首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ins(1,4,5)P3 3-kinase and 5-phosphatase are important enzymes responsible for the metabolism of Ins(1,4,5)P3, a second messenger for mobilization of intracellular Ca2+ stores. Focal cerebral ischemia induced in Long Evans rats through occlusion of the right middle cerebral artery (MCA) and both common carotid arteries resulted in a time-dependent decrease in the 3-kinase activity but not the 5-phosphatase activity. Approximately 50% of the 3-kinase activity in the cerebral cortex of the right MCA territory disappeared after 60 min of ischemia, and the enzyme activity was not restored during reperfusion. Reperfusion for 24 hr after a 60 min ischemic insult almost abolished the 3-kinase activity but the 5-phosphatase activity remained unaltered. These results suggest that the Ins(1,4,5)P3 3-kinase is one of the target enzymes of cerebral ischemia. The changes in Ins(1,4,5)P3 metabolism may be associated with the changes in intracellular Ca2+ homeostasis that underlies the pathophysiology of neuronal cell death.  相似文献   

2.
In intestinal epithelial cells, Ins(1,4,5)P3 is metabolized both by an intracellular 5-phosphatase and by less specific extracellular phosphatases [Rubiera, Velasco, Michell, Lazo & Shears (1988) Biochem. J. 255, 131-137]. A total of 91% of intracellular Ins(1,4,5)P3 5-phosphatase was particulate, and was preferentially associated with plasma membranes rather than with other subcellular organelles. A soluble Ins(1,4,5)P3 3-kinase activity was also characterized, further supporting the idea that inositol phosphates are important in enterocyte function. We have studied the distribution of Ins(1,4,5)P3 phosphatase activities in basolateral and brush-border domains of the plasma membrane. Compared with homogenates, the extracellular phosphatases were 13-17-fold enriched in brush-border membranes, but only 2-fold enriched in basolateral membranes. The 1- and 4-phosphates of Ins(1,4,5)P3 were hydrolysed at equal rates by the extracellular phosphatases; these enzymes are proposed to have digestive functions. The intracellular particulate 5-phosphatase was 2-fold enriched in brush-border membranes and 13-fold enriched in basolateral membranes, at the same pole of the cell where Ins(1,4,5)P3 is believed to be generated. This is opposite to the polarized distribution of particulate 5-phosphatase in hepatocytes [Shears, Evans, Kirk & Michell (1988) Biochem. J. 256, 363-369]; these differences in subcellular distribution may be important in determining cell-specific metabolism of Ins(1,4,5)P3.  相似文献   

3.
After 2 days of incubation of AR42J pancreatoma cells with 400 microM [3H]inositol, the specific radioactivity of [3H]phosphatidylinositol 4,5-bisphosphate and the specific radioactivity of [3H]inositol were similar, indicating that isotopic equilibrium had been achieved. The inositol 1,4,5-trisphosphate (1,4,5-IP3) level in cells was estimated to be approximately 2 microM and was increased by substance P receptor activation to about 25 microM. HPLC analysis of [3H]inositol phosphates indicated that only 1,4,5-IP3, inositol 1,4-bisphosphate, and inositol 4-monophosphate were increased upon receptor activation. There was no increase in inositol 1,3,4,5-tetrakisphosphate (1,3,4,5-IP4), or in any of its metabolites. Incubation of [3H]1,4,5-IP3 with a cell homogenate did not result in the formation of [3H]1,3,4,5-IP4. Therefore, it appears that 1,4,5-IP3 3-kinase is either not present or not functional under these assay conditions. Substance P increased cytosolic calcium levels in fura-2-loaded cells from about 600 nM to 2.5 microM. This increase in Ca2+ was partially attenuated in the absence of extracellular calcium, indicating that in AR42J cells, substance P stimulation appears to activate calcium signaling through both Ca2+ entry and intracellular Ca2+ release. These modes of Ca2+ mobilization occur without an increase in 1,3,4,5-IP4 or any of its metabolites.  相似文献   

