共查询到20条相似文献,搜索用时 15 毫秒
1.
Skabkin MA Kiselyova OI Chernov KG Sorokin AV Dubrovin EV Yaminsky IV Vasiliev VD Ovchinnikov LP 《Nucleic acids research》2004,32(18):5621-5635
YB-1 is a universal major protein of cytoplasmic mRNPs, a member of the family of multifunctional cold shock domain proteins (CSD proteins). Depending on its amount on mRNA, YB-1 stimulates or inhibits mRNA translation. In this study, we have analyzed complexes formed in vitro at various YB-1 to mRNA ratios, including those typical for polysomal (translatable) and free (untranslatable) mRNPs. We have shown that at mRNA saturation with YB-1, this protein alone is sufficient to form mRNPs with the protein/RNA ratio and the sedimentation coefficient typical for natural mRNPs. These complexes are dynamic structures in which the protein can easily migrate from one mRNA molecule to another. Biochemical studies combined with atomic force microscopy and electron microscopy showed that mRNA–YB-1 complexes with a low YB-1/mRNA ratio typical for polysomal mRNPs are incompact; there, YB-1 binds to mRNA as a monomer with its both RNA-binding domains. At a high YB-1/mRNA ratio typical for untranslatable mRNPs, mRNA-bound YB-1 forms multimeric protein complexes where YB-1 binds to mRNA predominantly with its N-terminal part. A multimeric YB-1 comprises about twenty monomeric subunits; its molecular mass is about 700 kDa, and it packs a 600–700 nt mRNA segment on its surface. 相似文献
2.
3.
4.
A polypurine sequence that acts as a 5' mRNA stabilizer in Bacillus subtilis. 总被引:1,自引:2,他引:1
下载免费PDF全文

A segment of early RNA from Bacillus subtilis bacteriophage SP82 was shown to function as a 5' stabilizer in B. subtilis. Several heterologous RNA sequences were stabilized by the presence of the SP82 sequence at the 5' end, and expression of downstream coding sequences was increased severalfold. The SP82 RNA segment encodes a B. subtilis RNase III cleavage site, but cleavage by B. subtilis RNase III was not required for stabilization. The sequence that specifies 5' stabilizer function was localized to a polypurine sequence that resembles a ribosome binding site. The ability of the SP82 sequence to stabilize downstream RNA was dependent on its position relative to the 5' end of the RNA. These results demonstrate the existence of a new type of 5' stabilizer in B. subtilis and indicate that attack at the 5' end is a principal mechanism for initiation of mRNA decay in B. subtilis. 相似文献
5.
6.
Dmitry A. Kretov Patrick A. Curmi Loic Hamon Sanae Abrakhi Bénédicte Desforges Lev P. Ovchinnikov David Pastré 《Nucleic acids research》2015,43(19):9457-9473
Translation is tightly regulated in cells for keeping adequate protein levels, this task being notably accomplished by dedicated mRNA-binding proteins recognizing a specific set of mRNAs to repress or facilitate their translation. To select specific mRNAs, mRNA-binding proteins can strongly bind to specific mRNA sequences/structures. However, many mRNA-binding proteins rather display a weak specificity to short and redundant sequences. Here we examined an alternative mechanism by which mRNA-binding proteins could inhibit the translation of specific mRNAs, using YB-1, a major translation regulator, as a case study. Based on a cooperative binding, YB-1 forms stable homo-multimers on some mRNAs while avoiding other mRNAs. Via such inhomogeneous distribution, YB-1 can selectively inhibit translation of mRNAs on which it has formed stable multimers. This novel mechanistic view on mRNA selection may be shared by other proteins considering the elevated occurrence of multimerization among mRNA-binding proteins. Interestingly, we also demonstrate how, by using the same mechanism, YB-1 can form multimers on specific DNA structures, which could provide novel insights into YB-1 nuclear functions in DNA repair and multi-drug resistance. 相似文献
7.
8.
