首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nir R  Grossman R  Paroush Z  Volk T 《PLoS genetics》2012,8(3):e1002632
Drosophila melanogaster Held Out Wings (HOW) is a conserved RNA-binding protein (RBP) belonging to the STAR family, whose closest mammalian ortholog Quaking (QKI) has been implicated in embryonic development and nervous system myelination. The HOW RBP modulates a variety of developmental processes by controlling mRNA levels and the splicing profile of multiple key regulatory genes; however, mechanisms regulating its activity in tissues have yet to be elucidated. Here, we link receptor tyrosine kinase (RTK) signaling to the regulation of QKI subfamily of STAR proteins, by showing that HOW undergoes phosphorylation by MAPK/ERK. Importantly, we show that this modification facilitates HOW dimerization and potentiates its ability to bind RNA and regulate its levels. Employing an antibody that specifically recognizes phosphorylated HOW, we show that HOW is phosphorylated in embryonic muscles and heart cardioblasts in vivo, thus documenting for the first time Serine/Threonine (Ser/Thr) phosphorylation of a STAR protein in the context of an intact organism. We also identify the sallimus/D-titin (sls) gene as a novel muscle target of HOW-mediated negative regulation and further show that this regulation is phosphorylation-dependent, underscoring the physiological relevance of this modification. Importantly, we demonstrate that HOW Thr phosphorylation is reduced following muscle-specific knock down of Drosophila MAPK rolled and that, correspondingly, Sls is elevated in these muscles, similarly to the HOW RNAi effect. Taken together, our results provide a coherent mechanism of differential HOW activation; MAPK/ERK-dependent phosphorylation of HOW promotes the formation of HOW dimers and thus enhances its activity in controlling mRNA levels of key muscle-specific genes. Hence, our findings bridge between MAPK/ERK signaling and RNA regulation in developing muscles.  相似文献   

3.
Regeneration of an imaginal disc involves highly ordered proliferation and pattern regulation of the newly formed tissue. Although the general principles of imaginal disc regeneration have been extensively studied, knowledge of the underlying molecular mechanisms is far from complete. Results from other model organisms suggest that regeneration is the result of local recapitulation of the normal patterning genes. To analyze the dynamics of one major Drosophila patterning gene, decapentaplegic (dpp), in wing imaginal disc regeneration, a vital GFP reporter together with iontophoretic cell labeling were used. Our observations reveal that the restoration of compartment-border-specific dpp expression is a common event in imaginal disc regeneration. However, we did not find evidence of an upregulation of dpp expression during the regeneration process.  相似文献   

4.
The selective sensitivity of cells to programmed cell death (PCD) depends on the positive and negative death-inducing signals that converge into the apoptotic pathway. In Drosophila, the midline glial (MG) cells undergo selective death during development. Here, we show that the long isoform of the RNA-binding protein Held Out Wing (HOW(L)) is essential for enhancing the sensitivity of the MG cells to PCD. In how mutant embryos, the number of MG cells was elevated. This phenotype could be rescued by midline expression of the HOW(L) repressor isoform. In how mutant embryos, the levels of the caspase inhibitor of apoptosis, Diap1 were elevated, in parallel to reduction in the levels of activated caspase. Similarly, reducing the levels of HOW in S2 cells led to elevation of Diap1, whereas over expression of HOW(L) promoted reduction of Diap1 protein as well as mRNA levels. Importantly, deletion of the two HOW binding sites from diap1 3'UTR abrogated HOW-dependent repression of Diap1, suggesting that HOW represses diap1 by binding to its 3'UTR. These results suggest that HOW(L) enhances the sensitivity of MG cells to apoptotic signals by reducing the levels of diap1 in these cells in, demonstrating a novel mode of regulation of PCD at the mRNA level.  相似文献   

