii and Bacillus stearothermophilus. Spore inocula (approximately 10(6)/coupon) were dried onto 0.5-in. (1.27-cm)-square stainless-steel coupons, and coupons were suspended in the centrifuge chamber, the space between the refrigeration can and the barrier ring (inner gap), and the space between the barrier ring and the vacuum ring (outer gap). At a chamber temperature of 4 degrees C, B. subtilis subsp. globigii spores were inactivated within 8 min, while inactivation of spores located in the outer gap at 27 degrees C required 32 min. The elevated temperature and high surface area/volume ratios in the outer gap may serve to decompose the gas more rapidly, thus reducing cidal efficacy. Of the two test spores, B. stearothermophilus was more resistant to VPHP. Nonetheless, VPHP was shown to possess significant sporicidal capability. For practical decontamination applications of the type described, VPHP shows promise as an effective and safer alternative to currently used ethylene oxide or formaldehyde vapors.  相似文献   

7.

Background

Chlorhexidine is a broad-spectrum antimicrobial commonly used to disinfect the skin of patients to reduce the risk of healthcare-associated infections. Because chlorhexidine is not sporicidal, it is not anticipated that it would have an impact on skin contamination with Clostridium difficile, the most important cause of healthcare-associated diarrhea. However, although chlorhexidine is not sporicidal as it is used in healthcare settings, it has been reported to kill spores of Bacillus species under altered physical and chemical conditions that disrupt the spore’s protective barriers (e.g., heat, ultrasonication, alcohol, or elevated pH). Here, we tested the hypothesis that similarly altered physical and chemical conditions result in enhanced sporicidal activity of chlorhexidine against C. difficile spores.

Principal Findings

C. difficile spores became susceptible to heat killing at 80°C within 15 minutes in the presence of chlorhexidine, as opposed to spores suspended in water which remained viable. The extent to which the spores were reduced was directly proportional to the concentration of chlorhexidine in solution, with no viable spores recovered after 15 minutes of incubation in 0.04%–0.0004% w/v chlorhexidine solutions at 80°C. Reduction of spores exposed to 4% w/v chlorhexidine solutions at moderate temperatures (37°C and 55°C) was enhanced by the presence of 70% ethanol. However, complete elimination of spores was not achieved until 3 hours of incubation at 55°C. Elevating the pH to ≥9.5 significantly enhanced the killing of spores in either aqueous or alcoholic chlorhexidine solutions.

Conclusions

Physical and chemical conditions that alter the protective barriers of C. difficile spores convey sporicidal activity to chlorhexidine. Further studies are necessary to identify additional agents that may allow chlorhexidine to reach its target within the spore.  相似文献   

8.
G orman , S.P., S cott , E.M. & H utchinson , E.P. 1985. Effects of aqueous and alcoholic povidone-iodine on spores of Bacillus subtilis. Journal of Applied Bacteriology , 59 , 99–105.
Spores of Bacillus subtilis NCTC 10073 were examined for susceptibility to two proprietary brands of povidone-iodine: an aqueous solution, Betadine and an alcoholic solution, Videne. Spores were converted to ion-exchange (Ca, H) and coat-defective (SLS-, UME-, UMS-, UDT- and UDS-treated) forms. The resistance of these to povidone-iodine was compared and related to uptake. Effects on spore protoplasts and cortex in relation to hexosamine release were also examined. The degree of spore penetration and site of action of povidone-iodine is discussed.  相似文献   

9.
The influence of sporulation temperature (20, 30 and 37 °C) on the heat resistance and initiation of germination and inactivation by high pressure on Bacillus cereus ATCC 14579 spores was investigated. Spores sporulated at 37 °C were the most heat-resistant. However, spores sporulated at 20 °C were more resistant to the initiation of germination and inactivation by high pressure. Spores were more sensitive to pressure at higher treatment temperatures. At 25 °C, there was an optimum pressure (250 MPa) for the initiation of germination for the three suspensions; at higher temperatures an increase of pressure up to 690 MPa caused progressively more germination. Resistance to the germinability and inactivation by high pressure of the spore population was distributed heterogeneously. Semilogarithmic curves of the ungerminated and survival fraction of B. cereus spores were concave. The resistant fraction of the spore population was lower at higher treatment temperatures. At 60 °C after 30 s of treatment at 690 MPa almost 5 log cycles of the population of B. cereus sporulated at 20 °C was germinated, and more than 7 log cycles of the population of B. cereus sporulated at 30 and 37 °C. The same treatment inactivated 4, 6 and 7 log cycles of the population of B. cereus sporulated at 20, 30 and 37 °C, respectively.  相似文献   

