首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of retinoic acid in experimental diabetic nephropathy   总被引:21,自引:0,他引:21  
  相似文献   

2.
Total-body irradiation or renal irradiation is followed by a well-defined sequence of changes in renal function leading eventually to renal failure. Previous studies in a rat model have shown that inhibition of angiotensin-converting enzyme or blockade of angiotensin II receptors can prevent the structural and functional changes that occur after renal irradiation, and that these interventions are particularly important between 3 and 10 weeks after irradiation. We have now shown that in the same rat model, total-body irradiation induces proliferation of renal tubular cells (i.e., an increase in the number of cells staining positive for proliferating cell nuclear antigen) within 5 weeks after irradiation. Treatment with an angiotensin II receptor blocker delays this radiation-induced tubular proliferation and decreases its magnitude. Renal radiation also induces proliferation of glomerular cells, but the relative increase in glomerular proliferation is not as great as that seen in renal tubular cells, and the increase is not delayed or decreased by treatment with an angiotensin II receptor blocker. We hypothesize that angiotensin II receptor blockers exert their beneficial effect in radiation nephropathy by delaying the proliferation (and hence the eventual mitotic death) of renal tubular cells that have been genetically crippled by radiation.  相似文献   

3.
Deregulated cell growth and inhibition of apoptosis are hallmarks of cancer. All-trans retinoic acid induces clinical remission in patients with acute promyelocytic leukemia by inhibiting cell growth and inducing differentiation and apoptosis of the leukemic blasts. An important role of the cell cycle regulatory protein, cyclin A1, in the development of acute myeloid leukemia has previously been demonstrated in a transgenic mouse model. We have recently shown that there was a direct interaction between cyclin A1 and a major all-trans retinoic acid receptor, RAR alpha, following all-trans retinoic acid treatment of leukemic cells. In the present study, we investigated whether cyclin A1 might be involved in all-trans retinoic acid-induced apoptosis in U-937 leukemic cells. We found that all-trans retinoic acid-induced apoptosis was associated with concomitant increase in cyclin A1 expression. However, there was no induction of cyclin A1 mRNA expression following the all-trans retinoic acid-induced apoptosis. Treatment of cells with a caspase inhibitor was not able to prevent all-trans retinoic acid-induced up-regulation of cyclin A1 expression. Interestingly, induced cyclin A1 expression in U-937 cells led to a significant increase in the proportion of apoptotic cells. Further, U-937 cells overexpressing cyclin A1 appeared to be more sensitive to all-trans retinoic acid-induced apoptosis indicating the ability of cyclin A1 to mediate all-trans retinoic acid-induced apoptosis. Induced cyclin E expression was not able to initiate cell death in U-937 cells. Our results indicate that cyclin A1 might have a role in apoptosis by mediating all-trans retinoic acid-induced apoptosis.  相似文献   

4.
Stio M  Celli A  Treves C 《IUBMB life》2002,53(3):175-181
The response of C2C12 myoblasts to 1 nM 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], two vitamin D analogues (KH 1060 and EB 1089, which are 20-epi-22-oxa and 22,24-diene-analogues, respectively), 100 nM retinoids (9-cis retinoic acid, all-trans retinoic acid) and to combination treatments, after 72 h incubation, was studied. The incubation with 1,25(OH)2D3 was ineffective on either cell proliferation or [3H]thymidine incorporation (expressed as DPM per cell) or protein content per cell. On the contrary, all the other treatments inhibited cell proliferation, this inhibition being synergistic when the vitamin D derivatives were combined with 9-cis or all-trans retinoic acid, and increased [3H]thymidine incorporation and protein content per cell. The levels of the VDR protein remarkably increased in comparison with control cells, except for the incubation with 9-cis retinoic acid. This increase was particularly accentuated in C2C12 cells treated with KH 1060 and 9-cis retinoic acid in combination. These results, taken together, suggest a role for vitamin D derivatives and retinoids on C2C12 cells.  相似文献   

