首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: To evaluate height, bone growth, areal bone mineral density (aBMD), volumetric bone mineral density (vBMD) and markers of bone turnover in a group of patients affected by congenital adrenal hyperplasia (CAH). PATIENTS: There were 50 patients (23 males, 27 females), aged 1-28 years, affected by CAH due to 21-hydroxylase deficiency: 27 with the salt-wasting (SW); 14 with the simple virilizing (SV), and 9 with the nonclassical (NC) forms. METHODS: Bone morphometry was evaluated with the metacarpal index (MI) and lumbar aBMD and vBMD (L2-L4) by dual energy X-ray absorptiometry. Serum osteocalcin was used as a marker of bone formation, while urinary cross-linked N-telopeptides of type-I collagen and free deoxypyridinoline levels were evaluated as indexes of bone resorption. RESULTS: The height standard deviation score (SDS) was -0.41 +/- 1.4 in SW patients, -0.01 +/- 1.9 in SV patients, and -0.01 +/- 2.3 in NC patients. There was no significant difference among groups and against zero. The MI SDS was also not different between groups and against zero. aBMD was significantly lower in the pubertal patients compared with normal values, but only when patients with the SW and SV forms were considered together (p < 0.05). vBMD was significantly reduced in all patients with the classical form. Bone markers were not different in patients and controls. CONCLUSION: Our study shows that normal height can be attained in CAH patients; however, an impairment in bone growth and mineralization may be found in adolescents and young adults affected by the classical form.  相似文献   

2.
The aim of the study was to investigate the relationships between specific anthropometric (9 skinfolds, 13 girths, 8 lengths and 8 breadths), body composition (body fat %, fat free mass [FFM], fat mass [FM]) parameters and bone mineral parameters (bone mineral density [BMD], bone mineral content [BMC) in young rhythmic gymnasts and same age controls. Eighty nine 7-8-year-old girls participated in this study and were divided to the rhythmic gymnast's (n = 46) and control (n = 43) groups. Body composition was determined by dual energy X-ray absorptiometry (FFM, FM, body fat %, BMD and BMC). Body fat % and FM were lower and BMD and BMC values at lumbar spine (L2-L4) and femoral neck were higher in rhythmic gymnasts compared with controls. All measured skinfold thicknesses were thicker in controls. In girths, lengths and widths there were only few significant differences between the groups. Stepwise multiple regression analysis indicated that skinfold thicknesses (supraspinale and medial calf) influenced L2-L4 BMD only in controls 38.2% (R2x100). Supraspinale and iliac crest skinfold thicknesses characterised L2-L4 BMC 43.9% (R2x100). Calf girths influenced BMD in L2-L4 52.3% (R2x100) in controls. BMC in L2-L4 was dependent only on mid-thigh girths 35.9% (R2x100). BMD in L2-L4 was dependent on tibiale-laterale height 30.0% (R2x100). Biiliocristal breadths together with sitting height characterised BMC in L2-L4 BMD 62.3% (R2x100). In conclusion, we found that the relationships between anthropometry, body composition and bone parameters in young rhythmic gymnasts are weak. In control group first of all lower body anthropometric parameters significantly correlated with BMD and BMC in spine.  相似文献   

