首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biofilm development on leaf and wood surfaces in a boreal river   总被引:4,自引:0,他引:4  
SUMMARY 1. Biofilms are organic layers that develop on submerged surfaces. They are composed of micro-organisms, exoenzymes, and detritus particles enclosed within a gelatinous matrix. While much is known about mineral surface biofilms, those developing on organic surfaces have not been extensively studied. We examined the influences of current velocity and substratum composition on biofilm development in a fourth-order North American boreal river. 2. Arrays of white birch ice-cream sticks and sugar maple leaves were placed at fast and slow current sites. Samples were collected periodically, analysed for mass loss, and assayed for microbial biomass (ATP, ergosterol, chlorophyll a) and exoenzyme activity associated with lignocellulose degradation (exo- and endocellulase, β-glucosidase, phenol oxidase, peroxidase). 3. Biofilms developed rapidly on both surfaces. On leaves, biomass peaked within 30 days of exposure. On wood, ATP and chlorophyll a concentrations peaked within 30–70 days, whereas ergosterol increased throughout the study (161 days). On leaves, current velocity had little influence on biofilm development, although breakdown rates were greater at the fast flow site. On wood, ATP and chlorophyll a concentrations were greater at the fast flow site, whereas ergosterol concentrations and breakdown rates were similar at both sites. Microbial biomass was consistently greater on wood than leaves, Exoenzyme activity developed rapidly on both surfaces; current velocity had little influence on activity. Except for β-glucosidase, activities were greater on wood than leaves. 4. Our results suggest that fungi are an important structuring element of organic surface biofilms and the physical stability of the substratum strongly influences biofilm development. Leaf surfaces are susceptible to softening and fragmentation, truncating biofilm development. In contrast, abrasion of wood surfaces removes senescent material exposing fresh substratum for colonization. Thus, wood surfaces with their greater physical stability, permit the development of more extensive biofilms. Wood surfaces may represent an overlooked but important site of metabolic activity in streams.  相似文献   

2.
Exoenzyme accumulation in epilithic biofilms   总被引:1,自引:1,他引:0  
Although exoenzyme accumulation is often proposed as an explanation for the high metabolic activity of biofilms, little is known about the abundance, distribution and turnover rates of exoenzymes within these communities. To assess accumulation, epilithic biofilm samples were collected from a fourth-order boreal river and homogenized. The resulting particles were fractionated by size and each fraction was assayed for nine exoenzyme activities, chlorophyll, and ATP. In general, carbohydrase activities were not correlated with microbial biomass indicators; the largest pool of activity was in the aqueous phase (< 0.2 µm). Phenol oxidase, peroxidase, and phosphatase activities were largely particle-bound and often correlated with microbial biomass distribution. It was concluded that the epilithic biofilm matrix was effective at accumulating carbohydrase activity and that this accumulation may partially account for the metabolic resistance of epilithic biofilms to dissolved organic matter fluctuations.  相似文献   

3.
1. Most allochthonous plant detritus moves through stream ecosystems as fine particulate organic matter (FPOM), whose associated microbial communities, unlike those of coarse detritus, have received little scrutiny. 2. Benthic POM was collected from a fourth-order boreal river and two first-order tributaries in northern New York during July 1991, sorted it into eight size fractions ranging from 38 to >4000 μm, and assayed each fraction for ergosterol, DNA, and the activity of nine extracellular enzymes: β-1, 4-glucosidase, endocellulase, cellobiohydrolase, phenol oxidase, peroxidase, β-N-acetylglucosaminidase, acid phosphatase, alkaline phosphatase, and aryl sulphatase. In addition, DNA-DNA hybridization was used to investigate the structural similarity of the microbial communities associated with the FPOM fractions. 3. Various enzymes showed distinct activity patterns in relation to particle size as well as among sites. Half of the possible pairwise correlations among enzyme variables were statistically significant, but no enzyme activities were correlated with biomass indices (DNA and ergosterol concentration). DNA-DNA dot-blot hybridizations suggested extensive structural similarity among the microbial communities associated with FPOM fractions. 4. Cluster analysis was used to compare microbial functional similarity, measured by enzyme assays, and structural similarity, measured by DNA—DNA hybridization. Comparison of cluster coefficients showed a weak correlation between community structural similarity and functional similarity (r= 0.51) with fifteen of eighteen fractions grouped within a narrow range of distance. 5. The results suggest a convergence in microbially mediated FPOM processing despite system-level differences in litter and water quality.  相似文献   