5.
Superoxide, which can limit nitric oxide bioavailability, has been implicated in blood cell-vessel wall interactions observed in sickle cell transgenic (beta(S)) mice. Here we report that nonselective chemical inhibition of nitric oxide synthase isoforms dramatically reduces the enhanced leukocyte and platelet adhesion normally observed in cerebral venules of beta(S) mice. Although genetic deficiency of vascular wall inducible nitric oxide synthase does not alter adhesion responses in beta(S) mice, a significant attenuation is noted in beta(S) mice with vascular wall endothelial nitric oxide synthase (eNOS) deficiency, while the adhesion responses are exacerbated when eNOS is overexpressed in microvessels. The eNOS-mediated enhancement of blood cell adhesion is reversible by pretreatment with sepiapterin (which generates the eNOS cofactor tetrahydrobiopterin) or polyethyleneglycol-superoxide dismutase, implicating a role for eNOS-dependent superoxide production. These findings suggest that an imbalance between eNOS-derived nitric oxide and superoxide, both generated by the vessel wall, is critical to the proinflammatory and prothrombogenic phenotype that is assumed by the microvasculature in sickle cell disease.  相似文献   

6.
The rate of proliferation of epidermal keratinocytes was manipulated by growing the cells in medium containing high or low concentrations of calcium. Keratinocytes cultured in high extracellular Ca++ (1.4 mM and 2.8 mM) proliferated twice as fast as those grown in low Ca++ medium (0.09 mM) as measured by incorporation of [3H]thymidine into DNA. Exposure of high calcium keratinocytes to all-trans retinoic acid for 4 days caused a dose-related inhibition of DNA synthesis with an IC50 of about 10 microM. In contrast, incubating low calcium keratinocytes with all-trans retinoic acid caused a dose-related stimulation of DNA synthesis with maximum increase of 278% over control at 10 microM. This increase was accompanied by increases in culture confluency with maximum increase of 109% in cell number over control at 10 microM. These results are of importance since they suggest Ca++ may influence the effect of retinoids on keratinocytes.  相似文献   

7.
It has been shown that all-trans retinoic acid induces prematurely hepatic glucokinase mRNA in ten days-old neonatal rat hepatocytes, however, this effect could be related to the capacity of the retinoid to promote a more differentiated state of the hepatocyte. In this report we demonstrate that physiological concentrations of all-trans retinoic acid stimulate glucokinase activity in both mature fully differentiated hepatocytes and at the onset of the induction of the enzyme in 15 to 17 days-old neonatal hepatocytes. The effects produced by the retinoid were similar both in magnitude and in time, to those elicited by insulin, a well-known stimulator of hepatic glucokinase expression. No additive effect was observed when insulin and retinoic acid were tested together. Using the branched DNA assay, a sensitive signal amplification technique, we detected relative increases in glucokinase mRNA levels of about 70% at 3 and 24 h after the treatment with 10(-6) M all-trans retinoic acid, in both neonatal and adult hepatocytes. These data show that retinoic acid exerts a stimulatory effect on hepatic glucokinase independent of the hepatocyte stage of maturity and suggest a physiological role of retinoic acid on glucose metabolism. The action of retinoic acid on hepatic glucokinase might explain previous observations on the relationship between vitamin A status and liver glycogen synthesis. These findings may serve as basis for further investigations on the biological functions of retinoic acid derivatives on hepatic glucose metabolism.  相似文献   

8.
The purpose of this study was to investigate the effects of all-trans retinoic acid (RA) on the induction of transforming growth factor-beta (TGF-beta) that is concerned with the proliferation and melanin synthesis of chick retinal pigment epithelial (RPE) cells in vitro. Chick RPE cells were cultured in the presence or absence of RA and anti-TGF-beta antibody for 7 days. The effects of RA and pan-specific TGF-beta antibody on RPE cell proliferation were assessed by counting the number of cells, and their effects on melanin synthesis were evaluated by measuring the melanin content of the cells. TGF-beta activity in the culture supernatant of RPE cells was measured using CCL-64 cells. RA significantly inhibited RPE cell proliferation and increased melanin synthesis. The addition of pan-specific TGF-beta antibody to the culture blocked the inhibition of RPE cell proliferation and the increased melanin synthesis. RA induced TGF-beta production in the culture supernatant of RPE cells. These findings indicate that RA regulates the proliferation and melanin synthesis of RPE cells via induction of TGF-beta.  相似文献   