5.
The decapentaplegic (dpp) gene of Drosophila melanogaster encodes a polypeptide of the transforming growth factor-beta family of secreted factors. It is required for the proper development of both embryonic and adult structures, and may act as a morphogen in the embryo. In wing imaginal discs, dpp is expressed and required in a stripe of cells near the anterior-posterior compartment boundary. Here we show that viable mutations in the segment polarity genes patched (ptc) and costal-2 (cos2) cause specific alterations in dpp expression within the anterior compartment of the wing imaginal disc. The interaction between ptc and dpp is particularly interesting; both genes are expressed with similar patterns at the anterior-posterior compartment boundary of the disc, and mis-expressed in a similar way in segment polarity mutant backgrounds like ptc and cos2. This mis-expression of dpp could be correlated with some of the features of the adult mutant phenotypes. We propose that ptc controls dpp expression in the imaginal discs, and that the restricted expression of dpp near the anterior-posterior compartment boundary is essential to maintain the wild-type morphology of the wing disc.  相似文献   

6.
During development, it is essential for gene expression to occur in a very precise spatial and temporal manner. There are many levels at which regulation of gene expression can occur, and recent evidence demonstrates the importance of mRNA stability in governing the amount of mRNA that can be translated into functional protein. One of the most important discoveries in this field has been miRNAs (microRNAs) and their function in targeting specific mRNAs for repression. The wing imaginal discs of Drosophila are an excellent model system to study the roles of miRNAs during development and illustrate their importance in gene regulation. This review aims at discussing the developmental processes where control of gene expression by miRNAs is required, together with the known mechanisms of this regulation. These developmental processes include Hox gene regulation, developmental timing, growth control, specification of SOPs (sensory organ precursors) and the regulation of signalling pathways.  相似文献   

7.
Total RNA derived from the imaginal discs of Drosophila melanogaster was translated in vitro, and the polypeptide products electrophoresed on two-dimensional gels. In agreement with previously published examinations of imaginal disc protein synthesis and content, we can detect no reproducible differences in abundant mRNA populations between different disc types (foreleg and wing). Differences can be found, however, between imaginal discs and other tissues. We also present evidence for a nonuniformly distributed wing disc mRNA.  相似文献   

8.
The three ERM proteins (Ezrin, Radixin and Moesin) form a conserved family required in many developmental processes involving regulation of the cytoskeleton. In general, the molecular function of ERM proteins is to link specific membrane proteins to the actin cytoskeleton. In Drosophila, loss of moesin (moe) activity causes incorrect localisation of maternal determinants during oogenesis, failures in rhabdomere differentiation in the eye and alterations of epithelial integrity in the wing imaginal disc. Some aspects of Drosophila Moe are related to the activity of the small GTPase RhoA, because the reduction of RhoA activity corrects many phenotypes of moe mutant embryos and imaginal discs. We have analysed the phenotype of moesin loss-of-function alleles in the wing disc and adult wing, and studied the effects of reduced Moesin activity on signalling mediated by the Notch, Decapentaplegic, Wingless and Hedgehog pathways. We found that reductions in Moesin levels in the wing disc cause the formation of wing-tissue vesicles and large thickenings of the vein L3, corresponding to breakdowns of epithelial continuity in the wing base and modifications of Hedgehog signalling in the wing blade, respectively. We did not observe any effect on signalling pathways other than Hedgehog, indicating that the moe defects in epithelial integrity have not generalised effects on cell signalling. The effects of moe mutants on Hedgehog signalling depend on the correct gene-dose of rhoA, suggesting that the requirements for Moesin in disc morphogenesis and Hh signalling in the wing disc are mediated by its regulation of RhoA activity. The mechanism linking Moesin activity with RhoA function and Hedgehog signalling remains to be elucidated.  相似文献   