4.
1. ,The influence of benthic algae on heterotrophic metabolism in a forested Mediterranean stream was investigated. Bacterial density and ectoenzymatic activities, as well as algal biomass (chlorophyll- a ) and metabolism (the rate of 14C incorporation), were measured during colonization over 60 days of artificial substrata (clay tiles) under light and dark conditions.
2. ,Chlorophyll- a and the rate of 14C incorporation were significantly higher in light-grown than in dark-grown biofilms. Bacterial density and ectoenzymatic activity (especially β-glucosidase) were also significantly higher in light-grown biofilms.
3. ,Regressions of chlorophyll- a and 14C incorporation values on the ectoenzymatic activities were significant. The slopes of regression lines obtained for dark-grown biofilms were significantly higher than those obtained for light -grown biofilms.
4. ,The differences in the slope (of the regression lines) between dark and light-grown biofilms suggest that the response of the heterotrophs is faster in biofilms with low algal biomass accrual and slows down when algal biomass is increased.
5. ,It is concluded that algal accumulation in the epilithic biofilm influences the use of organic matter by the heterotrophic community by increasing the amount of organic substrate available for bacteria.  相似文献   

5.
SUMMARY. 1. Benthic particulate organic matter (POM) was collected from a shallow pool of a fourth order boreal stream and sorted into seven size fractions ranging from 63 to >4000μm. Each size fraction was analysed for fibre, total phosphorus, and total Kjeldahl nitrogen. Microbial activity was measured by oxygen consumption and characterized by assaying for eleven classes of exoenzymes including cellulase, phenol oxidase, peroxidase, phosphatase and sulphatase.
2. Indices of detritus quality such as C/N, C/P, percent lignin, and microbial respiration showed improvement with decreasing particle size. Three covarying exoenzyme groups were identified: a carbohydrase-phosphatase group that included eight enzymes, a phenol oxidase-peroxidase group, and sulphatase. The activity of the carbohydrase-phosphatase group, was significantly correlated with microbial respiration and the carbohydrate content of the POM. Phenol oxidase-peroxidase activity was correlated with lignin content for POM greater than 250 μm, but activity increased markedly in the two smallest size fractions even though the lignin content of the POM continued to decline, Sulphatase activity was inversely related to particle size over the entire range.
3. The changes in microbial activity with particle size were attributed to the increasing surface area to volume ratio of smaller particles and to an ecological succession in the microbial community.  相似文献   

6.
Boreal forests contain significant quantities of soil carbon that may be oxidized to CO2 given future increases in climate warming and wildfire behavior. At the ecosystem scale, decomposition and heterotrophic respiration are strongly controlled by temperature and moisture, but we questioned whether changes in microbial biomass, activity, or community structure induced by fire might also affect these processes. We particularly wanted to understand whether postfire reductions in microbial biomass could affect rates of decomposition. Additionally, we compared the short‐term effects of wildfire to the long‐term effects of climate warming and permafrost decline. We compared soil microbial communities between control and recently burned soils that were located in areas with and without permafrost near Delta Junction, AK. In addition to soil physical variables, we quantified changes in microbial biomass, fungal biomass, fungal community composition, and C cycling processes (phenol oxidase enzyme activity, lignin decomposition, and microbial respiration). Five years following fire, organic surface horizons had lower microbial biomass, fungal biomass, and dissolved organic carbon (DOC) concentrations compared with control soils. Reductions in soil fungi were associated with reductions in phenol oxidase activity and lignin decomposition. Effects of wildfire on microbial biomass and activity in the mineral soil were minor. Microbial community composition was affected by wildfire, but the effect was greater in nonpermafrost soils. Although the presence of permafrost increased soil moisture contents, effects on microbial biomass and activity were limited to mineral soils that showed lower fungal biomass but higher activity compared with soils without permafrost. Fungal abundance and moisture were strong predictors of phenol oxidase enzyme activity in soil. Phenol oxidase enzyme activity, in turn, was linearly related to both 13C lignin decomposition and microbial respiration in incubation studies. Taken together, these results indicate that reductions in fungal biomass in postfire soils and lower soil moisture in nonpermafrost soils reduced the potential of soil heterotrophs to decompose soil carbon. Although in the field increased rates of microbial respiration can be observed in postfire soils due to warmer soil conditions, reductions in fungal biomass and activity may limit rates of decomposition.  相似文献   

