首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Endosymbiotic bacteria of the genus Wolbachia are widespread among arthropods and can induce cytoplasmic incompatibility, thelytokous parthenogenesis, male-killing or feminization in their hosts. Here, we report phylogenetic relationships of Wolbachia in tephritid fruit flies based on wsp gene sequences. We also report, for the first time, five distinct strains of Wolbachia in Bactrocera ascita sp. B. Four of the five Wolbachia strains found in this species were in the same groups as those found in other tephritid fruit flies, suggesting possible horizontal transmission of Wolbachia from other fruit flies into B. ascita sp. B. The unreliability of wsp-specific group primers demonstrated in this study suggests that these primers might be useful only for preliminary identification of Wolbachia. Final determination of group affiliation needs to be verified with wsp sequence data. Received: 12 December 2001 / Accepted: 11 January 2002  相似文献   

2.
Infection by Wolbachia was described previously in eleven species of Anastrepha fruit flies some of which are important pests of fruticulture. One such species is the nominal Anastrepha fraterculus, the South American fruit fly, which actually comprises a complex of cryptic species. The suggestions of using Wolbachia for the control of these pest species, make imperative a more precise characterization of the existing strains of the bacteria. In this study, population samples of the A. fraterculus complex from Brazil, Argentina, Peru, Ecuador, Colombia, Guatemala and Mexico were analyzed for Wolbachia infection. The bacteria were genotyped by the MLST and WSP Typing methodologies. All samples were infected with Wolbachia of supergroup “A”. For each of the five MLST genes, unique as well as already known alleles were detected. Nineteen sequence types for the concatenated sequences of the five MLST genes, and twenty wsp alleles were found in the samples. Host-specific haplotypes, shared strains among distinct hosts, and more than one strain of Wolbachia were found in some population samples. Recombination among the MLST genes and intragenic recombination between wsp haplotypes was rare. Phylogenetic analysis showed a great similarity among the Wolbachia strains in the A. fraterculus complex. However, some strains of Wolbachia are found throughout the Neotropical Region and there are specific strains in determined geographical areas.  相似文献   

3.
Wolbachia endosymbiont is a maternally inherited bacteria that infects a wide range of hosts, including parasitoids and their respective hosts. In this study, a total of 171 individuals of braconid endoparasitoids, consisting of Fopius arisanus, F. vandenboschi, Diachasmimorpha longicaudata, Psyttalia sp.1, Psyttalia sp.2, P. fletcheri and P. incisi, and their host tephritid fruit flies of Bactrocera dorsalis, B. papayae and B. carambolae infesting carambola were screened molecularly by the Wolbachia surface protein (wsp) gene. Interestingly, 21 (24.14%) wsp gene sequences were successfully isolated from 87 braconid samples tested, showing a low infection rate of Wolbachia. However, despite the close ecological contact between parasitoids and their hosts, none of the tephritid individuals were infected by Wolbachia. A comparison of wsp and host mitochondrial cytochrome c oxidase subunit I (COI) sequences found that braconids did not cluster in connection with Wolbachia infection, suggesting that selective sweep has not yet occurred because Wolbachia may have recently infected the braconid populations in Peninsular Malaysia (≈0.1 MYA). Despite of relatively recent infections of Wolbachia, the history of Wolbachia infection into F. arisanus populations of Peninsular Malaysia is complex, involving at least two independent occasions of infection and two secondary losses.  相似文献   

