首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The turtle urinary bladder acidifies the contents of its lumen by actively transporting protons. H+ secretion by the isolated bladder was measured simultaneously with the rate of 14CO2 evolution from [14C]glucose. The application of an adverse pH gradient resulted in a decline in the rate of H+ secretion (JH) and in the rate of glucose oxidation (JCO2). The changes in JH and JCO2 were linear functions of the pH difference across the membrane. Hence, JH and JCO2 were linearly related to each other. The slope, deltaJH/deltaJCO2 was found to be similar in half-bladders from the same animal but was seen to vary widely in a population of turtles. To investigate the effect of pH gradients on deltaJH/deltaJCO2, two experiments were performed in each of 14 hemibladders. In one, JH and JCO2 were altered by changing the luminal pH. In the other, they were altered by changing the ambient pCO2 while the luminal pH was kept constant. The average slope, deltaJH/deltaJCO2, in the presence of pH gradients was 14.45 eq-mol-1. In the absence of gradients in the same hemibladders it was 14.72, delta = 0.27 +/- 1.46. The results show that H+ transport is organized in such a way that leaks to protons in parallel to the pump are negligible. Analysis of the transport system by use of the Essig-Caplan linear irreversible thermodynamic formalism shows that the system is tightly coupled. The degree of coupling, q, given by that analysis was measured and found to be at or very near the maximum theoretical value.  相似文献   

2.
Summary The coupling between H+ transport (J H) and anaerobic glycolysis was examinedin vitro in an anaerobic preparation of turtle urinary bladder.J H was measured as the short-circuit current after Na+ transport was abolished with ouabain and by pH stat titration. The media were gassed with N2 and 1% CO2 (PO2<0.5 mm Hg) and contained 10mm glucose. Under these conditions,J H was not inhibited by 3mm serosal (S) cyanide or by 0.1mm mucosal (M) dinitrophenol. Control anerobic lactate production (J lac) of 47 bladders was plotted as a function of simultaneously measuredJ H. The slope ofJ lac onJ H was 0.58±0.12 with an intercept forJ lac atJ H=0 of 0.55 mol/hr. Values for J lac/J H were determined in groups of individual bladders whenJ H was inhibited by an opposing pH gradient (0.55±0.16), by acetazolamide (0.58±0.19) and by dicyclohexylcarbodiimide, DCCD (0.58±0.14). The constancy of J lac/J H indicates a high degree of coupling betweenJ H andJ lac. Since the anaerobic metabolism of glucose produces one ATP for each lactate formed, the J lac/J H values can be used to estimate the stoichiometry of H+ translocation. The movement of slightly less than 2 H+ ions is coupled to the hydrolysis of one ATP. During anaerobiosis (absence of mitochondrial ATPase function) the acidification pump was not inhibited byM addition of oligomycin but was inhibited byM addition of DCCD and Dio-9, inhibitors of H+ flow in the proteolipid portion of H+-translocating ATPases. DCCD inhibited anaerobicJ H without change in J lac/J H or basalJ lac and, therefore, acted primarily on the H+ pump.S addition of vanadate also inhibitedJ H, but the inhibition was associated with an increase inJ lac. The site of this apparent uncoupling remains to be defined. The acidification pump of the luminal cell membrane of the turtle bladder has H+-ATPase characteristics that differ from mitochondrial ATPase in that H+ transport is oligomycin-resistant and vanadate-sensitive. As judged from the flows of H+ and lactate, the H+/ATP stoichiometry of the pump is about 2.  相似文献   