4.
The ability of two fluoro-analogues of D-myo-inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) to mobilize intracellular Ca2+ stores in SH-SY5Y neuroblastoma cells has been investigated. DL-2-deoxy-2-fluoro-scyllo-Ins(1,4,5)P3 (2F-Ins(1,4,5)P3) and DL-2,2-difluoro-2-deoxy-myo-Ins(1,4,5)P3 (2,2-F2-Ins(1,4,5)P3) were full agonists (EC50s 0.77 and 0.41 microM respectively) and slightly less potent than D-Ins(1,4,5)P3 (EC50 0.13 microM), indicating that the axial 2-hydroxyl group of Ins(1,4,5)P3 is relatively unimportant in receptor binding and stimulation of Ca2+ release. Both analogues mobilized Ca2+ with broadly similar kinetics and were substrates for Ins(1,4,5)P3 3-kinase but, qualitatively, were slightly poorer than Ins(1,4,5)P3. 2F-Ins(1,4,5)P3 was a weak substrate for Ins(1,4,5)P3 5-phosphatase but 2,2-F2-Ins(1,4,5)P3 was apparently not hydrolysed by this enzyme, although it inhibited its activity potently (Ki = 26 microM).  相似文献   

5.
Inositol 1,4,5-trisphosphate (InsP3) 3-kinase, which phosphorylates InsP3 to form inositol 1,3,4,5-tetrakisphosphate, was purified to apparent homogeneity by (NH4)2SO4 fractionation and sequential chromatographic steps on DEAE-sepharose, calmodulin-Affi-Gel and DEAE-5PW h.p.l.c. The purified enzyme had a specific activity of 24.4 nmol of inositol tetrakisphosphate formed/min per mg of protein, which represented a purification of approx. 195-fold with a 0.29% recovery, compared with the cytosol fraction of the muscle. SDS/polyacrylamide-gel electrophoresis showed a single protein-staining band of Mr 93,000. Moreover, the major protein peak, of Mr 84,000, was detected by TSK gel G3000SW gel-permeation chromatography of the purified sample. As this value was approximately consistent with the Mr determined by SDS/polyacrylamide-gel-electrophoretic analysis, the InsP3 3-kinase might be a monomeric enzyme. The purified enzyme had a Km for InsP3 of 0.4 microM, with an optimum pH range of 5.8-7.7. The enzyme was maximally activated by calmodulin, with a stoichiometry of 1:1.  相似文献   

6.
Histamine (0.5 mM) stimulated the cyclic AMP content of cell suspensions containing greater than 80% parietal cells. Epidermal growth factor (EGF) inhibited this stimulatory effect of histamine, but had no effect on basal cyclic AMP content. The half-maximally effective concentration of EGF for inhibition of histamine-stimulated cyclic AMP was 3.9 nM. The equivalent measurement for the inhibition of histamine-stimulated aminopyrine accumulation was 3.0 nM. Aminopyrine accumulation was measured because it provides an index of the secretory activity of the cell. The cyclic AMP phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) prevented the inhibitory effect of EGF on cyclic AMP content. This effect of IBMX was not caused by its ability to raise cellular cyclic AMP content in the presence of histamine. Prevention by IBMX of the inhibitory action of EGF on histamine-stimulated aminopyrine accumulation had been shown previously [Shaw, Hatt, Anderson & Hanson (1987) Biochem. J. 244, 699-704]. EGF stimulated prostaglandin E2 (PGE2) production in the cell fraction containing greater than 80% parietal cells, with the half-maximally effective concentration being 7.5 nM. EGF was ineffective in stimulating PGE2 production if the cell fraction was depleted of parietal cells (12%), or if 0.5 mM-histamine was added to the enriched parietal-cell fraction. In conclusion, EGF may inhibit histamine-stimulated acid secretion by decreasing the cyclic AMP content of parietal cells. This effect could be mediated by an increase in cyclic AMP phosphodiesterase activity, but it is unlikely to involve an effect of EGF on parietal-cell prostaglandin production.  相似文献   