9.
10.
11.
Tissue development and RNA control: "HOW" is it coordinated?   总被引:1,自引:0,他引:1  
The regulation of developmental processes at the RNA level enables selective and rapid modulation of gene expression. Studies in model organisms revealed the essential contribution of the signal transduction and activation of RNA (STAR) family of RNA binding proteins to developmental processes. STAR proteins coordinate the proper timing of developmental events by delaying expression or altering the mRNA or protein levels of essential genes. Recent functional analysis of the Drosophila melanogaster STAR protein, Held Out Wing (HOW), in the context of embryonic development, provided insight into its mode of activity. Here, we describe HOW's activity in the temporal repression or elevation of gene expression that is essential for coordinating the correct timing of instructive signals.  相似文献   

12.
We have isolated mutations in the Drosophila melanogaster gene glass bottom boat (gbb), which encodes a TGF-beta signaling molecule (formerly referred to as 60A) with highest sequence similarity to members of the bone morphogenetic protein (BMP) subgroup including vertebrate BMPs 5-8. Genetic analysis of both null and hypomorphic gbb alleles indicates that the gene is required in many developmental processes, including embryonic midgut morphogenesis, patterning of the larval cuticle, fat body morphology, and development and patterning of the imaginal discs. In the embryonic midgut, we show that gbb is required for the formation of the anterior constriction and for maintenance of the homeotic gene Antennapedia in the visceral mesoderm. In addition, we show a requirement for gbb in the anterior and posterior cells of the underlying endoderm and in the formation and extension of the gastric caecae. gbb is required in all the imaginal discs for proper disc growth and for specification of veins in the wing and of macrochaete in the notum. Significantly, some of these tissues have been shown to also require the Drosophila BMP2/4 homolog decapentaplegic (dpp), while others do not. These results indicate that signaling by both gbb and dpp may contribute to the development of some tissues, while in others, gbb may signal independently of dpp.  相似文献   

13.
14.
In the wing imaginal disc, the decapentaplegic (dpp) gene is expressed in a stripe of anterior cells near the anterior-posterior compartment boundary, and it is required solely in these cells for the entire disc to develop. In some viable segment polarity mutants, alterations in dpp expression have been demonstrated that correlate with changes in wing morphology. To test the hypothesis that the abnormal patterns of dpp expression are responsible directly for the mutant phenotypes, we have expressed dpp in ectopic places in wing imaginal discs, and we have found that dpp is able to cause overgrowth and pattern duplications in both anterior and posterior compartments of the wing disc. The alterations of the anterior compartment are strikingly similar to those observed in some viable segment polarity mutants. Thus, ectopic dpp alone can account for the phenotype of these mutants. We also show that ectopic expression of the segment polarity gene hedgehog (hh) gives similar morphological changes and activates dpp expression in the anterior compartment. This strongly suggests that the organizating activity of hh is mediated by dpp. We propose that the expression of dpp near the anterior-posterior compartment boundary is directed by the interaction between patched and hh, and that dpp itself could act as a general organizer of the patterning in the wing imaginal disc.  相似文献   

15.
16.
Pathways for regulation of signaling by transforming growth factor-β family members are poorly understood at present. The best genetically characterized member of this family is encoded by the Drosophila gene decapentaplegic (dpp), which is required for multiple events during fly development. We describe here the results of screens for genes required to maximize dpp signaling during embryonic dorsal-ventral patterning. Screens for genetic interactions in the zygote have identified an allele of tolloid, as well as two novel alleles of screw, a gene recently shown to encode another bone morphogenetic protein-like polypeptide. Both genes are required for patterning the dorsalmost tissues of the embryo. Screens for dpp interactions with maternally expressed genes have identified loss of function mutations in Mothers against dpp and Medea. These mutations are homozygous pupal lethal, engendering gut defects and severely reduced imaginal disks, reminiscent of dpp mutant phenotypes arising during other dpp-dependent developmental events. Genetic interaction phenotypes are consistent with reduction of dpp activity in the early embryo and in the imaginal disks. We propose that the novel screw mutations identified here titrate out some component(s) of the dpp signaling pathway. We propose that Mad and Medea encode rate-limiting components integral to dpp pathways throughout development.  相似文献   