10.
Studies on the Mechanism of the Sporicidal Action of Glutaraldehyde   总被引:5,自引:5,他引:0  
S ummary . Low concentrations (0.025–0.125%) of glutaraldehyde inhibited or prevented colony formation by Escherichia coli, Bacillus subtilis and B. pumilis in agar, and inhibited germination of spores of the Bacillus spp. in L-alanine plus D-glucose. Higher concentrations (2%) of glutaraldehyde at pH 8.5 were sporicidal. Pre-treatment of spores with glutaraldehyde lessened release of dipicolinic acid when the spores were subsequently heated at 100°, but not at 121°. Spores treated with glutaraldehyde and then with 0.5 M thioglycollic acid in 6 M urea at 70° were less sensitive to lysis by hydrogen peroxide than spores which had not been exposed to glutaraldehyde. Glutaraldehyde was less effective in preventing peroxide induced lysis if added to spores which had been previously exposed to thioglycollic acid plus urea at 70°. The mechanism of the sporicidal activity of glutaraldehyde is discussed in relation to these findings.  相似文献   

11.
The inactivation of Tyzzer's organism (Bacillus piliformis) spore isolated from rats by heat and various chemical disinfectants was studied. The spores were from B. piliformis-infected rat liver tissues. The spore suspension (10(4) 50% of rat liver lesion producing dose with prednisolone treatment/ml) was treated with heart or disinfectants. Inactivation of the spores was examined in experimentally infected rats. Rats were inoculated perorally with a treated spore suspension and injected subcutaneously with prednisolone. On the sixth day after inoculation, rats were examined grossly for liver lesions. Spores were inactivated at 80 degrees C for 15 min but not at 60 degrees C for 30 min. Spores were inactivated by 0.4% peracetic acid, 0.015% sodium hypochrolite, 1% iodophol, 5% phenol. Alcide and 0.37% formaldehyde solution, but not by 0.037% formaldehyde solution, 70% ethanol, 0.3% benzethonium chloride solution, 3% cresol and soap solution, or 4% chlorhexidine digluconate. These findings suggest that B. piliformis spores are relatively sensitive to heat and certain chemical disinfectants.  相似文献   

12.
The surface or coat-associated properties of Bacillus cereus T spores produced from modified G medium (MGM) and fortified nutrient agar (FNA) were compared. The two populations appeared structurally similar by transmission electron microscopy. Spores prepared on FNA were more susceptible to ozone inactivation than MGM-prepared spores. When activated by heating for 15 min at 70–85°C, FNA-prepared spores were optimally activated at 85°C and did not become hydrophilic on heat activation while MGM spores were optimally activated at 70°C and became hydrophilic on activation. Susceptibility to removal of coat and outer membrane by chemical and enzymatic extraction treatments was measured by monitoring reduced ability to germinate in nutrients and acquired ability to germinate in the presence of lysozyme. Bacillus cereus T MGM-prepared spores germinated in lysozyme upon<1 h exposure to sodium dodecyl sulphate-dithiothreitol. FNA-prepared spores were lysozyme sensitive after > 2 h treatment. Thus, B. cereus T FNA spore coats and outer membranes were more resistant to these denaturing agents. Transmission electron micrographs revealed no change in appearance of extracted spores. Sporulation environment must be considered when laboratory-prepared spores are used to assess or predict the effect of control procedures on spores present in nature.  相似文献   

13.
Injury and repair in biocide-treated spores of Bacillus subtilis   总被引:3,自引:0,他引:3  
Abstract Bacillus subtilis NCTC 8236 spores exposed to appropriate concentrations of test biocides (glutaraldehyde, two iodine and two chlorine preparations) were able to repair injury if subsequently held in nutrient broth at 37°C but not in broth at 22°C, sterile filtered water at 4, 22 or 37°C or germination medium at 37°C. Repair appeared to occur primarily during outgrowth and was initiated soonest for iodine-treated spores and latest for glutaraldehyde-treated ones.  相似文献   

14.
Bacillus stearothermophilus spores were heated in a mixture of mushroom puree with alginate, in the temperature range 110–130°C. Both Arrhenius and the traditional Bigelow models were used to describe the dependence of the constant inactivation rate ( K ) or ( D ) with the temperature. Results showed that both are very good linear regression models, but a discrepancy between 20 and 45% was found in the constant inactivation rate predicted by both models at high temperatures (125–140°C). Despite this discrepancy, the Arrhenius model was a better predictor of the inactivation rate constants at temperatures of 125 and 130°C for B. stearothermophilus spores heated in an alginate-mushroom mixture.  相似文献   