3.
The rate of active H+ secretion (JH) across the luminal cell membrane of the turtle bladder decreases linearly with the chemical (delta pH) or electrical potential gradient (delta psi) against which secretion occurs. To examine the control of JH from the cell side of the pump, acid-base changes were imposed on the cellular compartment by increasing serosal[HCO3-] at constant PCO2 or by varying PCO2 at constant [HCO3-]. When serosal [HCO3-] was increased from 0 to 60 mM, cell [H+] decreased, as estimated by the 5,5-dimethyloxazoladine-2,4- dione method. JH was a saturable function of cell [H+], with an apparent Km of 25 nM. When PCO2 was varied between 1 and 20% at various serosal Km of 25 nM. When PCO2 was varied between 1 and 20% at various serosal [HCO3-], the PCO2 required to reach a maximal JH increased with [HCO3-] so that JH was a function of cell [H+] rather than of cell [HCO3-] or CO2. The proton pump was controlled asymmetrically with respect to the pH component of the electrochemical potential for protons, microH. On the cell side of the pump, a delta pH of < 1 U was required to vary JH between maximal and zero values, whereas on the luminal side a delta pH of 3 U was required. Cell [H+] regulates JH by determining the availability of H+ to the pump in a relationship resembling Michaelis-Menten kinetics. Increasing luminal [H+] generates an energy barrier at a luminal pH near 4.4 that equals the free energy (per H+ translocated) of the metabolic driving reaction.  相似文献   

4.
H+/ATP stoichiometry of proton pump of turtle urinary bladder   总被引:2,自引:0,他引:2  
Urinary acidification in the turtle urinary bladder is due to a reversible proton-translocating ATPase. To estimate the H+/ATP stoichiometry of this pump, we measured the delta G'ATP in the epithelial cells and the maximum e.m.f. generated by the pump. The latter is the maximal transepithelial electrochemical gradient for protons placed across the epithelium that is needed to nullify the rate of transport and averaged 179 +/- 7 mV. The delta G'ATP averaged 50.1 kJ/mol. The H+/ATP stoichiometry of these bladders was 2.92 +/- 0.1. In other experiments, the bladders were poisoned by iodoacetate and cyanide and a variable transepithelial electrochemical gradient for protons was placed across them. It was noted that ATP synthesis occurred at a transepithelial electrochemical gradient for protons greater than 120 mV. The delta G'ATP in other bladders treated identically averaged 40.0 kJ/mol, giving a H+/ATP stoichiometry of 3.4 +/- 0.1. We conclude that the H+/ATP stoichiometry of the proton pump of turtle urinary bladder is approximately 3.  相似文献   

5.
We investigated the inhibitory effects of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) on ATP-dependent H+ accumulation by membrane vesicles prepared from the turtle urinary bladder epithelium. NBD-Cl at 30 microM was found to completely inhibit the vanadate-insensitive component of H+ transport, with half-maximal inhibition occurring at 4.2 to 5.4 microM. In contrast, the vanadate-inhibitable component was unaffected by 30 microM NBD-Cl. At high concentrations (300 microM), both components were fully inhibited. The results confirm the presence of two distinct H+ transport processes in turtle bladder membranes and identify selective inhibitors, NBD-Cl and vanadate, for each process.  相似文献   

6.
The vanadate-sensitive component of the ATP-dependent H+ gradient formed in isolated vesicles from a urinary epithelium was abolished by valinomycin omission. This suggests that vanadate-sensitive H+ transport has an absolute requirement for intravesicular K+ and that the transport may be due to a K+/H+ exchanger. Sensitivity to the inhibitor SCH28080 supports this conclusion. On the other hand, valinomycin affects the initial velocity of vanadate-resistant transport without altering its maximum gradient. This is consistent with the development of a membrane potential consequent to electrogenic uniport H+ transport.  相似文献   

7.
We studied the mechanism of adaptation to metabolic alkalosis by the turtle urinary bladder in vitro. Turtles were made alkalotic by administration of oral NaHCO3. Bladders removed from alkalotic turtles had an increased rate of HCO3- secretion in vitro as compared with that of control. H+ secretion, however, was not different, indicating that metabolic alkalosis selectively increases HCO3- secretion. Fluorescence microscopy was used to quantify the carbonic anhydrase cells. The total number of carbonic anhydrase cells was determined by mucosal staining of the bladder with 6-carboxyfluorescein diacetate. The number of HCO3(-)-secreting cells (beta cells) was quantified by mucosal staining with NBD-taurine and the number of H(+)-secreting cells (alpha cells) was calculated from the difference between the two. Metabolic alkalosis significantly increased the total number of 6-carboxyfluorescein positive cells and NBD-taurine-positive cells. The increase in the number of 6-carboxyfluorescein positive cells was totally accounted for by the increase in the NBD-taurine-positive cells without change in the number of alpha cells. If NBD-taurine accurately reflects the number of beta cells, these studies show that the adaptation to metabolic alkalosis is mediated, at least in part, by an increase in the number of HCO3(-)-secreting (beta) cells.  相似文献   