9.
Vitamin A deficiency has been known for a long time to be accompanied with immune deficiency and susceptibility to a wide range of infectious diseases. Increasing evidence suggests that retinoic acids derived from vitamin A are involved in the functional regulation of the immune system. Of the two groups of retinoid receptors, retinoic acid receptors (RARs) and retinoid X receptors (RXRs) all-trans and 9-cis retinoic acids are high affinity ligands for RARs and 9-cis retinoic acid additionally binds to RXRs. In cells, at high concentrations, all-trans retinoic acid can be converted to 9-cis retinoic acid by unknown mechanisms. Apoptosis plays a major role in shaping the T cell repertoire and one way in which retinoids may affect immune functions is to influence the various apoptosis pathways. Indeed, it has been shown that retinoic acids can induce apoptosis, increase the rate of dexamethasone-induced death and inhibit activation-induced death of thymocytes and T lymphocytes. Therefore, retinoids together with glucocorticoids may be involved in regulating positive and negative selection of T lymphocytes. Here we demonstrate that retinoids can induce apoptosis of T cells through the stimulation of RARgamma. Specific stimulation of RARalpha, on the other hand, prevents both RARgamma-dependent and TCR-mediated cell death. In all these functions 9-cis retinoic acid proved to be more effective than all-trans retinoic acid suggesting the involvement of RXRs. Based on these results a possible mechanism through which costimulation of RARs and RXRs might affect spontaneous and activation-induced death of T lymphocytes is proposed.  相似文献   

10.
L C Burgess  J O Hall 《Life sciences》2001,69(24):2819-2831
These studies investigated the effects of retinoic acids on endothelial cell proliferation. Three human neoplastic cell lines, U-373 MG glioblastoma, DU-145 prostate carcinoma, and TCCSUP bladder transitional cell carcinoma, were treated with all-trans, 9-cis, or 13-cis retinoic acids at 0.0001 to 10 microM. Hypoxia was used to ensure the expression of the angiogenic phenotype. Conditioned media (CM) were prepared by hypoxic culturing of the tumor cells with retinoic acids for 24 hours. Then CM were transferred to bovine capillary endothelial cells for 48 hours of normoxic culturing, counted and compared to controls. CM from U-373 MG and DU-145 cells, but not TCCSUP cells, treated with all-trans or 9-cis retinoic acids at several concentrations below 1 microM, caused significant (P<0.05) increases in endothelial cell proliferation of between 13 to 18%. Both nonconditioned and conditioned media, for retinoic acid concentrations above 1 microM, inhibited endothelial cell proliferation. All CM for 13-cis retinoic acid decreased endothelial cell proliferation. These results show that the cytotoxicity of retinoic acids and the growth promoting/inhibiting ability of the conditioned media is retinoic acid isoform, time, concentration, and cell type dependent. Most importantly, the conditioned media from tumor cells treated with low concentrations of all-trans or 9-cis retinoic acids significantly increased endothelial cell proliferation.  相似文献   