7.
该研究以典型的亚热带—温带过渡区森林为对象,采用野外过程监测和控制试验相结合的方法,利用磷脂脂肪酸和土壤胞外酶活性分别表征土壤微生物群落结构和活性,并结合微环境因子,重点探究土壤微生物生物量、群落结构和活性对植物地下碳输入的响应特征。结果表明:在观测周期内,处理均能显著降低三组年龄段林分的土壤微生物量碳,其变化幅度在-8.72%~-5.72%之间,其中在80年的林分中降幅最大,而在160年的林分中降幅最小;微生物量氮的变化规律与相应的微生物量碳的变化规律相似,但与对照相比其差异性均未达到显著性水平;另外,经壕沟处理2~4个月后,所有林分的土壤微生物量碳和氮与对照相比出现增加的现象。处理均能对三组年龄段林分的土壤微生物群落结构产生不同程度的影响,其中40年林分的土壤微生物群落对处理的响应程度要高于另外两个年龄段的林分;与对照相比,壕沟处理样方的腐生真菌的相对丰富度均下降明显,其中在40年和80年林分中的下降幅度达到显著水平,而细菌、放线菌和丛枝菌根真菌均无明显变化;壕沟处理样方的水解酶(β-葡萄糖苷酶和N-乙酰-葡萄糖苷酶)活性均显著下降,而氧化酶(酚氧化酶和过氧化物酶)活性的变化相对较小,除80年的林分外,其余林分均不显著。此外,处理均不能显著影响土壤的含水量和温度。该研究结果为初步阐明全球气候变化背景下森林土壤微生物结构及其功能的变化特征以及更加精确预测未来森林土壤碳的变化趋势提供了科学依据。  相似文献   

8.
Stoichiometry of soil enzyme activity at global scale   总被引:27,自引:0,他引:27  
Extracellular enzymes are the proximate agents of organic matter decomposition and measures of these activities can be used as indicators of microbial nutrient demand. We conducted a global-scale meta-analysis of the seven-most widely measured soil enzyme activities, using data from 40 ecosystems. The activities of beta-1,4-glucosidase, cellobiohydrolase, beta-1,4-N-acetylglucosaminidase and phosphatase g(-1) soil increased with organic matter concentration; leucine aminopeptidase, phenol oxidase and peroxidase activities showed no relationship. All activities were significantly related to soil pH. Specific activities, i.e. activity g(-1) soil organic matter, also varied in relation to soil pH for all enzymes. Relationships with mean annual temperature (MAT) and precipitation (MAP) were generally weak. For hydrolases, ratios of specific C, N and P acquisition activities converged on 1 : 1 : 1 but across ecosystems, the ratio of C : P acquisition was inversely related to MAP and MAT while the ratio of C : N acquisition increased with MAP. Oxidative activities were more variable than hydrolytic activities and increased with soil pH. Our analyses indicate that the enzymatic potential for hydrolyzing the labile components of soil organic matter is tied to substrate availability, soil pH and the stoichiometry of microbial nutrient demand. The enzymatic potential for oxidizing the recalcitrant fractions of soil organic material, which is a proximate control on soil organic matter accumulation, is most strongly related to soil pH. These trends provide insight into the biogeochemical processes that create global patterns in ecological stoichiometry and organic matter storage.  相似文献   