7.
In non-excitable cells, the inositol 1,4,5-trisphosphate receptor (IP(3)R), a ligand-gated Ca(2+) channel, plays an important role in the control of intracellular Ca(2+). There are three subtypes of IP(3)R that are differentially distributed among cell types. AR4-2J cells express almost exclusively the IP(3)R-2 subtype. The purpose of this study was to investigate the effect of cAMP-dependent protein kinase (PKA) on the activity of IP(3)R-2 in AR4-2J cells. We showed that immunoprecipitated IP(3)R-2 is a good substrate for PKA. Using a back-phosphorylation approach, we showed that endogenous PKA phosphorylates IP(3)R-2 in intact AR4-2J cells. Pretreatment with PKA enhanced IP(3)-induced Ca(2+) release in permeabilized AR4-2J cells. Pretreatment with the cAMP generating agent's forskolin and vasoactive intestinal peptide (VIP) enhanced carbachol (Cch)-induced and epidermal growth factor (EGF)-induced Ca(2+) responses in intact AR4-2J cells. Our results are consistent with an enhancing effect of PKA on IP(3)R-2 activity. This conclusion supports the emerging concept of crosstalk between Ca(2+) signaling and cAMP pathways and thus provides another way by which Ca(2+) signals are finely encoded within non-excitable cells.  相似文献   

8.
The effect of Ca2+ and calmodulin (CaM) on the activation of purified bovine brain Ins(1,4,5)P3 kinase was quantified and interpreted according to the model of sequential equilibria generally used for other calmodulin-stimulated systems. Two main conclusions can be drawn. (i) CaM.Ca3 and CaM.Ca4 together are the biologically active species in vitro, as is the case for the great majority of other calmodulin targets. (ii) These species bind in a non-co-operative way to the enzyme with an affinity constant of 8.23 x 10(9) M-1, i.e. approx 10-fold higher than for most calmodulin-activated target enzymes. The dose-response curve of the activation of Ins(1,4,5)P3 kinase by calmodulin is not significantly impaired by melittin and trifluoperazine, whereas under very similar assay conditions the half-maximal activation of bovine brain cyclic AMP phosphodiesterase requires over 30-50-fold higher concentrations of CaM when 1 microM melittin or 20 microM-trifluoperazine is present in the assay medium. Similarly, 1 microM of the anti-calmodulin peptides seminalplasmin and gramicidin S, as well as 20 microM of N-(6-aminohexyl)-5-chloro-1-naphthalene-sulphonamide (W7), do not inhibit the activation process. These data suggest that binding and activation of Ins(1,4,5)P3 kinase require surface sites of calmodulin which are different from those involved in the binding of most other target enzymes or of model peptides.  相似文献   

9.
10.
Inositol 1,4,5-trisphosphate (Ins P3) 3-kinase catalyzes the ATP-dependent phosphorylation of Ins P3 to Inositol 1,3,4,5-tetrakisphosphate (Ins P4). Ca2+/calmodulin (CaM)-sensitivity of Ins P3 3-kinase was measured in the crude soluble fraction from rat brain and different anatomic regions of bovine brain. Kinase activity was inhibited in the presence of EGTA (free Ca2+ below 1 nM) as compared to Ca2+ (10 microM free Ca2+) or Ca2+ (10 microM free Ca2+) and CaM (1 microM). Ca2+-sensitivity was also seen for the cAMP phosphodiesterase measured under the same assay conditions, but was not for the Ins P3 5-phosphatase. DEAE-cellulose chromatography of the soluble fraction of rat brain or bovine cerebellum resolved a Ca2+/CaM-sensitive Ins P3 3-kinase (maximal stimulation at 1 microM Ins P3 substrate level was 2.0-3.0 fold).  相似文献   