3.
Bone mineral density (BMD) of the whole body and hind limb of young adult rats, with and without a sham-operated stifle joint was studied, using dual energy x-ray absorptiometry (DEXA) at three time points. Data from the whole body scan were used for analyses of BMD, bone mineral content (BMC), fat, lean, body weight (BW), percentage of BMC (%BMC), percentage of fat (%fat), and percentage of lean (%lean), none of which were significantly different between the groups at any time point. Significant (P < 0.05) differences in BMD, BMC, %BMC, BW, fat, %fat, and %lean were apparent at the second and third scans, compared with the initial scan, within both groups. Changes in whole body BMD, BMC, and %BMC as well as BW were highly correlated with time in both groups. In the hind limb scans, regions of interest (ROIs) were created to obtain values of BMD and BMC from the whole femur, whole tibia including the fibula, distal portion of the femur, and proximal portion of the tibia. Significant differences were not found between the groups for any ROIs. However, significant BMD and BMC increases were evident in all ROIs at the second and third scans, compared with the initial scan. Similar to those in the whole body scan, BMD and BMC obtained from ROIs were highly correlated with time. The positioning technique for the whole body and appendicular scans was analyzed by calculating percentage of the coefficient of variation (%CV) at the beginning of the study. The %CV was low and acceptable in ROIs for the hind limb and for all parameters of the whole body scan, except fat. The results suggest that in vivo DEXA scanning of the rat whole body and appendicular skeleton is highly reproducible and useful to study the whole skeleton, as well as a region of a long bone of the rat. Values for the sham-operated rats were not significantly different from those for the untreated controls, which suggests that soft tissue damage around the stifle joint did not alter BMD in the subchondral bone of the distal portion of the femur and proximal portion of the tibia.  相似文献   

4.
The combined and separate effects of exercise training and bisphosphonate (etidronate) therapy on bone mineral in postmenopausal women were compared. Forty-eight postmenopausal women were randomly assigned (double blind) to groups that took intermittent cyclical etidronate; performed strength training (3 d/week) and received matched placebo; combined strength training with etidronate; or took placebo and served as nonexercising controls. Bone mineral, lean tissue, and fat mass were assessed by dual-energy X-ray absorptiometry before and after 12 months of intervention. After removal of outlier results, changes in bone mineral density (BMD) of the lumbar spine and bone mineral content (BMC) of the whole body were greater in the subjects given etidronate (+2.5 and +1.4%, respectively) compared with placebo (-0.32 and 0%, respectively) (p < 0.05), while exercise had no effect. There was no effect of etidronate or exercise on the proximal femur and there was no interaction between exercise and etidronate at any bone site. Exercise training resulted in significantly greater increases in muscular strength and lean tissue mass and greater loss of fat mass compared with controls. We conclude that etidronate significantly increases lumbar spine BMD and whole-body BMC and that strength training has no additional effect. Strength training favourably affects body composition and muscular strength, which may be important for prevention of falls.  相似文献   

5.
Phytic acid forms insoluble complexes with nutritionally essential minerals, including zinc (Zn). Animal studies show that addition of microbial phytase (P) to low-Zn diets improves Zn status and bone strength. The present study determined the effects of phytase supplementation on bone mineral density (BMD), body composition and voluntary running activity of male rats fed a high phytic acid, low-Zn diet. In a factorial design, rats were assigned to ZnLO (5 mg/kg diet), ZnLO+P (ZnLO diet with 1500 U phytase/kg) or ZnAD (30 mg/kg diet) groups and were divided into voluntary exercise (EX) or sedentary (SED) groups, for 9 weeks. SED rats were significantly heavier from the second week, and no catch-up growth occurred in EX rats. Feed intakes were not different between groups throughout the study. ZnLO animals had decreased food efficiency ratios compared to both phytase-supplemented (ZnLO+P) and Zn-adequate (ZnAD) animals (P<.01 compared to ZnLO). The ZnLO+P and ZnAD rats ran 56–75 km more total distance than ZnLO rats (P<.05), with the ZnLO+P rats running more kilometers per week than the ZnLO rats by Week 6. In vivo DEXA analyses indicate that rats fed phytase-supplemented diets had higher lean body mass (LBM) than those fed ZnLO diets; and that rats fed the Zn-adequate diets had the highest LBM. Body fat (%) was significantly lower in EX rats and was both Zn- and phytase insensitive. Rats fed phytase-supplemented diets had higher bone mineral content (BMC), bone area (BA) and BMD than rats fed ZnLO diets; and in rats fed ZnAD diets these indices were the highest. The dietary effects on BMC, BA and BMD were independent of activity level.We conclude that consuming supplemental dietary phytase or dietary Zn additively enhances Zn status to increase BMD, LBM and voluntary physical activity in rats fed a low-Zn diet. While the findings confirm that bone health is vulnerable to disruption by moderate Zn deficiency in rats, this new data suggests that if dietary Zn is limiting, supplemental phytase may have beneficial effects on LBM and performance activity.  相似文献   