9.
SUMMARY. 1. We examined the abundance and oxygen metabolism of epiphytic organisms on the dominant macrophyte, Potamogeton pectinatus , in headwaters of the eutrophic River Suså. Microbenthic algae were abundant in the stream during spring and macrophytes during summer.
2. The low macrophyte biomass in spring supported a dense epiphyte cover whereas the high macrophyte biomass during summer had a thin epiphyte cover of 10–100-fold lower abundance per unit area of macrophyte surface. The epiphyte community was dominated by microalgae in spring and by heterotrophs, probably bacteria, during summer. This seasonal shift was shown by pronounced reductions of the chlorophyll a content (from 2–3% to 0.1–0.7% of organic DW), the gross photosynthetic rate (from 20–85 to 3–15 mg O2, g-1 organic DW h−1) and the ratio of gross photosynthesis to dark respiration in the epiphyte community (from 5–18 to 1). The reduced contributions of epiphytic microalgae correlated with reduced light availability during summer.
3. Both the density and the photosynthetic activity of epiphytic algae were low on a stream area basis relative to those of microbenthic algae and macrophytes. Rapid variations in water velocity and extensive light attenuation in water and macrophyte stands probably constrained the development of epiphytic algae. The epiphyte community was more important in overall stream respiration, contributing c. 10% to total summer respiration and c. 20% to summer respiration within the predominantly heterotrophic microbial communities on sediments and macrophyte surfaces.  相似文献   

10.
漓江水陆交错带不同植被类型的土壤酶活性   总被引:10,自引:0,他引:10  
杨文彬  耿玉清  王冬梅 《生态学报》2015,35(14):4604-4612
水陆交错带是内陆水生生态系统与陆地生态系统之间的功能界面区,其包含了高地到低地直到水体的区域,是土壤有机质源、汇和转换器。土壤中有机物的分解以及营养物质的转化不仅影响到植物的生长,也对水体质量产生间接影响。土壤酶几乎参与土壤中有机物质的分解与合成的全过程,直接或间接影响着土壤一系列的生物化学反应,对生态系统的物质循环产生重要影响。不少学者围绕农田土壤、林地土壤以及湿地土壤探讨了不同植被下酶活性的变异。水陆交错带植被种类丰富,周期性的淹水条件加剧了土壤性质变异的复杂性。但目前水陆交错带不同植被类型土壤酶活性差异的研究不多。以漓江水陆交错带土壤为研究对象,对苔藓、草本和灌丛3种植被类型下的土壤溶解性化学成分、4种土壤水解酶即糖苷酶、几丁质酶、亮氨酸氨基肽酶和磷酸酶以及2种氧化还原酶即酚氧化酶和过氧化物酶的活性,以及土壤性质与酶活性之间的关系进行了研究。结果表明,苔藓植被下土壤的糖苷酶和酚氧化酶活性显著高于草本和灌丛,草本植被下土壤的过氧化物酶活性显著高于苔藓和灌丛,灌丛植被下土壤几丁质酶活性显著高于苔藓和草本,但不同植被类型的土壤亮氨酸氨基肽酶活性无显著差异。相关分析表明,土壤水分含量与糖苷酶和酚氧化酶活性呈显著正相关,而与几丁质酶和碱性磷酸酶活性呈显著负相关。土壤有机碳和易氧化碳均与糖苷酶和酚氧化酶活性呈极显著负相关,与几丁质酶活性呈显著正相关。土壤溶解性有机碳与亮氨酸氨基肽酶和酚氧化酶呈显著正相关。综合认为,水陆交错带不同种类土壤酶在不同植被类型间的差异有别,土壤水分含量和土壤有机碳显著影响土壤酶活性的变化。不同植被类型土壤酶活性的差异不仅与植被类型有关,与水陆交错带微地形以及土壤性质的空间异质性也有密切关系,需运用长期控制试验手段开展研究。  相似文献   