8.
Summary Proton secretion in the urinary bladder of the fresh-water turtle is mediated by a proton pump located in the apical membrane of a population of cells characteristically rich in carbonic anhydrase. Earlier studies have demonstrated that these cells exhibit apical-membrane endocytotic and exocytotic processes which are thought to be involved in the regulation of the rate of proton transport via alterations in the number of pumps within the apical membrane. In this study, we sought to characterize these processes using two different methods. Analysis of transepithelial impedance yielded estimates of membrane capacitance which could be related to membrane area, thereby allowing one to monitor net changes in apical-membrane area resulting from changes in the net rates of endo-and exocytosis. Uptake of the fluid-phase marker FITC-dextran provided a measure of net extracellular volume uptake which was related to net rates of endocytosis. Our major conclusions are summarized as follows. The bladder cells exhibit a high baseline rate of endocytosis which appears to be a constitutive process similar to pinocytosis. This process is completely inhibited when ambient temperature is reduced to 15°C. In addition, serosal application of 0.5mm acetazolamide causes a transient increase in the rate of endocytosis, concomitant with a decrease in the rate of transport. Reduction of ambient temperature to 15°C reduces the rate of acetazolamide-induced endocytosis, but does not abolish it. Addition of 1mm serosal azide not only prevents the acetazolamide-induced increase in endocytosis, but also prevents the decrease in transport caused by acetazolamide. Azide has no effect on the baseline rate of endocytosis, nor does it prevent inhibition of carbonic anhydrase by acetazolamide. The specificity of azide, coupled with the different temperature sensitivities, demonstrate that the constitutive and transport-dependent endocytotic pathways are distinct processes. The observation that azide prevents both the acetazolamide-induced increase in endocytosis and the decrease in transport strongly supports the notion that endocytosis of proton-pump-containing membrane is requisite for the inhibition of transport by acetazolamide. Finally, the results also demonstrate that acetazolamide does not inhibit proton secretion simply by inhibiting carbonic anhydrase.  相似文献   

9.
Summary The mechanism of Na+ transport in rabbit urinary bladder has been studied by microelectrode techniques. Of the three layers of epithelium, the apical layer contains virtually all the transepithelial resistance. There is radial cell-to-cell coupling within this layer, but there is no detectable transverse coupling between layers. Cell coupling is apparently interrupted by intracellular injection of depolarizing current. The cell interiors are electrically negative to the bathing solutions, but the apical membrane of the apical layer depolarizes with increasingI sc. Voltage scanning detects no current sinks at the cell junctions or elsewhere. The voltage-divider ratio, , (ratio of resistance of apical cell membrane,R a, to basolateral cell membrane,R b) decreases from 30 to 0.5 with increasingI sc, because of the transportrelated conductance pathway in the apical membrane. Changes in effective transepithelial capacitance withI sc are predicted and possibly observed. The transepithelial resistance,R t, has been resolved intoR a, Rb, and the junctional resistance,R j, by four different methods: cable analysis, resistance of uncoupled cells, measurements of pairs of (R t, ) values in the same bladder at different transport rates, and the relation betweenR t andI sc and between andI sc.R j proves to be effectively infinite (nominally 300 k F) and independent ofI sc, andR a decreases from 154 to 4 k F with increasingI sc. In the resulting model of Na+ transport in tight epithelia, the apical membrane contains an amiloride-inhibited and Ca++-inhibited conductance pathway for Na+ entry; the basolateral membrane contains a Na+–K+-activated ATPase that extrudes Na+; intracellular (Na+) may exert negative feedback on apical membrane conductance; and aldosterone acts to stimulate Na+ entry at the apical membrane via the amiloride-sensitive pathway.  相似文献   