6.
《Endocrine practice》2011,17(6):897-905
ObjectiveTo study bone mineral content (BMC), bone mineral density (BMD), vitamin D status, and bone mineral variables in patients with chronic nonalcoholic pancreatitis and to determine the relationship between pancreatic dysfunction and these variables.MethodsThirty-one eligible nonalcoholic men with proven chronic pancreatitis and 35 male control subjects were studied. Biochemical data, variables of malabsorption, and BMD of the lumbar spine were evaluated.ResultsIn patients with chronic pancreatitis, the mean body mass index (BMI) was 18.46 kg/m2 and the median 25-hydroxyvitamin D value was 15.5 (range, 5.0 to 52.0) ng/mL. A T-score of less than -2.5 was found in a higher proportion of study patients (9 of 31, 29%) than of control subjects (3 of 35, 9%). BMI correlated significantly with BMC (r = 0.426; P = .017). There was an inverse correlation between stool fat and BMC (r = -0.47; P = .03) in patients with chronic pancreatitis and steatorrhea. There was no significant correlation between serum 25-hydroxyvitamin D or biochemical variables and BMD. Patients with steatorrhea had a significantly lower BMC than did those without steatorrhea, and this difference could not be accounted for by differences in BMI, presence of diabetes, or hypovitaminosis D.ConclusionPancreatic osteodystrophy is a novel entity consisting of osteopenia, osteoporosis, and osteomalacia in patients with chronic pancreatitis. The inverse correlation between stool fat and BMC in patients with chronic pancreatitis, the strong positive correlation between BMI and BMC, and the lack of difference in BMC between subjects with vitamin D sufficiency and those with vitamin D deficiency suggest that long-standing malabsorption with attendant chronic undernutrition is the major factor contributing to the changes in BMC. (Endocr Pract. 2011;17:897-905)  相似文献   

7.
Fat mass deposition during pregnancy using a four-component model.   总被引:1,自引:0,他引:1  
Estimates of body fat mass gained during human pregnancy are necessary to assess the composition of gestational weight gained and in studying energy requirements of reproduction. However, commonly used methods of measuring body composition are not valid during pregnancy. We used measurements of total body water (TBW), body density, and bone mineral content (BMC) to apply a four-component model to measure body fat gained in nine pregnant women. Measurements were made longitudinally from before conception; at 8-10, 24-26, and 34-36 wk gestation; and at 4-6 wk postpartum. TBW was measured by deuterium dilution, body density by hydrodensitometry, and BMC by dual-energy X-ray absorptiometry. Body protein was estimated by subtracting TBW and BMC from fat-free mass. By 36 wk of gestation, body weight increased 11.2 +/- 4.4 kg, TBW increased 5.6 +/- 3.3 kg, fat-free mass increased 6.5 +/- 3.4 kg, and fat mass increased 4.1 +/- 3.5 kg. The estimated energy cost of fat mass gained averaged 44,608 kcal (95% confidence interval, -31, 552-120,768 kcal). The large variability in the composition of gestational weight gained among the women was not explained by prepregnancy body composition or by energy intake. This variability makes it impossible to derive a single value for the energy cost of fat deposition to use in estimating the energy requirement of pregnancy.  相似文献   