11.
The possibility that chronic activation of the phosphoinositide-mediated signaling pathway modifies the Ca(2+)-mobilizing action of inositol 1,4,5-trisphosphate (InsP3) was examined. SH-SY5Y human neuroblastoma cells were exposed to carbachol, permeabilized electrically, loaded with 45Ca2+, and 45Ca2+ mobilization in response to exogenous InsP3 was assessed. In control permeabilized cells, InsP3 released 65 +/- 2% of sequestered 45Ca2+ (EC50 = 0.32 +/- 0.05 microM). Pre-treatment with carbachol reduced both maximal InsP3-induced 45Ca2+ release (to 34 +/- 3%, with half-maximal and maximal inhibition at approximately 3 and 6 h, respectively) and the potency of InsP3 (EC50 = 0.92 +/- 0.13 microM). This inhibitory effect of carbachol was half-maximal at approximately 5 microM, was mediated by muscarinic receptors, and was reversible following withdrawal of agonist. Pretreatment with phorbol 12,13-dibutyrate did not alter the maximal effect of InsP3 but doubled its EC50. Evidence suggesting that the inhibitory effects of carbachol pretreatment resulted from altered Ca2+ homeostasis was not forthcoming; both 45Ca2+ uptake and release induced by ionomycin and thapsigargin were identical in control and pretreated permeabilized cells, as were the characteristics of reuptake of released Ca2+. In contrast, carbachol pretreatment, without altering the affinity of InsP3 (Kd = 64 +/- 7 nM), reduced the density of [32P]InsP3-binding sites from 2.0 +/- 0.1 to 1.0 +/- 0.1 pmol/mg protein with a time course essentially identical to that for the reduction in responsiveness to InsP3. This effect was not mimicked by pretreatment of cells with phorbol 12,13-dibutyrate. These data indicate that chronic activation of phosphoinositide hydrolysis can reduce the abundance of InsP3 receptors and that this causes a reduction in size of the InsP3-sensitive Ca2+ store. This modification, possibly in conjunction with a protein kinase C-mediated event, appears to account for the carbachol-induced suppression of InsP3 action. As intracellular InsP3 mass remained elevated above basal for at least 24 h after addition of carbachol, suppression of the Ca(2+)-mobilizing activity of InsP3 represents an important adaptive response to cell stimulation that can limit the extent to which intracellular Ca2+ is mobilized.  相似文献   

12.
13.
An enzyme which catalyses the ATP-dependent phosphorylation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] was purified approx. 180-fold from rat brain cytosol by (NH4)2SO4 precipitation, chromatography through hydroxyapatite, anion-exchange fast protein liquid chromatography and gel-filtration chromatography. Gel filtration on Sepharose 4B CL gives an Mr of 200 x 10(3) for the native enzyme. The inositol tetrakisphosphate (InsP4) produced by the enzyme has the chromatographic, chemical and metabolic properties of Ins(1,3,4,5)P4. Ins(1,4,5)P3 3-kinase displays simple Michaelis-Menten kinetics for both its substrates, having Km values of 460 microM and 0.44 microM for ATP and Ins(1,4,5)P3 respectively. When many of the inositol phosphates known to occur in cells were tested, only Ins(1,4,5)P3 was a substrate for the enzyme; the 2,4,5-trisphosphate was not phosphorylated. Inositol 4,5-bisphosphate and glycerophosphoinositol 4,5-bisphosphate were phosphorylated much more slowly than Ins(1,4,5)P3. CTP, GTP and adenosine 5'-[gamma-thio]triphosphate were unable to substitute for ATP. When assayed under conditions of first-order kinetics, Ins(1,4,5)P3 kinase activity decreased by about 40% as the [Ca2+] was increased over the physiologically relevant range. This effect was insensitive to the presence of calmodulin and appeared to be the result of an increase in the Km of the enzyme for Ins(1,4,5)P3. Preincubation with ATP and the purified catalytic subunit of cyclic AMP-dependent protein kinase did not affect the rate of phosphorylation of Ins(1,4,5)P3 when the enzyme was assayed at saturating concentrations of Ins(1,4,5)P3 or at concentrations close to its Km for this substrate.  相似文献   