10.
Summary Proton secretion in the urinary bladder of the freshwater turtle is mediated by proton pumps located in the apical membrane of carbonic-anhydrase (CA)-rich cells. It has been proposed that the rate of proton transport is regulated by endocytotic and exocytotic fusion processes which alter the apical membrane area, and hence number of exposed pumps. Three techniques were used to study this process. Analyses of transepithelial impedance provided estimates of transport-associated changes in net membrane area, as well as other electrical parameters. Electron microscopy allowed visualization of the endocytotic vesicles thought to be involved in the process. Finally, uptake of a florescent fluid-phase markerprovided measurements of the rates of endocytosis. We report the following: (i) endocytotic and exocytotic processes occur primarily in the CA-rich cells; (ii) inhibition of proton transport resulting from 0.5mm acetazolamide (AZ) results in a decrease in the apical membrane area of approximately 0.47 cm2/cm2 tissue; (iii) the apical membrane specific conductance of the CA-rich cells is approximately 220 S/F, and possibly represents a Cl conductance that may function in counter-ion flow; (iv) the decline in transport following AZ is not directly proportional to the decline in apical membrane area, suggesting that changes in pump kinetics are also involved in the regulation of transport; (v) the CA-rich cells exhibit a high rate of constitutive pinocytosis, and hence membrane shuttling, which appears to be independent of the rate of transport; (vi) AZ induces a transient increase in the rates of endocytosis and shuttling; and (vii) the transport-associated changes in apical membrane area may reflect an effect of AZ on a regulated endocytotic pathway which is distinct from the pinocytotic process.  相似文献   

11.
Summary By in vitro experiments on rabbit bladder, we reassessed the traditional view that mammalian urinary bladder lacks ion transport mechanisms. Since the ratio of actual-to-nominal membrane area in folded epithelia is variable and hard to estimate, we normalized membrane properties to apical membrane capacitance rather than to nominal area (probably 1 F 1 cm2 actual area). A new mounting technique that virtually eliminates edge damage yielded resistances up to 78,000 F for rabbit bladder, and resistances for amphibian skin and bladder much higher than those usually reported. This technique made it possible to observe a transport-related conductance pathway, and a close correlation between transepithelial conductance (G) and short-circuit current (I sc) in these tight epithelia.G andI sc were increased by mucosal (Na+) [I sc0 when (Na+)0], aldosterone, serosal (HCO 3 ) and high mucosal (H+); were decreased by amiloride, mucosal (Ca++), ouabain, metabolic inhibitors and serosal (H+); and were unaffected by (Cl) and little affected by antidiuretic hormone (ADH). Physiological variation in the rabbits' dietary Na+ intake caused variations in bladderG andI sc similar to those caused by the expectedin vivo changes in aldosterone levels. The relation betweenG andI sc was the same whether defined by diet changes, natural variation among individual rabbits, or most of the above agents. A method was developed for separately resolving conductances of junctions, basolateral cell membrane, and apical cell membrane from thisG–I sc relation. Net Na+ flux equalledI sc. Net Cl flux was zero on short circuit and equalled only 25% of net Na+ flux in open circuit. Bladder membrane fragments contained a Na+–K+-activated, ouabain-inhibited ATPase. The physiological significance of Na+ absorption against steep gradients in rabbit bladder may be to maintain kidney-generated ion gradients during bladder storage of urine, especially when the animal is Na+-depleted.  相似文献   