17.
18.
Programmed cell death or apoptosis plays an important role in the development of multicellular organisms and can also be induced by various stress events. In the Drosophila wing imaginal disc there is little apoptosis in normal development but X-rays can induce high apoptotic levels, which eliminate a large fraction of the disc cells. Nevertheless, irradiated discs form adult patterns of normal size, indicating the existence of compensatory mechanisms. We have characterised the apoptotic response of the wing disc to X-rays and heat shock and also the developmental consequences of compromising apoptosis. We have used the caspase inhibitor P35 to prevent the death of apoptotic cells and found that it causes increased non-autonomous cell proliferation, invasion of compartments and persistent misexpression of the wingless (wg) and decapentaplegic (dpp) signalling genes. We propose that a feature of cells undergoing apoptosis is to activate wg and dpp, probably as part of the mechanism to compensate for cell loss. If apoptotic cells are not eliminated, they continuously emit Wg and Dpp signals, which results in developmental aberrations. We suggest that a similar process of uncoupling apoptosis initiation and cell death may occur during tumour formation in mammalian cells.  相似文献   

19.
All insect legs are structurally similar, characterized by five primary segments. However, this final form is achieved in different ways. Primitively, the legs developed as direct outgrowths of the body wall, a condition retained in most insect species. In some groups, including the lineage containing the genus Drosophila, legs develop indirectly from imaginal discs. Our understanding of the molecular mechanisms regulating leg development is based largely on analysis of this derived mode of leg development in the species D. melanogaster. The current model for Drosophila leg development is divided into two phases, embryonic allocation and imaginal disc patterning, which are distinguished by interactions among the genes wingless (wg), decapentaplegic (dpp) and distalless (dll). In the allocation phase, dll is activated by wg but repressed by dpp. During imaginal disc patterning, dpp and wg cooperatively activate dll and also indirectly inhibit the nuclear localization of Extradenticle (Exd), which divide the leg into distal and proximal domains. In the grasshopper Schistocerca americana, the early expression pattern of dpp differs radically from the Drosophila pattern, suggesting that the genetic interactions that allocate the leg differ between the two species. Despite early differences in dpp expression, wg, Dll and Exd are expressed in similar patterns throughout the development of grasshopper and fly legs, suggesting that some aspects of proximodistal (P/D) patterning are evolutionarily conserved. We also detect differences in later dpp expression, which suggests that dpp likely plays a role in limb segmentation in Schistocerca, but not in Drosophila. The divergence in dpp expression is surprising given that all other comparative data on gene expression during insect leg development indicate that the molecular pathways regulating this process are conserved. However, it is consistent with the early divergence in developmental mode between fly and grasshopper limbs.  相似文献   

20.
Protein ser/thr phosphatase 2A family members (PP2A, PP4, and PP6) are implicated in the control of numerous biological processes, but our understanding of the in vivo function and regulation of these enzymes is limited. In this study, we investigated the role of Tap42, a common regulatory subunit for all three PP2A family members, in the development of Drosophila melanogaster wing imaginal discs. RNAi-mediated silencing of Tap42 using the binary Gal4/UAS system and two disc drivers, pnr- and ap-Gal4, not only decreased survival rates but also hampered the development of wing discs, resulting in a remarkable thorax cleft and defective wings in adults. Silencing of Tap42 also altered multiple signaling pathways (HH, JNK and DPP) and triggered apoptosis in wing imaginal discs. The Tap42(RNAi)-induced defects were the direct result of loss of regulation of Drosophila PP2A family members (MTS, PP4, and PPV), as enforced expression of wild type Tap42, but not a phosphatase binding defective Tap42 mutant, rescued fly survivorship and defects. The experimental platform described herein identifies crucial roles for Tap42?phosphatase complexes in governing imaginal disc and fly development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号