11.
Retinoids are potent regulators of cell proliferation, cell differentiation, and morphogenesis and are important therapeutic agents in oncology and dermatology. The gene regulatory activity of endogenous retinoids is effected primarily by retinoic acid isomers (all-trans and 9-cis) that are synthesized from retinaldehyde precursors in a broad range of tissues and act as ligands for nuclear retinoic acid receptors. The catabolism of all-trans-retinoic acid (atRA) is an important mechanism of controlling RA levels in cell and tissues. We have previously identified two cytochrome P450s, P450RAI-1 and P450RAI-2 (herein named CYP26A1 and CYP26B1), which were shown to be responsible for catabolism of atRA both in the embryo and the adult. In this report, we describe the identification, molecular cloning, and substrate characterization of a third member of the CYP26 family, named CYP26C1. Transiently transfected cells expressing CYP26C1 convert atRA to polar water-soluble metabolites similar to those generated by CYP26A1 and -B1. Competition studies with all-trans, 13-cis, and 9-cis isomers of retinoic acid demonstrated that atRA was the preferred substrate for CYP26C1. Although CYP26C1 shares extensive sequence similarity with CYP26A1 and CYP26B1, its catalytic activity appears distinct from those of other CYP26 family members. Specifically, CYP26C1 can also recognize and metabolize 9-cis-RA and is much less sensitive than the other CYP26 family members to the inhibitory effects of ketoconazole. CYP26C1 is not widely expressed in the adult but is inducible by RA in HPK1a, transformed human keratinocyte cell lines. This third CYP26 member may play a specific role in catabolizing both all-trans and 9-cis isomers of RA.  相似文献   

12.
13.
14.
In the rat, blockade of angiotensin II type 1 receptors diminishes the functional changes that occur after kidney irradiation. It has been hypothesized that some of the beneficial effects of angiotensin II type 1 blockers in renal disease are caused by a rise in angiotensin II that stimulates the angiotensin II type 2 receptor. If this hypothesis applied in this model, blockade of the type 2 receptor should exacerbate radiation nephropathy and/or counteract the beneficial effects of type 1 receptor blockade. To assess this hypothesis, rats were given total-body irradiation plus bone marrow transplantation and then treated for 12 weeks with a type 1 receptor blocker (L158,809), a type 2 blocker (PD123319), both blockers, or no blockers. Rats were assessed for renal function (proteinuria, hypertension, azotemia) and renal failure for up to 62 weeks. Contrary to the hypothesis, the type 2 blocker alone produced a temporary delay in the development of radiation nephropathy, and it substantially enhanced the efficacy of the type 1 blocker. This implies that both type 1 and type 2 angiotensin receptors need to be blocked to achieve the maximum level of prophylaxis of radiation nephropathy. We speculate that the beneficial effect of the angiotensin II type 2 receptor blocker is due to a reduction in radiation-induced renal cell proliferation or fibrosis.  相似文献   

15.
The effects of retinoic acid (RA) on nitric oxide (NO) production are controversial. Furthermore, it has never been studied whether these effects are mediated by direct modulation of phosphorylation of endothelial nitric oxide synthase (eNOS). Using bovine aortic endothelial cells, we found that all-trans RA (atRA) dose- and time-dependently decreased NO production without alteration in eNOS expression. This decrease was accompanied by reduction in eNOS-Ser(1179) phosphorylation. However, atRA did not alter the phosphorylation of eNOS-Ser(116) or eNOS-Thr(497). Concurrently, atRA also decreased the expressions of vascular endothelial growth factor (VEGF) and its receptor KDR/Flk-1, and Akt phosphorylation. Co-treatment with troglitazone, an activator of VEGF expression, reversed the atRA-induced reductions in eNOS-Ser(1179) phosphorylation and NO production, with concomitant restoration in VEGF expression. Direct treatment with VEGF also reversed these inhibitory effects, suggesting an important role for VEGF. Nonetheless, the RARalpha antagonist Ro 41-5253 did not block all the inhibitory effects of atRA, indicating that these inhibitory effects are not mediated by the RA response element (RARE). Thus, atRA decreases eNOS-Ser(1179) phosphorylation through a mechanism that depends on VEGF-KDR/Flk-1-mediated Akt phosphorylation but is independent of RARE, leading to reduction in NO production.  相似文献   