4.
《Journal of Asia》2014,17(1):105-112
Wolbachia is a widespread endosymbiont of insects with a diverse range of biological effects on its hosts. We studied the prevalence of Wolbachia in some important species of tephritids in Iran. Among different populations of five fruit fly species, Dacus ciliatus (cucurbit fly), Rhagoletis cerasi (cherry fruit fly), Ceratitis capitata (Mediterranean fruit fly), Myiopardalis pardalina (melon fly) and Carypomya vesuviana (jujube fly), two species, R. cerasi and C. vesuviana, showed infection with separate Wolbachia strains, namely wCer6 and wVes1, respectively. C. vesuviana is introduced here as a novel host for Wolbachia. Genotyping of Wolbachia strains in 12 populations of five fruit fly species, using multilocus sequence typing (MLST) and the wsp gene sequence showed the occurrence of two new strains as well as a new strain type (ST) belonging to the A supergroup. On the basis of the results of this study, 12 barcodes under five species of Iranian tephritids have been added to the database of DNA barcodes. Inter- and intra-specific differences among COI sequences showed a clear gap in barcoding among most fruit flies.  相似文献   

5.
Wolbachia endosymbiotic bacteria are widespread in arthropods and are also present in filarial nematodes. Almost all filarial species so far examined have been found to harbor these endosymbionts. The sequences of only three genes have been published for nematode Wolbachia (i.e., the genes coding for the proteins FtsZ and catalase and for 16S rRNA). Here we present the sequences of the genes coding for the Wolbachia surface protein (WSP) from the endosymbionts of eight species of filaria. Complete gene sequences were obtained from the endosymbionts of two different species, Dirofilaria immitis and Brugia malayi. These sequences allowed us to design general primers for amplification of the wsp gene from the Wolbachia of all filarial species examined. For these species, partial WSP sequences (about 600 base pairs) were obtained with these primers. Phylogenetic analysis groups these nematode wsp sequences into a coherent cluster. Within the nematode cluster, wsp-based Wolbachia phylogeny matches a previous phylogeny obtained with ftsZ gene sequences, with a good consistency of the phylogeny of hosts (nematodes) and symbionts (Wolbachia). In addition, different individuals of the same host species (Dirofilaria immitis and Wuchereria bancrofti) show identical wsp gene sequences. Received: 10 January 2000 / Accepted: 22 February 2000  相似文献   

6.
Phylogenetic studies have implicated frequent horizontal transmission of Wolbachia among arthropod host lineages. However, the ecological routes for such lateral transfer are poorly known. We surveyed the species of two arthropod communities, one on pumpkin and the other on loofah plants, for Wolbachia, constructed wsp gene phylogenies of those Wolbachia strains found to infect community members, and established ecological links among infected members. Four taxonomically diverse insects in the pumpkin arthropod community contained very closely related Wolbachia wsp sequences (<1.5% divergence by Kimura-2-parameter distances). These insects, namely, the whitefly Bemisia tabaci, the planthopper Nisia nervosa, the flea beetle Phyllotreta sp., and the fleahopper Halticus minutus, were all collected from pumpkin leaves. They were ecologically linked through feeding on the same leaf substrate. Unlike other infected leaf insects, the whitefly population appeared to have a permanent breeding relationship with pumpkin plants, and high and stable, but not fixed, monthly Wolbachia infection rates. Our findings suggest potential roles for the plant in Wolbachia transmission and for whiteflies in being an infection source for other pumpkin leaf-feeding insects.  相似文献   

7.
Maternally inherited Wolbachia (α-Proteobacteria) are widespread parasitic reproductive manipulators. A growing number of studies have described the presence of different Wolbachia strains within a same host. To date, no naturally occurring multiple infections have been recorded in terrestrial isopods. This is true for Armadillidium vulgare which is known to harbor non simultaneously three Wolbachia strains. Traditionally, such Wolbachia are detected by PCR amplification of the wsp gene and strains are characterized by sequencing. The presence of nucleotide deletions or insertions within the wsp gene, among these three different strains, provides the opportunity to test a novel genotyping method. Herein, we designed a new primer pair able to amplify products whose lengths are specific to each Wolbachia strain so as to detect the presence of multi-infections in A. vulgare. Experimental injections of Wolbachia strains in Wolbachia-free females were used to validate the methodology. We re-investigated, using this novel method, the infection status of 40 females sampled in 2003 and previously described as mono-infected based on the classical sequencing method. Among these females, 29 were identified as bi-infected. It is the first time that naturally occuring multiple infections of Wolbachia are detected within an individual A. vulgare host. Additionally, we resampled 6 of these populations in 2010 to check the infection status of females.  相似文献   