8.
We investigated the reproducibility of total and regional body composition measurements performed on a dual energy X-ray absorptiometer (DXA). A group of 38 women aged 21–81 (mean 52. 4) years was scanned twice with repositioning to determine intra-observer reproducibility of measurements of bone mineral density (BMD, g · cm−2), bone mineral content (BMC, g), lean mass (LM, kg) and fat mass (FM, kg) of the total body and of the major subregions of the body. In addition, the ability of the DXA machine to detect changes in LM and FM (simulated by placing 11.1 and 22.3 kg porcine lard on the body of 11 subjects) was examined. Coefficients of variations calculated from the root mean square averages of individual standard deviations were as follows (BMD, BMC, FM, LM): 1.4%, 1.1%, 1.4%, 1.7% (total body), 2.2%, 2.1%,-,- (head), 2.8%, 2.8%, 2.0%, 2.2% (trunk), 3.6%, 3.9%, 4.0%, 4.9% (arms), 2.7%, 1.3%, 2.6%, 2.8% (legs). Percentage fat (%fat) of exogenous lard was 81.3 (SD 3.5)% as assessed by the absorptiometer which corresponded well with the result of chemical analysis (82.8%). Estimated %fat of exogenous lard was not influenced by initial body mass or percentage body fat. Percentages of expected mean values with 11.1 kg lard placed on the body were 99.9 (SD 0.3) for body mass, 100.5 (SD 2.1) for LM, and 99.5 (SD 3.5) for FM. BMD was overestimated by 3.2% (P < 0.005) with 11.1 kg lard on the body. BMD as well as BMC increased significantly with 22.3␣kg lard on the body (P < 0.005). The results showed that BMD, BMC, LM, and FM of the total body were precisely estimated by the DXA machine used. Regional measurements were less precise. Changes in total body soft tissue composition were precisely and accurately estimated. The lard placed on the body falsely affected BMD and BMC measurements. Changes in body mass could have a similar effect. Accepted: 6 January 1997  相似文献   

9.
BACKGROUND/AIMS: Since GH plays an important role in bone mineralization, and several studies demonstrated the positive influence of a higher calcium intake on bone mass, we studied the effect of calcium supplementation in GHD children during GH therapy. METHODS: 28 prepubertal GHD children, 5.0-9.9 years old, were assigned to two groups: group A (n = 14; 7 females) treated with GH, and group B (n = 14; 7 females) treated with GH + calcium gluconolactate and carbonate (1 g calcium/day per os). Auxological parameters, total bone mineral content (TBMC) and density (TBMD), leg BMC and BMD, lumbar BMD, fat mass (FM) and lean tissue mass (LTM), blood 25-hydroxyvitamin D (25-OHD), parathyroid hormone (PTH), osteocalcin (OC) and urinary N-terminal telopeptide of type I collagen (NTx) were determined at the start of therapy and after 1 and 2 years of treatment. RESULTS: During the 2 years of the study, TBMC, TBMD, leg BMC and BMD (but not lumbar BMD) increased in both groups of patients, however after 2 years of treatment they were significantly higher in the calcium-supplemented group B than in group A (p < 0.05, for all parameters). At the start of therapy, in both groups of patients percentage FM was higher and total and leg LTM lower than in controls (p < 0.05 for each parameter). Thereafter, FM decreased and LTM increased and after 2 years they were both different from baseline (p < 0.05). After 2 years of treatment, leg BMC and BMD were more positively correlated with regional leg LTM in patients of group B (r = 0.834 and r = 0.827, respectively; p < 0.001) than in patients of group A (r = 0.617 and r = 0.637, respectively; p < 0.05). 25-OHD and PTH levels were in the normal range in all patients at the start and during treatment. OC levels were lower and urinary NTx levels higher in patients than in controls (p < 0.05 for both parameters), either at the start and after 1 year of treatment. After 2 years of treatment, OC levels were significantly higher than at the start of the study (p < 0.05) in both groups of patients, but they were higher in group B than in group A (p < 0.05); on the contrary, urinary Ntx levels were lower in group B than in group A (p < 0.05). CONCLUSION: In GHD children, treated with GH, calcium supplementation improved bone mass; it may aid in reaching better peak bone mass and in protecting weight-bearing bones, usually completed in childhood to maximum levels, from risk of osteoporosis and fractures later in life.  相似文献   

10.
《Bone and mineral》1990,8(1):23-30
We measured bone mineral content (BMC) with single photon absorptiometry in two groups of young patients with type I diabetes: the first group (prospective study) consists of 48 patients followed from onset to the third year of diabetes and the second group (cross-sectional study) consists of 66 long-term diabetics. Bone mineral content at onset of disease was lower than normal in only two cases. After 3 years of diabetes no male revealed BMC below the normal range but two females (6.6%) had low BMC values. In our cross-sectional study we found a BMC reduction in 12% of the cases. We did not find a relationship between bone deficit and duration of diabetes, or bone mass values and HbA1.  相似文献   