16.
We examined the apoptotic and anti-proliferative effects of all-trans retinoic acid (atRA) in HeLa cells. Our results demonstrated that HeLa cells were more sensitive to the anti-proliferative effects of atRA than to its apoptotic effects. Furthermore, we demonstrated that caspase inhibition attenuates cell death but does not alter the atRA-dependent reduction in cell proliferation, which suggests that atRA-induced apoptosis is independent of the arrest in cell proliferation. To check whether ANT proteins mediated these atRA effects, we transiently transfected cells with expression vectors encoding for individual ANT (adenine nucleotide translocase 1-3). Our results revealed that ANT1 and ANT3 over-expressing HeLa cells increased their atRA sensitivity. Thus, our results not only demonstrate the different functional activities of ANT isoforms, but also contribute to a better understanding of the properties of atRA as an anti-tumoral agent used in cancer therapy.  相似文献   

17.
Lipocalin-type prostaglandin D synthase (LPGDS; PGH(2)D-isomerase; EC 5.3.99.2) is a bifunctional protein first identified in the mammalian brain. It acts as a PGD(2)-producing enzyme and a retinoid transporter. Recent studies have shown that LPGDS is anomalously expressed in ovarian tumors and that retinoid may have a role as an ovarian cancer chemotherapeutic agent. To determine whether there is a relationship between retinoid and LPGDS in ovarian tumors, we examined the regulation of the gene encoding LPGDS by all-trans retinoic acid (RA). Real-time quantitative RT-PCR analysis showed that RA strongly induced the accumulation of LPGDS mRNA in human 3AO ovarian cancer cells. Furthermore, treatment of the cells with RA induced the synthesis and secretion of LPGDS into the culture medium. This increased expression of LPGDS was accompanied by an inhibition of cell proliferation in the ovarian cancer cells. Prostaglandin D synthase, ovarian cancer, retinoic acid, real-time quantitative RT-PCR.  相似文献   

18.
维甲酸(RA)是一种能够诱导腭裂发生的致畸物.研究显示γ-氨基丁酸(GABA)在腭板的发育过程中发挥重要作用.而GABA是否参与了RA诱导的腭裂发生还不清楚.本研究以小鼠胚胎腭板间充质细胞(MEPM)为研究对象,观察全反式维甲酸(atRA)(0.2、0.67、2.0和 6.7 μmol/L)对MEPM细胞增殖和凋亡的影响,并探讨GABA信号通路在其中的可能作用.结果显示,atRA(2.0 μmol/L和6.7 μmol/L)显著性抑制了MEPM的增殖,并促进了细胞凋亡.atRA(0.67、2.0和 6.7 μmol/L)显著性降低了GABA合成的关键酶谷氨酸脱羧酶(GAD67)mRNA和蛋白质的表达,但对γ-氨基丁酸A型受体-β3(GABAAR-β3)mRNA和蛋白质的表达没有影响.1.0 μmol/L的GABA逆转了atRA(6.7 μmol/L)对MEPM细胞增殖和凋亡的影响.以上结果表明,atRA通过下调GAD67的表达,减少GABA的产生,抑制MEPM的增殖和促进MEPM的凋亡,从而可能影响腭板的发育,诱导腭裂形成.  相似文献   

19.
High levels of Wilms' Tumor 1 (WT1) mRNA have been correlated with poor prognosis in breast cancer patients. However, the function of WT1 protein in breast cancer is not known. We observed that the levels of WT1 protein correlated with the proliferation of breast cancer cells. When the proliferation of breast cancer cells was stimulated by 17beta-estradiol, WT1 protein expression increased. But when the proliferation of breast cancer cells was inhibited by tamoxifen or all-trans retinoic acid (ATRA), WT1 protein expression decreased. We hypothesize that WT1 protein plays a role in regulating breast cancer cell proliferation. Using liposome-incorporated WT1 antisense oligodeoxynucleotides, we found that downregulation of WT1 protein expression led to breast cancer growth inhibition and reduced cyclin D1 protein levels. These results indicate that WT1 protein contributes to breast cancer progression by promoting breast cancer cell proliferation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号