8.
Wolbachia are strictly intracellular maternally inherited α-proteobacteria, largely widespread among arthropods and filariids (i.e., filarial nematodes). Wolbachia capacities to infect new host species have been greatly evidenced and the transfer of Wolbachia between arthropods and filariids has probably occurred more than once. Interestingly, among nematode species, Wolbachia infection was found in filariids but not in closely related lineages. Their occurrence in filariids has been supposed a consequence of the parasitic lifestyle of worms within Wolbachia-infected arthropods, implying that nonfilariid worms parasitizing arthropods are also likely to be infected by some Wolbachia acquired from their hosts. To further investigate this hypothesis, we have examined seven species of nonfilariid worms of Nematoda and Nematomorpha phyla, all interacting intimately with arthropods. Wolbachia infection in nonfilariid parasitic worms was never detected by polymerase chain reaction assays of the 16S rDNA and wsp genes. By contrast, some arthropod hosts are well infected by Wolbachia of the B supergroup. Then the intimate contact with infected arthropods is not a sufficient condition to explain the Wolbachia occurrence in filariids and could underline a physiological singularity or a particular evolutionary event to acquire and maintain Wolbachia infection.  相似文献   

9.
Intracellular bacteria of the genus Wolbachia (alpha Proteobacteria) induce cytoplasmic incompatibility (CI) in many arthropod species, including spider mites, but not all Wolbachia cause CI. In spider mites CI becomes apparent by a reduced egg hatchability and a lower daughter:son ratio: CI in haplodiploid organisms in general was expected to produce all-male offspring or a male-biased sex ratio without any death of eggs. In a previous study of Japanese populations of Tetranychus urticae, two out of three green-form populations tested were infected with non-CI Wolbachia strains, whereas none of six red-form populations harbored Wolbachia. As the survey of Wolbachia infection in T. urticae is still fragmentary in Japan, we checked Wolbachia infection in thirty green-form populations and 29 red-form populations collected from a wide range of Japanese islands. For Wolbachia-infected populations, we tested the effects of Wolbachia on the reproductive traits and determined the phylogenetic relationships of the different strains of Wolbachia. All but one green-form populations were infected with Wolbachia and all strains belonged to the subgroup Ori when the wsp gene was used to determine the phylogenetic relationships of different strains of Wolbachia. Six out of 29 red-form populations harbored Wolbachia and the infected strains belonged to the subgroups Ori and Bugs. Twenty-four of 29 infected green-form populations and five of six infected red-form populations induced CI among the hosts. Thus, CI-Wolbachia strains are widespread in Japan, and no geographical trend was observed in the CI-Wolbachia. Although three red-form populations harbored other intracellular bacteria Cardinium, they did not affect host reproduction.  相似文献   

10.
The widespread occurrence of Wolbachia in arthropods and nematodes suggests that this intracellular, maternally inherited endosymbiont has the ability to cross species boundaries. However, direct evidence for such a horizontal transmission of Wolbachia in nature is scarce. Here, we compare the well‐characterized Wolbachia infection of the European cherry fruit fly, Rhagoletis cerasi, with that of the North American eastern cherry fruit fly, Rhagoletis cingulata, recently introduced to Europe. Molecular genetic analysis of Wolbachia based on multilocus sequence typing and the Wolbachia surface protein wsp showed that all R. cingulata individuals are infected with wCin2 identical to wCer2 in R. cerasi. In contrast, wCin1, a strain identical to wCer1 in R. cerasi, was present in several European populations of R. cingulata, but not in any individual from the United States. Surveys of R. cingulata from Germany and Hungary indicated that in some populations, the frequency of wCin1 increased significantly in just a few years with at least two independent horizontal transmission events. This is corroborated by the analysis of the mitochondrial cytochrome oxidase II gene that showed association of wCin1 with two distinct haplotypes in Germany, one of which is also infected with wCin1 in Hungary. In summary, our study provides strong evidence for a very recent inter‐specific Wolbachia transmission with a subsequent spatial spread in field populations.  相似文献   