11.
In 2008 the National Center for Health Statistics released a dual energy x-ray absorptiometry (DXA) whole body dataset from the NHANES population-based sample acquired with modern fan beam scanners in 15 counties across the United States from 1999 through 2004. The NHANES dataset was partitioned by gender and ethnicity and DXA whole body measures of %fat, fat mass/height2, lean mass/height2, appendicular lean mass/height2, %fat trunk/%fat legs ratio, trunk/limb fat mass ratio of fat, bone mineral content (BMC) and bone mineral density (BMD) were analyzed to provide reference values for subjects 8 to 85 years old. DXA reference values for adults were normalized to age; reference values for children included total and sub-total whole body results and were normalized to age, height, or lean mass. We developed an obesity classification scheme by using estabbody mass index (BMI) classification thresholds and prevalences in young adults to generate matching classification thresholds for Fat Mass Index (FMI; fat mass/height2). These reference values should be helpful in the evaluation of a variety of adult and childhood abnormalities involving fat, lean, and bone, for establishing entry criteria into clinical trials, and for other medical, research, and epidemiological uses.  相似文献   

12.
Bone-protective effects of combined treatment with long chain polyunsaturated fatty acids (LCPUFAs) and estrogenic compounds following ovariectomy have previously been reported. Recent evidence suggests the n-3 LCPUFA docosahexaenoic acid (DHA, 22:6n-3) is particularly bone-protective. The aim of this study was to determine whether combined treatment with DHA and estrogenic compounds has a beneficial effect on bone mass in ovariectomized (OVX) rats. Rats were randomized into 9 groups and either ovariectomized (8 groups) or sham-operated (1 group). Using a 2 x 4 factorial design approach, OVX animals received either no estrogenic compound, genistein (20 mg/kg body weight/day), daidzein, (20 mg/kg body weight/day) or 17 beta-estradiol (1 microg/day) with or without DHA (0.5 g/kg body weight/day) for 18 weeks. Bone mineral content (BMC), area (BA), and density (BMD), plasma osteocalcin and IL-6 concentrations, and red blood cell (RBC) fatty acid composition were measured. Femur BMC was significantly greater in animals treated with DHA or 17 beta-estradiol than in ovariectomized controls. Plasma carboxylated osteocalcin was significantly higher in DHA-treated animals and total osteocalcin significantly lower in 17 beta-estradiol-treated animals compared with ovariectomized controls. There were significant interactions between treatment with estrogenic compounds and DHA for femur BMC, plasma IL-6 concentration, and RBC fatty acid composition. Combined treatment with 17beta-estradiol+DHA was more effective than either treatment alone at preserving femur BMC and lowering circulating concentrations of pro-inflammatory IL-6. The percentage of n-3 LCPUFAs in RBCs was significantly greater in animals receiving 17 beta-estradiol+DHA compared with either treatment alone. There was no beneficial effect of combined DHA and phytoestrogen treatment on bone. Results from this study raise the possibility that co-treatment with 17 beta-estradiol and DHA may allow a lower dose of 17 beta-estradiol to be used to provide the same bone-protective effects as when 17 beta-estradiol is administered alone.  相似文献   