15.
Phase intensity changes of individual germinating spores of Bacillus subtilis were determined by phase-contrast light microscopy and image analysis. Two germination phases were investigated. The length of the time period before a change in phase brightness was evident and the duration of the phase intensity change until a constant greylevel was maintained. The incubation temperature (37 and 20 °C) and heat activation (10 min at 65 °C) had a distinct effect on both phases. At 37 °C, spores of B. subtilis 604 started to show a decrease in brightness in l -alanine buffer after 3–39 min and needed 10–39 min to complete the phase change. At 20 °C, lag times of 10–100 min were observed and the spores needed 30–100 min to reach a constant greylevel. Heat activation and subsequently exposure to l -alanine buffer at 20 °C reduced the lag phase to 6–90 min and the phase change was finished after 30–60 min. Our results indicate enzymatic involvement before and during the phase intensity change of germinating spores.  相似文献   

16.
Sporostatic and Sporocidal Properties of Aqueous Formaldehyde   总被引:5,自引:1,他引:4  
Aqueous formaldehyde is shown to exert both sporostatic and sporocidal effects on Bacillus subtilis spores. The sporostatic effect is a result of the reversible inhibition of spore germination occasioned by aqueous formaldehyde; the sporocidal effect is due to temperature-dependent inactivation of these spores in aqueous formaldehyde. The physicochemical state of formaldehyde in solution provides a framework with which to interpret both the sporostatic and sporocidal properties of aqueous formaldehyde.  相似文献   

17.
Spores of Bacillus subtilis MD2 and Bacillus subtilis var. niger were heat activated for different times at 60° and 80°C. Strain MD2 required considerable heat activation while B. subtilis var. niger did not. Maximum germination rates increased with heat activation dose and declined subsequently without loss of germinability. Germination rates and percentages were considerably greater in tryptone glucose extract (TGE) than in nutrient broth. The addition of 2°° dimethyl sulphoxide did not increase germination in nutrient broth. The spores of var. niger are more resistant to dry-heat than MD2 although they are less resistant to moist heat. Survivor curves in the dry-heat range 140°-170°C gave D-values from 4–123 to 0.106 min for MD2 and 5.679 to 0.233 min for var. niger recovered on TGE agar. D-values were lower on poorer media. The z-values for MD2 and var. niger on TGE were 18.7°C and 21.25C respectively.  相似文献   

18.
Abstract Using promoter-probe plasmids, more than 200 promoter-containing fragments from Bacillus stearothermophilus and Bacillus subtilis were cloned in B. subtilis . Among these, 15 promoter fragments were highly temperature-dependent in activity compared to the promoter sequence (TTGAAA for the −35 region, TATAAT for the −10 region) of the amylase gene, amyT , from B. stearothermophilus . Some fragments exhibited higher promoter activities at elevated temperature (48°C), others showed higher activities at lower temperature (30°C). Active promoter fragments at higher and lower temperatures were obtained mainly from the thermophile ( B. stearothermophilus ) and the mesophile ( B. subtilis ), respectively. A promoter fragment active at high temperature was sequenced, and the feature of the putative promoter region was discussed.  相似文献   

19.
SUMMARY: A method of assessing the sporicidal efficiency of a UHT milk sterilizing plant operating on water is described. Water heavily contaminated with spores of a strain of Bacillus subtilis was filtered, after treatment in the plant, through membrane filters and the surviving spores estimated by incubation of the membranes in nutrient agar. With this plant a temperature of c . 135° caused a 99·99999% kill of B. subtilis spores. Confirmation of the lethal effects of temperatures above 135° was obtained by passing treated water into 10 gal churns containing sterile concentrated nutrient broth and incubating the churns.  相似文献   

20.
枯草杆菌的芽胞在肉鸡肠道中的生活状态和分布   总被引:2,自引:0,他引:2  
目的探讨枯草芽胞杆菌的芽胞在肉鸡肠道中的生活状态和分布。方法以20日龄AA肉鸡为研究对象,饲喂枯草芽胞菌剂,分别测定鸡粪中芽胞数量和鸡肠道不同部位的活菌数量。结果饲喂3h后,鸡粪中开始检测到芽胞的存在,24h达到最高值,直至饲喂120h后,肠道内的芽胞基本排除。排出芽胞总量为饲喂芽胞总数的3.0倍左右,同时研究还表明:芽胞在实验肉鸡的十二指肠2内开始萌发,并进行了繁殖,在小肠的后端,即小肠3和小肠4,活菌数量达到高峰。结论部分芽胞进入小肠后即可开始萌发,并进行生长繁殖,而且在肠道内有短暂滞留。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号