11.
The genus Solenopsis appears to have evolved and radiated very rapidly in South America and then spread throughout the rest of the continent. As part of the expansion process, distribution patterns and different degrees of geographic isolation among populations of S. saevissima can be observed. We have investigated the presence of Wolbachia in 52 colonies and 1623 individuals in southeastern Brazil. Detection of Wolbachia infection was based on amplification of the 16S rRNA and wsp genes by polymerase chain reactions. Wolbachia was found in only one of the four locations investigated and it was observed that the populations were polymorphic for infection. The infection level observed increased during the period of screening. In particular, double infection (16SWA and B) increased from 44% in 2005 to 90% in 2006. The A-group of Wolbachia from the wsp sequences was determined by sequencing. However, two variant wsp sequences were detected in Wolbachia present in these populations. The alignment of our sequences with those deposited in GenBank indicated significant differences in relation to homologous sequences. Phylogenetic relationships were inferred using parsimony, and confidence intervals were estimated by bootstrapping. Then the divergence of the Wolbachia of S. saevissima in the populations studied with other variants allowed us to verify that wSS1 and dwSS2 formed a distinct clade within the A-group (>75%). These results can be useful in studies on the dynamics of ant populations.  相似文献   

12.
The phytophagous fruit fly Rhagoletis meigenii harbors the bacterium Wolbachia pipientis and, together with Japanese barberry, form a tri-partite symbiosis. R. meigenii is a seed predator of invasive Japanese barberry plants and is dependent on this insect-plant interaction for reproductive success. The endosymbiotic bacterium W. pipientis is a reproductive parasite known to alter the sex ratios of offspring and the fitness of infected host insects. We investigated Japanese barberry fruit for the degree of infestation by R. meigenii and characterized the Wolbachia strain infecting R. meigenii. Densities of R. meigenii in four naturalized stands of Japanese barberry revealed low numbers of fruit flies with high variability in the population densities observed among individual plants. Overall, R. meigenii infested roughly 10–20 % of the Japanese barberry fruits analyzed; fruit with two seeds (vs. one seed) were the most frequently infested. Approximately, 90 % of the R. meigenii tested positive for Wolbachia infection via PCR amplification of the Wolbachia surface protein (wsp) gene. No bacterial strain diversity was observed when comparing multi-locus sequence typing (MLST) profiles within or among five R. meigenii populations in Maine, although the MLST profile obtained from R. meigenii differed from three co-occurring Rhagoletis. The Wolbachia endosymbiont of R. meigenii is a member of the Wolbachia supergroup A and the ST-13 cluster complex.  相似文献   

13.
Wolbachia are endosymbiotic bacteria that cause reproductive alterations in numerous arthropod species. Using a PCR-based method, we found that, out of 33 odonate species, four species were infected with Wolbachia. This finding represents the first record of Wolbachia infection in tropical odonates. Identical wsp gene sequences were found in the Wolbachia-infected common odonate species, Agriocnemis f. femina, collected from different locations in Thailand. The infection frequencies in several natural populations suggest that replacement of uninfected populations by Wolbachia-infected ones has recently occurred in this damselfly species.Received: 12 November 2002 / Accepted: 13 December 2002  相似文献   

14.