13.
Objective: To determine if group housing affects the variance of body composition parameters in a highly inbred mouse strain. Research Methods and Procedures: Thirty 3‐week‐old male C57BL/6J mice were obtained from the Jackson Laboratory. Fifteen mice were housed individually, and 15 mice were housed in groups of 5/cage. Animals were fed ad libitum and maintained in the same room under a 12:12‐hour light/dark photoperiod at 22 °C for 9 weeks. Animals were killed, and fat mass, soft‐lean tissue mass, bone mineral density (BMD), and bone mineral content (BMC) were determined by DXA. At necropsy, weights of the paired epididymal fat pads, paired retroperitoneal fat pads, right inguinal fat pad, liver, kidneys, paired testes, and seminal vesicles were obtained. Results: Relative to mice housed singly, group‐housed mice showed significantly greater variance in percentage of body fat, testes weight, and BMC. Group‐housed mice tended to show greater variance in liver weights and BMD. Mice housed singly were smaller, had less soft‐lean tissue mass and BMC, and lower BMD when compared with group‐housed mice. Discussion: These results suggest that with respect to body composition parameters, mice housed singly are more similar to one another than are group‐housed mice, most likely because of a reduction in environmental (predominately behavioral/social) effects. Thus, mice housed singly may be more representative of genotypic effects on body composition than group‐housed mice. Whether other inbred strains of mice show similar responses to housing condition is unknown.  相似文献   

14.
To guide development of novel nutritional strategies aimed at reducing the incidence of stress fractures, we observed the effects of manipulating dietary zinc (Zn) content on bone integrity in Sprague–Dawley rats fed either a severely Zn-deficient (ZnD; 1 ppm), a moderately Zn-deficient (MZnD; 5 ppm) or a Zn-adequate (ZnAD; 30 ppm) diet for 6 weeks. At the completion of the diet period, body composition, bone mineral content (BMC), bone area (BA) and bone mineral density (BMD) were determined in vivo by using dual-energy X-ray absorptiometry. Following euthanasia, long bones were collected for determination of Zn content and biomechanical strength testing. Despite significant positive correlations between dietary Zn and both body weight (BW) and bone Zn content for the entire cohort (r=.77 and r=.83, respectively), rats fed MZnD or ZnAD diets did not differ in feed intakes, body composition, BMC, BA, BMD or BW. Tibial bones, but not femur bones, appear to be more responsive to dietary Zn manipulation, as all bone biomechanical strength indices in the ZnAD-fed rats were significantly greater than in rats fed the ZnD diets. Rats fed either MZnD or ZnAD diets had stronger tibiae (129% increase in maximum load and stress at maximum load, P<.01) compared with those fed ZnD diets. The load at breakage for the tibial bones of rats fed MZnD diets was not different from the ZnD rats, but lower (P<.05) than that of the ZnAD rats. These results suggest that since feed intakes, body composition, BMC, BA, BMD and BW were not significantly different between the MZnD- and ZnAD-fed animals, the reduced bone integrity observed in the MZnD-fed rats resulted from dietary Zn inadequacy, and not as a result of the reduced growth that is typically associated with Zn deficiency.  相似文献   

15.
Objective: Understanding factors influencing bone mineral accrual is critical to optimize peak bone mass during childhood. The epidemic of pediatric obesity and reported higher incident of fracture risk in obese children led us to study the influence of fat mass on bone mineral content (BMC) in children. Research Methods and Procedures: Height; weight; pubertal stage; and BMC, non‐bone fat‐free mass (nbFFM), and fat mass (FM) by DXA were obtained in a multiethnic group of healthy children (444 girls/482 boys; 6 to 18 years old) recruited in the New York metropolitan area. Regression techniques were used to explore the relationship between BMC and FM, with age, height, nbFFM, pubertal stage, sex, and ethnicity as covariates. Results: Because there were significant sex interactions, separate regression analyses were performed for girls and boys. Although ln(nbFFM) was the greatest predictor of ln(BMC), ln(FM) was also a significant predictor in prepubertal boys and all girls but not in pubertal boys. This effect was independent of ethnicity. Discussion: FM was a determinant of BMC in all girls but in only prepubertal boys. Our study confirms nbFFM as the greatest predictor of BMC but is the first to find a sex difference in the effect of puberty on the relationship of FM to BMC. Our results suggest that, in two individuals of the same sex and weight, the one with greater fat mass will have lower BMC, especially pubertal boys. The implications of these findings for achievement of optimal peak bone mass in a pediatric population with an unprecedented incidence of overweight and “overfat” status remain to be seen.  相似文献   