12.
13.
14.
15.
16.
Insulin-stimulated sodium transport in toad urinary bladder   总被引:1,自引:0,他引:1  
Mammalian and teleost insulins increase active sodium transport by the toad urinary bladder at subnanomolar concentrations. This stimulation is evident within 15 min and persists for hours. Porcine proinsulin and a cross-linked derivative of bovine insulin are less effective than porcine insulin in stimulating the short-circuit current (SCC), indicating the specificity appropriate for activation of sodium transport through an insulin receptor. The initial stimulation by insulin of the SCC is not blocked by pretreatment with actinomycin D, puromycin, cycloheximide, or tunicamycin. However, in the presence of any one of these inhibitors the sustained increase in SCC is blocked and the rise is short-lived, lasting only 45 to 90 min. In amphotericin-treated bladders, the addition of insulin did not further stimulate SCC.  相似文献   

17.
Summary A number of published data suggest a variable stoichiometry between the rates of cellular potassium uptake and net sodium transport (J Na) across the urinary bladder of the toad. This problem was examined by simultaneously studying the intracellular chemical activity of potassium (a K) with open-tip K+-selective microelectrodes and micropipets, and monitoringJ Na by measuring the short-circuit current (SCC). When bathed in the short-circuited state with solutions containing ana K of 2.7mm, the mean ±sem values for intracellulara K were 43±0.6mm.Ouabain, at a concentration of 10–2 m, reduced intracellulara K by 56–67% and SCC by 96–100%. At 5×10–4 m, ouabain reversibly reduced intracellulara K by 40–55%, and SCC by 63–68%; the inhibition of SCC was only partly reversible during the period of observation.Removal of external potassium reduced intracellulara K by 69–80% and SCC by 51–76%. Restoration of external potassium entirely returned intracellulara K to its control value, but only partially reversed the inhibition of SCC during the period of study. Furthermore, recovery ofa K began 19–43 min before that of SCC; recovery ofa K was 90–97% complete before any increase in SCC could be measured. Although other interpretations are possible, the simplest interpretation of the data is that the processes responsible for potassium accumulation and transepithelial sodium transport are not identical. We propose the existence of a separate transfer mechanism at the basolateral cell membrane, responsible for accumulating intracellular potassium, and not directly coupled to active sodium transport.  相似文献   

18.
19.
Summary This study was done to determine if steroid compounds will stimulate the urinary bladder of the toad to increase its capacity to acidify the urine and excrete NH 4 + , Aldosterone, 17-estradiol, dexamethasone, pregnenolone, and cholesterol were tested on the bladder. All compounds tested were found to stimulate the rate of acidification by the bladder, above that of a paired control hemibladder. In contrast, only the steroids aldosterone and 17-estradiol were found to stimulate NH 4 + excretion in the bladder. Cycloheximide was found to block the action of aldosterone on the NH 4 + excretion, but did not have a significant effect on the stimulation of acidification by aldosterone. We conclude that steroids stimulate H+ and NH 4 + excretion in the toad urinary bladder. In addition, the NH 4 + excretory system seems to be more specific to this effect than is the H+ excretory system.This work was presented in part at the 62nd annual meeting, Federation of American Societies for Experimental Biology, Atlantic City, N.J., April 1978.  相似文献   

20.
Summary The urinary bladder ofBufo marinus excretes H+ and NH 4 + , and the H+ excretion is increased after the animal is placed in metabolic acidosis. The present study was done to determine if parathyroid hormone could stimulate the bladder to increase the excretion of H+ and/or NH 4 + . Parathyroid hormone added to the serosal solution in a final concentration of 10 g/ml was found to increase H+ excretion by 50% above the control hemibladders, while there was no effect on NH 4 + excretion. Parathyroid hormone had no effect on H+ excretion when added to the mucosal solution. We also performed experiments utilizing theophylline and dibutyryl cyclic AMP which mimicked those of the parathyroid hormone experiments. A dose-response analysis was performed and the results indicate that 1 g/ml of parathyroid hormone was the minimal effective dose. These results suggest that parathyroid hormone can stimulate H+ excretion in the toad urinary bladder and this effect seems to be mediated by cyclic AMP. In addition, it was found that parathyroid hormone has no effect on NH 4 + excretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号