Background  

Wolbachia are endosymbiotic bacteria that commonly infect numerous arthropods. Despite their broad taxonomic distribution, the transmission patterns of these bacteria within and among host species are not well understood. We sequenced a portion of the wsp gene from the Wolbachia genome infecting 138 individuals from eleven geographically distributed native populations of the fire ant Solenopsis invicta. We then compared these wsp sequence data to patterns of mitochondrial DNA (mtDNA) variation of both infected and uninfected host individuals to infer the transmission patterns of Wolbachia in S. invicta.  相似文献   

15.
Establishing reliable risk projection information about the distribution pattern of members of the Culex pipiens complex is of particular interest, as these mosquitoes are competent vectors for certain disease‐causing pathogens. Wolbachia, a maternally inherited bacterial symbiont, are distributed in various arthropod species and can induce cytoplasmic incompatibility, i.e., reduced egg hatch, in certain crosses. It is being considered as a tool for population control of mosquito disease vectors. The Aegean region is characterized by highly populated, rural, and agricultural areas and is also on the route of the migratory birds. In this study, a fragment of the 658 bp of the mitochondrial cytochrome c oxidase subunit 1 (COI) gene, which includes the barcode region, was employed to differentiate Cx. pipiens complex species found in this region. Moreover, for the first time, the prevalence of Wolbachia endobacteria in these natural populations was examined using PCR amplification of a specific wsp gene. Our results revealed a widespread (more than 90%, n=121) presence of the highly efficient West Nile virus vector Cx. quinquefasciatus in the region. We also found that Wolbachia infection is widespread; the average prevalence was 62% in populations throughout the region. This study provided valuable information about the composition of Cx. pipiens complex mosquitoes and the prevalence of Wolbachia infection in these populations in the Aegean region. This information will be helpful in tracking mosquito‐borne diseases and designing and implementing Wolbachia‐based control strategies in the region.  相似文献   

16.
Thirty‐five percent of isopods are estimated to be infected by Wolbachia, an intracellular maternally inherited αProteobacterium. Previous studies have indicated that horizontal transfer of Wolbachia strains may occur, although the mechanisms are unclear. The wsp gene was sequenced from 17 Wolbachia strains harboured by crustacean host species and three from their associated predators and parasites. Two major clades of Wolbachia were found in crustacean, with relatives also found in insects, the other restricted to crustaceans. Highly divergent Wolbachia strains were found in a woodlouse‐eating spider and its prey, suggesting no intertaxon bacterial exchange via the predator–prey route. The phylogenetic proximity of Wolbachia from parasitoid flies or phoretic mites to those from isopods suggests that horizontal symbiont transmission may have occurred between those taxa. Two distant Wolbachia strains were detected in two intertidal amphipods; these strains were closely related to different coastal isopod symbionts, suggesting Wolbachia transmission may occur between distantly related crustacean hosts living under the same ecological conditions.  相似文献   

17.
Wolbachia pipientis is a commonly occurring endosymbiont with well-characterised effects on host reproductive biology associated with its infection of the gonads. Wolbachia infections are also widespread in somatic tissues and consequently they have the potential to play a much broader role in host biology. Recently, Wolbachia was shown to alter the locomotion of Drosophila melanogaster in response to food cues in the laboratory. To determine whether this laboratory-based phenotype might translate to real differences for insects in the field, we performed a simple mark-release-recapture experiment with Wolbachia-infected D. melanogaster in a forested habitat. We demonstrate that infected flies are recaptured at twice the rate of uninfected flies, although infection does not affect the distance traveled by those flies recaptured. The differences in recapture could be explained by infection-induced changes in physiology or behavior. If generalizable, such changes may affect the interpretation of behavioral studies for Wolbachia-infected insects and have potential implications for the dynamics of Wolbachia infections in natural populations, including situations where Wolbachia-infected insects are being released for biological control.  相似文献   