16.
Differences in the mineral fraction of the fat-free mass (M(FFM)) and in the density of the FFM (D(FFM)) are often inferred from measures of bone mineral content (BMC) or bone mineral density (BMD). We studied the relation of BMC and BMD to the M(FFM) and D(FFM) in a heterogeneous sample of 216 young men (n = 115) and women (n = 101), which included whites (n = 155) and blacks (n = 61) and collegiate athletes ( n = 132) and nonathletes (n = 84). Whole body BMC and BMD were determined by dual-energy X-ray absorptiometry (DXA; Hologic QDR-1000W, enhanced whole body analysis software, version 5.71). FFM was estimated using a four-component model from measures of body density by hydrostatic weighing, body water by deuterium dilution, and bone mineral by DXA. There was no significant relation of BMD to M(FFM) (r = 0.01) or D(FFM) (r = -0.06) or of BMC to M(FFM) (r = -0.11) and a significant, weak negative relation of BMC to D(FFM) (r = -0.14, P = 0.04) in all subjects. Significant low to moderate relationships of BMD or BMC to M(FFM) or D(FFM) were found within some gender-race-athletic status subgroups or when the effects of gender, race, and athletic status were held constant using multiple regression, but BMD and BMC explained only 10-17% of the variance in M(FFM) and 0-2% of the variance in D(FFM) in addition to that explained by the demographic variables. We conclude that there is not a significant positive relation of BMD and BMC to M(FFM) or D(FFM) in young adults and that BMC and BMD should not be used to infer differences in M(FFM) or D(FFM).  相似文献   

17.
In the spinal cord injury (SCI) population, a relationship between adiposity and leg bone has not been reported, nor one between serum estradiol and leg bone mass. A cross-sectional, comparative study of 10 male pairs of monozygotic twins discordant for SCI was performed. Relationships were determined among bone mineral density (BMD), bone mineral content (BMC), lean mass, fat mass, and serum sex steroids. In the twins with SCI, significant relationships were evident between leg BMD or BMC with total body percent fat (r2= 0.49, P < 0.05; r2= 0.45, P = 0.05), leg fat mass (r2 = 0.76, P < 0.0005; r2= 0.69, P = 0.005), and serum estradiol (r2= 0.40, P = 0.05; r2= 0.37, P = 0.05). By stepwise regression analysis, in the twins with SCI, leg fat mass was found to be the single most significant predictor of leg BMD or BMC (F = 12.01, r2= 0.76, P = 0.008; F = 50.87, r2= 0.86, P < 0.0001). In the able-bodied twins, leg lean mass correlated with leg BMD and BMC (r2= 0.58, P = 0.01; r2= 0.87, P = 0.0001). By use of within-pair differences, significant correlations were found for leg lean mass loss with leg BMD loss (r2= 0.56, P = 0.01) or leg BMC loss (r2= 0.64, P = 0.0005). In conclusion, in twins with SCI, significant correlations were observed between fat mass and leg BMD or BMC as well as between serum estradiol values and leg BMD. The magnitude of the leg muscle mass loss was correlated with the magnitude of bone loss.  相似文献   

18.
The aim of the present investigation was to study the influence of plasma insulin-like growth factor-1 (IGF-1) and leptin levels on bone mineral mass (BMC) and bone mineral density (BMD) in premenopausal women and the relationship between IGF-1 and leptin levels. Two hundred and four healthy women participated in this study. All participants had a body mass index (BMI) <30 kg/m(2) and were matched for their level of mean daily energy expenditure. BMC and BMD were correlated with measured body composition and blood biochemical parameters. No association was observed between BMC and BMD values with measured physical performance characteristics. Leptin had a significant association with BMC (beta = 0.840; P = 0.0001), total BMD (beta = 0.833; P = 0.0001), femoral neck BMD (beta = 0.829; P = 0.0001), and lumbar spine BMD (beta = 0.833; P = 0.0001). However, these associations were no longer independent when adjusted for body fat mass (FM) and trunk fat:leg fat ratio (P > 0.385). IGF-1 was significantly related to BMC (beta = 0.920; P = 0.0001), total BMD (beta = 0.918; P = 0.0001), femoral neck BMD (beta = 0.921; P = 0.0001), and lumbar spine BMD (beta = 0.917; P = 0.0001), but did not remain significant when adjusted for fat free mass (FFM; P > 0.062). In addition, a significant association between IGF-1 and leptin was found (beta = 0.801; P = 0.0001), and it remained significant after controlling for age, FM, FFM, insulin, and fasting insulin resistance index (FIRI), but not when adjusted for BMC and body mass values. In conclusion, it appears that fasting IGF-1 and leptin concentrations have no direct effect on BMC and BMD values. In addition, if there is an important relationship between IGF-1 and leptin, it is mediated or confounded by BMC in premenopausal women.  相似文献   