11.
SUMMARY. 1. The intersetular distance (filter mesh-size) of adult Simocephalus showed a two-fold seasonal variation in each of two ponds. In one pond the maximum intersetular distance was found in March, while in the other pond the maximum intersetular distance was found in September.
2. These seasonal changes in intersetular distances was positively correlated with changes in phytoplankton biomass (estimated by chlorophyll a). As food concentration increased (estimated by chlorophyll a) the mean intersetular distance of adull Simocephalus also increased.
3. The intersetular distances on fillcring setae also vary with the size of animals. There is a linear relation between body length and intersetular distance.
4. Variation in the intersetular dimension with body size may decrease competition tor food between adults and young.  相似文献   

12.
Nitrogen (N) deposition has increased dramatically worldwide, which may affect forest soils in various ways. In this study, we conducted a short-term manipulation experiment of N addition on two types of forest soils (urban and rural soils) found in Korea. N addition significantly decreased phenol oxidase activities in urban soil samples; however, it did not affect those in rural soils. Furthermore, N addition did not change β-glucosidase and N-acetylglucosaminidase activities, except for β-glucosidase activities in the O layer of rural soils. Changes in microbial biomass and general activity (dehydrogenase activity) were not induced by N addition, except for dehydrogenase in the A layer of urban soils. Although N addition did not change the extractable soil nutrients, organic matter, and water contents significantly, it enhanced nutrient leaching and resulted in lower pH leachate. These results suggest that excessive N addition to forest soils may induce nutrient leaching in the long-term. Overall results of our study also suggest that N addition may induce retardation of organic matter decomposition in soils; however, such a response may depend on the intensity of previous exposure to N deposition.  相似文献   

13.
SUMMARY 1. The planktonic ciliate communities of eleven organically coloured north and central Florida lakes representing a variety of trophic conditions were examined during 1979–80. The total abundance and biomass of ciliates were not significantly different from comparable clearwater lakes and only minor taxonomic replacements were noted at the order level.
2. Timing of population peaks of oligotrophic lakes was dissimilar to clearwater lakes of the same trophic state, but seasonality in meso-trophic and eutrophic lakes resembled patterns described for comparable clearwater lakes.
3. Various ciliate components were strongly correlated with chlorophyll a concentrations, but only moderately correlated to dominant phytoplankton groups. No significant correlations were found between ciliate components and bacterial abundance.
4. Myxotrophic taxa numerically dominated oligotrophic systems, particularly during midsummer, and accounted for a large percentage of the total ciliate biomass. Estimates of the ciliate contribution to total autotrophic biomass indicate that these zoochlorellae-bearing protozoa may account for much of the autotrophic biomass during midsummer periods in coloured lakes, and thus may lead to an overestimation of phytoplankton standing crops available to zooplankton grazers if chlorophyll a is used as a surrogate measure of algal biomass.  相似文献   

14.
1. We compared microbial biomass (bacteria, fungi, algae) and the activity of extracellular enzymes used in the decomposition of organic matter (OM) among different benthic substrata (leaves, coarse and fine substrata) over one hydrological year in a Mediterranean stream.
2. Microbial heterotrophic biomass (bacteria plus fungi) was generally higher than autotrophic biomass (algae), except during short periods of high light availability in the spring and winter. During these periods, sources of OM shifted towards autochthonous sources derived mainly from algae, which was demonstrated by high algal biomass and peptidase activity in benthic communities.
3. Heterotrophic activity peaked in the autumn. Bacterial and fungal biomass increased with the decomposition of cellulose and hemicellulose compounds from leaf material. Later, lignin decomposition was stimulated in fine (sand, gravel) and coarse (rocks, boulders and cobbles) substrata by the accumulation of fine detritus.
4. The Mediterranean summer drought provoked an earlier leaf fall. The resumption of the water flow caused the weathering of riparian soils and subsequently a large increase in dissolved organic carbon and nitrate, which led to growth of bacteria and fungi.  相似文献   