Histone mRNA is destabilized at the end of S phase and in cell-free mRNA decay reaction mixtures supplemented with histone proteins, indicating that histones might autoregulate the histone mRNA half-life. Histone mRNA destabilization in vitro requires three components: polysomes, histones, and postpolysomal supernatant (S130). Polysomes are the source of the mRNA and mRNA-degrading enzymes. To investigate the role of the S130 in autoregulation, crude S130 was fractionated by histone-agarose affinity chromatography. Two separate activities affecting the histone mRNA half-life were detected. The histone-agarose-bound fraction contained a histone mRNA destabilizer that was activated by histone proteins; the unbound fraction contained a histone mRNA stabilizer. Further chromatographic fractionation of unbound material revealed only a single protein stabilizer, which was purified to homogeneity, partially sequenced, and found to be La, a well-characterized RNA-binding protein. When purified La was added to reaction mixtures containing polysomes, a histone mRNA decay intermediate was stabilized. This intermediate corresponded to histone mRNA lacking 12 nucleotides from its 3' end and containing an intact coding region. Anti-La antibody blocked the stabilization effect. La had little or no effect on several other cell cycle-regulated mRNAs. We suggest that La prolongs the histone mRNA half-life during S phase and thereby increases histone protein production. 相似文献
9.
Eukaryotic Y-box proteins are nucleic acid-binding proteins implicated in a wide range of gene regulatory mechanisms. They contain the cold shock domain, which is a nucleic acid-binding structure also found in bacterial cold shock proteins. The Y-box protein YB-1 is known to be a core component of messenger ribonucleoprotein particles (mRNPs) in the cytoplasm. Here we disrupted the YB-1 gene in chicken DT40 cells. Through the immunoprecipitation of an epitope-tagged YB-1 protein, which complemented the slow-growth phenotype of YB-1-depleted cells, we isolated YB-1-associated complexes that likely represented general mRNPs in somatic cells. RNase treatment prior to immunoprecipitation led to the identification of a Y-box protein-associated acidic protein (YBAP1). The specific association of YB-1 with YBAP1 resulted in the release of YB-1 from reconstituted YB-1-mRNA complexes, thereby reducing the translational repression caused by YB-1 in the in vitro system. Our data suggest that YBAP1 induces the remodeling of YB-1-mRNA complexes. 相似文献
10.
Kajaste-Rudnitski A Mashimo T Frenkiel MP Guénet JL Lucas M Desprès P 《The Journal of biological chemistry》2006,281(8):4624-4637
The 2',5'-oligoadenylate synthetase (OAS) proteins associated with endoribonuclease RNase L are components of the interferon-regulated OAS/RNase L system, which is an RNA decay pathway known to play an important role in the innate antiviral immunity. A large body of evidence suggests a critical role for the 1b isoform of the mouse Oas gene (Oas1b) in resistance to West Nile virus (WNV) infection in vivo. WNV is a positive, single-stranded RNA virus responsible for severe encephalitis in a large range of animal species and humans. To investigate the molecular basis for the sensitivity of WNV to the Oas1b antiviral pathway, we established a stable mouse fibroblastic cell clone that up-regulates Oas1b protein expression under the control of the Tet-Off expression system. We showed that murine cells respond to Oas1b expression by efficiently inhibiting WNV replication. The antiviral action of Oas1b was essentially restricted to the early stages in virus life cycle. We found that the inability of WNV to productively infect the Oas1b-expressing cells was attributable to a dramatic reduction in positive-stranded viral RNA level. Thus, Oas1b represents an antiviral pathway that exerts its inhibitory effect on WNV replication by preventing viral RNA accumulation inside infected cells. 相似文献
11.
The human SNM1 protein is a member of a highly conserved group of proteins catalyzing the hydrolysis of nucleic acid substrates. Although overproduction is unstable in mammalian cells, we have overproduced a recombinant hSNM1 protein in an insect cell system. The protein is a single-strand 5′-exonuclease, like its yeast homolog. The enzyme utilizes either DNA or RNA substrates, requires a 5′-phosphate moiety, shows very little activity on double-strand substrates, and functions at a size consistent with a monomer. The exonuclease activity requires the conserved β-lactamase domain; site-directed mutagenesis of a conserved aspartate inactivates the exonuclease. 相似文献
12.