19.
Obesity is associated with increased bone mineral density (BMD) but the mechanism for this is unclear. Serum levels of the adipokine adiponectin are inversely correlated with obesity, but results from studies on its relationship to bone mass are conflicting. The objective of this study was to compare bone mineral content (BMC), BMD and biomechanical strength properties of femur and lumbar vertebrae in 8- and 16-week old adiponectin transgenic mice (AdTg). These mice exhibit significantly elevated circulating adiponectin but have similar body weights compared to wild-type (WT) littermates that were used as controls. Female AdTg mice displayed significantly lower femur BMC at 8 and 16 weeks of age and femur neck peak load was significantly lower in 8-week old AdTg mice of both genders compared to controls. The peak load from compression testing of an individual lumbar vertebra was significantly lower in female AdTg mice compared to WT at 8 weeks, and this difference persisted at 16 weeks of age. In addition, lumbar vertebrae BMC was significantly lower in 16-week old male AdTg mice compared to WT although vertebra peak load was not different. Serum adiponectin levels were inversely correlated with femur BMC. In summary, elevated circulating adiponectin inhibits the acquisition of bone mass in growing mice and results in decreased biomechanical measures of functional strength that are surrogate measures of susceptibility to fractures. These results support a role for circulating adiponectin as a metabolic link that can explain, at least in part, the positive relationship between obesity and both bone mass and reduced susceptibility to fractures.  相似文献   

20.
T. Jürimäe  T. Hurbo 《HOMO》2009,60(3):225-238
The purpose of the present study was to examine the relationship of handgrip strength with basic anthropometric variables, hand anthropometric variables, total body and hand composition, total body and hand bone mineral density (BMD) and bone mineral content (BMC) in prepubertal children aged between 8 and 11 years (n=64, 27 boys, 37 girls). Height and body mass were measured and body mass index (BMI kg/m2) was calculated. Biceps and triceps skinfolds, arm relaxed, arm flexed, forearm and wrist girths, acromiale-radiale, radiale-stylion-radiale and midstylion-dactylion length and humerus breadth were measured. Specific hand anthropometric variables according to Visnapuu and Jürimäe [2007. Handgrip strength and hand dimensions in young handball and basketball players. J. Strength Cond. Res. 21, 923-929] were used. Five fingers’ spans, fingers’ lengths and perimeters of the hand were measured. Total body and right-hand fat percentage, fat mass and lean mass (LBM) were measured by dual-energy X-ray absorptiometry (DXA). Right-hand BMC and BMD were analysed from the bone variables. Maximal handgrip strength of the right hand was measured with the hand dynamometer. Stepwise multiple regression analysis indicated that the most important predictive value from the basic anthropometric variables was body height, explaining 76.1% (R2×100), 40.7% and 50.6% of the handgrip strength in boys, girls and total group, respectively. Measured skinfold thicknesses and breadths were not related to handgrip strength in any group. Forearm girths significantly predicted handgrip strength in boys (30.8%), girls (43.4%) and total group (43.4%). As a rule, handgrip strength was more dependent on the anthropometric and body composition variables in boys than girls. It was concluded that body height, forearm girth, midstylion-dactylion and acromiale-radiale length and hand LBM and BMC are the most limiting factors influencing handgrip strength in prepubertal children.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号