18.
Wolbachia are obligatory, cytoplasmatically inherited α-proteobacteria, which are common endosymbionts in arthropods where they may cause reproductive abnormalities. Many insects are well known to protect themselves from deleterious microorganisms by antibiotic components. In this study, we addressed the question whether Wolbachia are able to infect insects containing antimicrobial anthraquinones and anthrones, and if so, whether these genotypes of Wolbachia comprise a monophyletic cluster within one of the known supergroups. Leaf beetles of the taxon Galerucini (Galerucinae) are known to contain 1,8-dihydroxylated anthraquinones and anthrones. Also, the scale insect Dactylopius contains an anthraquinone glycoside, carminic acid. Our analyses revealed that a representative of the Galerucini, Galeruca tanaceti and Dactylopius, are indeed infected by endosymbiotic Wolbachia bacteria.Phylogenetic analysis of the wsp and ftsZ genes of these bacteria revealed that strains in G. tanaceti cluster in supergroup A, whereas those present in Dactylopius are distinctive from each other and from those of G. tanaceti. They are clustering in supergroups A and B. Wolbachia strains present in close, but anthraquinone-free relatives of G. tanaceti were shown to belong also to supergroup A. From these results, we can conclude (1) a double infection in Dactylopius, (2) that the presence of antimicrobial compounds such as anthraquinones does not necessarily protect insects from infection by Wolbachia, and (3) that genotypes of Wolbachia-infecting anthraquinone-containing insects most likely do not comprise a unique genotype. These results show that Wolbachia bacteria might be adapted to cope even with conditions usually detrimental to other bacteria and that these adaptations are widespread among Wolbachia supergroups.  相似文献   

19.
In the state of Veracruz, Mexico, fruits from 38 sites at various altitudes were collected monthly over a period of 2 years, and the tephritid fruit flies of the genus Anastrepha and associated parasitoids that emerged from these fruits were identified and counted. Of the 26 species of fruits that contained Anastrepha larvae, 18 species also contained a total of 10 species of Anastrepha parasitoids. These consisted of 4 native and 1 exotic species of opiine braconid larval–pupal parasitoids, 2 native species of eucoilid larval–pupal parasitoids, 1 exotic species of eulophid larval–pupal parasitoid, 1 exotic species of pteromalid pupal parasitoid, and 1 native species of diapriid pupal parasitoid. Overall parasitism (including flies from fruit species that bore no parasitoids) was 6% and was greatest, 16%, at 600–800 m in altitude. The relative contributions of individual parasitoid species to overall parasitism were frequently influenced by both the altitude (and correlated changes in temperature and precipitation) and the species of plant in which the Anastrepha larvae were found. This was particularly the case among the more abundant and widespread Braconidae. To distinguish the role of altitude from that of the distributions of the host plants, these braconids were examined in 4 individual species of fruit that grew over a broad range of altitudes. In guava (Psidium guajava L.) and “jobo” (Spondias mombin L.) the parasitoid Doryctobracon areolatus (Szepligeti) was relatively more common at low altitudes. Its congener, Doryctobracon crawfordi (Viereck), was relatively more abundant at high altitudes in sour orange (Citrus aurantium L.). Utetes anastrephae (Viereck) became relatively more common at higher altitudes in S. mombin, whereas Diachasmimorpha longicaudata (Ashmead) tended to become relatively rare at the highest altitudes in C. aurantium, but increased at high altitudes in P. guajava compared to other braconids. Different altitudinal patterns of abundance in different fruits suggests the importance of both biotic and abiotic factors in parasitoid distributions. We discuss the effect of an expanding agricultural frontier on parasitoid abundance and relate our findings to the design of a fruit fly biological control program that tailors mass releases to parasitoid climate preferences.  相似文献   

20.
Recent studies on Wolbachia‐induced incompatibility in haplodiploid insects and mites have revealed a diversity of cytoplasmic incompatibility (CI) patterns among host species. Here, we report intraspecific diversity in CI expression among four strains of the arrhenotokous mite Tetranychus urticae and in T. turkestani. Variability of CI expression within T. urticae ranged from no CI to complete CI, and included either female embryonic mortality or male conversion types of CI. A fecundity cost attributed to the infection with the high‐CI Wolbachia strain was the highest ever recorded for Wolbachia (?80 to ?100% decrease). Sequence polymorphism at a 550‐bp‐portion of Wolbachia wsp gene revealed two clusters distant by 21%, one of which included three Wolbachia strains infecting mite populations sampled from the same host‐plant species, but showing distinct CI patterns. These data are discussed in the light of theoretical predictions on the evolutionary pathways followed in this symbiotic interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号