13.
14.
Human RAD9 protein (hRAD9) is a homolog of the fission yeast Rad9 protein, one of the six so-called checkpoint Rad proteins involved in the early steps of DNA damage checkpoint response in Schizosaccharomyces pombe. It has been shown previously that, in vivo, a highly modified form of hRAD9 makes a ternary complex with two other checkpoint Rad proteins, hRAD1 and hHUS1 (Volkmer, E., and Karnitz, L. M. (1999) J. Biol. Chem. 274, 567-570; St. Onge, R. P., Udell, C. M., Casselman, R., and Davey, S. (1999) Mol. Biol. Cell. 10, 1985-1995). However, the function of this complex is not known at present. To help define the functions of checkpoint Rad proteins in humans, we expressed hRAD9 in Escherichia coli, purified the recombinant protein and characterized it. We found that hRAD9 is a 3' to 5' exonuclease and located the nuclease active site to the region between residues 51 and 91 of the 391-amino acid-long protein. Our results suggest that exonucleolytic processing of primary DNA lesion by hRAD9 may contribute to DNA damage checkpoint response in humans. 相似文献
15.
16.
The G-quartet containing FMRP binding site in FMR1 mRNA is a potent exonic splicing enhancer 总被引:1,自引:1,他引:1
Didiot MC Tian Z Schaeffer C Subramanian M Mandel JL Moine H 《Nucleic acids research》2008,36(15):4902-4912
17.
18.
Yool Kim 《FEBS letters》2009,583(2):419-22372
Escherichia coli RNase P is a ribonucleoprotein composed of a large RNA subunit (M1 RNA) and a small protein subunit (C5 protein). We examined if C5 protein plays a role in maintaining metabolic stability of M1 RNA. The sequestration of C5 protein available for M1 RNA binding reduced M1 RNA stability in vivo, and its reduced stability was recovered via overexpression of C5 protein. In addition, M1 RNA was rapidly degraded in a temperature-sensitive C5 protein mutant strain at non-permissive temperatures. Collectively, our results demonstrate that the C5 protein metabolically stabilizes M1 RNA in the cell. 相似文献
19.
Telomerase activity is critical for normal and transformed human cells to escape from crisis and is implicated in oncogenesis. Here we describe a novel Pin2/TRF1 binding protein, PinX1 that inhibits telomerase activity and affects tumorigenicity. PinX1 and its small TID domain bind the telomerase catalytic subunit hTERT and potently inhibit its activity. Overexpression of PinX1 or its TID domain inhibits telomerase activity, shortens telomeres, and induces crisis, whereas depletion of endogenous PinX1 increases telomerase activity and elongates telomeres. Depletion of PinX1 also increases tumorigenicity in nude mice, consistent with its chromosome localization at 8p23, a region with frequent loss of heterozygosity in a number of human cancers. Thus, PinX1 is a potent telomerase inhibitor and a putative tumor suppressor. 相似文献
20.
The 5' ends of Escherichia coli lac mRNA 总被引:4,自引:0,他引:4
We identified the predominant 5' ends of an mRNA in Escherichia coli to the exact nucleotides. There are four such ends of lac mRNA in fully induced cells. About 70% of the molecules have the reported major in vitro end, A-A-U-U-G (at +1), which is located 38 nucleotides before the A-U-G translation start. Another 15% start with A-U-U-G at +2, and about 8% start with A-U-U-A-G at -52. A fourth class of molecules begin with either A-G, C-A-G, A-C-A-G, or a weak A-C-A-C-A-G (at +24), observed only once. The origins of this latter set (less than or equal to 10% of the total) are not known, but they could represent "ragged" ends of the mRNA when it is degraded to the beginning of the ribosome-protected region of the message. The A-U-U-A-G molecules are probably initiated from an upstream promoter whose position would coincide with the cAMP-CRP DNA binding site for the major promoter. 相似文献