15.
We have studied the differences in the organic matter processing and biofilm composition and structure between autoheterotrophic and heterotrophic biofilm communities. Microbial communities grown on artificial biofilms were monitored, following incubation under light and dark conditions and with or without the addition of glucose as a labile organic compound. Glucose addition greatly affected the microbial biofilm composition as shown by differences in 16S rRNA gene fingerprints. A significant increase in β-glucosidase and peptidase enzyme activities were also observed in glucose-amended biofilms incubated in the dark, suggesting an active bacterial community. Light enhanced the algal and bacterial growth, as well as higher extracellular enzyme activity, thereby indicating a tight algal–bacterial coupling in biofilms incubated under illumination. In these biofilms, organic compounds excreted by photosynthetic microorganisms were readily available for bacterial heterotrophs. This algal–bacterial relationship weakened in glucose-amended biofilms grown in the light, probably because heterotrophic bacteria preferentially use external labile compounds. These results suggest that the availability of labile organic matter in the flowing water and the presence of light may alter the biofilm composition and function, therefore affecting the processing capacity of organic matter in the stream ecosystem.  相似文献   

16.
Bacterial activity along a trophic gradient   总被引:5,自引:0,他引:5  
Bacterial biomass, secondary production, and extracellular enzymatic activity [-glucosidase and leucine-aminopeptidase, measured as cleavage of artificial fluorogenic substrates 4-methyl umbelliferyl (MVF) -D-glucopyranoside and L-leucine 7-amido-4-methyl coumarin (MCA)] were measured along a trophic gradient in the Northern Adriatic Sea in four ecologically different situations. Bacterial parameters were compared with chlorophyll a and inorganic and organic nutrient concentrations. Bacterial secondary production and extracellular enzymatic activity markedly changed among different seasons and along the trophic gradient. Average bacterial secondary production increased from 0.61 to 2.09 µg Cl–1 hour–1 preceding a bloom, to 2.09 µg Cl–1 hour–1 during the bloom, decreasing again to 0.81 and 0.83 µg Cl–1 hour–1 in the post-bloom and summer periods, respectively (values from 0.5 m depth). Leucine-aminopeptidase activity showed more consistent trends than -glucosidase activity. Average values of leucine-aminopeptidase activity, measured by enzymatic release of MCA, increased from a pre-bloom value of 164.0 to 1,712.0 (nM MCA) hour–1 released during a bloom, decreasing to 298.5 and 133.7 (nM MCA) hour–1 released for the post-bloom and summer situation, respectively (values from 0.5 m depth). Average growth rates decreased during the bloom, whereas average extracellular enzymatic activity levels expressed on a cell basis increased by an average factor of 2. Along the trophic gradient, a consistent increase in bacterial secondary production could be observed in all but the summer situation (values from 0.5 m depth). Leucine-aminopeptidase activity also showed positive trends along the gradient, while -glucosidase activity did not exhibit such a clear trend. Bacterial biomass trends were less obvious considering both seasonal changes and the tropic gradient. Highly significant interrelations were detected between bacterial proteolytic activity, secondary production, chlorophyll a content, and nitrate concentrations, especially in the surface horizon. Send offprint requests to: G. J. Hemdl.  相似文献   

17.
1. The underwater light climate and benthic moss communities of Grane Langsø were investigated in May 1997 to determine the potential effects on benthic production of changing water column attenuation and spectral quality of light.
2. A reduction in water clarity in the lake since the 1960s was manifested as a marked increase in the attenuation of blue light, relative to red light, which can be attributed to increased dissolved organic carbon.
3. The biomass of the benthic moss community ranged from a maximum of 195 gDW m−2 at a depth of 4 m to 39 g DW m−2 at a depth of 10 m and Drepanocladus exannulatus contributed 70% of the biomass at all depths.
4. Absorption of PAR by D. exannulatus was maximal in the highly pigmented youngest parts of the plant and these correspondingly showed the highest rates of net photosynthesis. The absolute amount of chlorophyll- a per g dry weight was greater at 10 m than 2 m, but the ratio of accessory pigments to chlorophyll- a did not change. Deep growing plants did not show adaptation to changed light quality.
5. Increased attenuation of blue light and the resultant overall decrease in water clarity is likely to impact negatively on net annual production of benthic macrophytes of Grane Langsø. Any further increase in dissolved organic carbon concentration has the potential to markedly decrease the depth to which mosses grow by reducing the length of time in a year during which net photosynthesis occurs.  相似文献   

18.
SUMMARY. 1. The specific productivities of algae and bacteria were measured in short-term (4 day) experiments consisting of enclosures with natural or reduced zooplankton biomass. Experiments were repeated five times over a season in each of two lakes that differed in the background concentration of dissolved organic carbon (DOC).
2. Algal biomass as estimated by chlorophyll a was suppressed in enclosures with ambient grazer levels in six of ten experiments and enhanced in one experiment. Distribution of chlorophyll among net and nanoplankton was not significantly affected by grazing.
3. Relative to enclosures with reduced zooplankton, normal grazer biomass (97–466μg 1−1 dry weight) enhanced specific algal productivity in only one of five experiments in the low DOC take and had no effect in all five experiments in the high DOC lake. The main effects of grazers on algae was through removal of biomass rather than through indirect changes in turnover rate.
4. Between experiments, bacterial density was either unaffected, or mildly enhanced (4–87%) in enclosures with ambient macrozooplankton compared to those with reduced levels. Bacterial productivity and turnover estimated by incorporation of [3H]thymidine into DNA showed different responses across experiments; increasing, declining or remaining the same with grazer minipulation. This variability was not related to differences in dissolved primary production or to background DOC between lakes or experiments. Comparison of bacterial productivities based on thymidine incorporation rates with changes in cell densities indicated that control of bacterial loss processes by macrozooplankton is more important than control of growth rates.  相似文献   

19.
The growth of four strains of the shiitake mushroom Lentinus edodes in solid substrate fermentation in synthetic oak sawdust logs was studied over a 14-week period. Total extracellular phenol oxidase activity and soluble protein were monitored and biomass estimated as the ergosterol content of the fermented sawdust. It was observed that two of the strains had a similar pattern of phenol oxidase activity with two cycles with maxima at 2 and 8 weeks of mycelial growth prior to fruiting. With the other two strains there was a maximum at week 4. For each strain, phenol oxidase activity increased with the cold shock used to induce fruiting. Phenol oxidase activity was not found to be correlated with either soluble protein or total fungal biomass in the fermented sawdust, which were correlated for each strain. Quantification of biomass from submerged liquid culture on the basis of dry weight and ergosterol contents showed that the strains fell into the same two groups with respect to the ergosterol to biomass ratio, which was markedly lower than that for a strain of L. lepideus.Correspondence to: B. C. Okeke  相似文献   

20.
酚氧化酶在土壤有机质降解过程中起重要作用,然而,目前用于测定土壤酚氧化酶活性的方法尚未统一。本研究以亚热带地区砂岩发育的3种不同林分的森林土壤为对象,探讨底物类型、pH值、土壤储存条件、储存时间、底物浓度、水土比、培养时间和温度对土壤酚氧化酶活性的影响,以期建立统一、可比较的测定亚热带森林土壤酚氧化酶活性的方法。结果表明: 浸提液pH值显著影响土壤酚氧化酶活性,且与目前普遍使用的左旋多巴胺(L-DOPA)相比,2,2′-联氨-双(3-乙基苯并噻唑啉-6-磺酸)-二胺盐(ABTS)所测得的氧化酶活性更高、适用pH值范围更广,说明ABTS可能更适合作为测定亚热带森林酸性土壤酚氧化酶活性的底物。储存方式显著影响酚氧化酶活性,3种供试土壤样品酚氧化酶活性均随时间呈降低的趋势,降幅表现为风干> 4 ℃冷藏> -20 ℃冷冻> -80 ℃冷冻,表明在无法保证快速测定土壤酚氧化酶活性的情况下,冷冻保存方式更有利于维持土壤酚氧化酶活性。底物浓度、水土比以及培养时间和温度均影响土壤酚氧化酶活性。当土壤样品与浸提液比例为1∶100时,选择2 mmol·L-1浓度的ABTS为底物,在25~30 ℃下培养4 h,测定酚氧化酶活性结果重复性好、灵敏度高,是测定亚热带森林酸性土壤酚氧化酶活性的最优条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号