14.
Data from several cell types have indicated that activation of hormone receptors promotes the metabolism of inositol 1,3,4,5,6-pentakisphosphate (IP5) to inositol 3,4,5,6-tetrakisphosphate ((3,4,5,6)IP4). However, to date, metabolism of IP5 by cell-free preparations has resulted in the formation of only inositol 1,4,5,6-tetrakisphosphate ((1,4,5,6)IP4). Thus, the metabolic relationships of IP5 with various inositol tetrakisphosphate (IP4) isomers have been investigated in both intact cells and cell homogenates of the rat pancreatoma cell line, AR4-2J. The steady-state concentration of IP5 was estimated to be 65 microM, while the combined concentration of (3,4,5,6)IP4 and (1,4,5,6)IP4 was approximately 1.0 microM. AR4-2J cell homogenates converted (1,3,4,6)IP4, (3,4,5,6)IP4, and (1,4,5,6)IP4 to IP5. (1,4,5,6)IP4 previously has not been demonstrated to be a precursor of IP5. To alter steady-state levels of inositol phosphates that were maintained by phosphorylation-dephosphorylation cycles, intact cells were treated with 10 microM antimycin A which reduced ATP levels by > 90% within 10 min. Following 2 h of treatment with antimycin A, there was a 6-fold increase in both (3,4,5,6)IP4 and (1,4,5,6)IP4, presumably derived from IP5. Experiments with cell-free systems determined that IP5 was dephosphorylated to (1,4,5,6)IP4 by a predominantly particulate Mg(2+)-independent, Li(+)-insensitive IP5 3-phosphatase. However, in the presence of 5 mM MgATP, IP5 also was metabolized to (3,4,5,6)IP4. Therefore, our data demonstrate novel and complex relationships between IP5, (3,4,5,6)IP4, and (1,4,5,6)IP4.  相似文献   

15.
The ability of D-6-deoxy-myo-inositol 1,4,5-trisphosphate [6-deoxy-Ins(1,4,5)P3], a synthetic analogue of the second messenger D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], to mobilise intracellular Ca2+ stores in permeabilised SH-SY5Y neuroblastoma cells was investigated. 6-Deoxy-Ins(1,4,5)P3 was a full agonist (EC50 = 6.4 microM), but was some 70-fold less potent than Ins (1,4,5)P3 (EC50 = 0.09 microM), indicating that the 6-hydroxyl group of Ins(1,4,5)P3 is important for receptor binding and stimulation of Ca2+ release, but is not an essential structural feature. 6-Deoxy-Ins(1,4,5)P3 was not a substrate for Ins (1,4,5)P3 5-phosphatase, but inhibited both the hydrolysis of 5-[32P]+ Ins (1,4,5)P3 (Ki 76 microM) and the phosphorylation of [3H]Ins(1,4,5)P3 (apparent Ki 5.7 microM). 6-Deoxy-Ins (1,4,5)P3 mobilized Ca2+ with different kinetics to Ins(1,4,5)P3, indicating that it is probably a substrate for Ins (1,4,5)P3 3-kinase.  相似文献   

16.
The effects of calmodulin (CaM) on inositol 1,4,5-trisphosphate (InsP3) 3-kinase activity in pig aortic smooth muscle were examined. The cytosol fraction of muscle cells, containing 1.2-2.0 micrograms of CaM/mg of cytosol protein (thus 0.12-0.2%, w/w), showed a Ca2+-dependent InsP3 3-kinase activity, and there was no further activation by exogenous addition of CaM purified from dog brain. (NH4)2SO4 fractionation of the cytosol fraction revealed that a 20-60%-satd.-(NH4)2SO4 fraction was rich in the enzyme activity, and the activity without exogenous CaM was still dependent on Ca2+, although the CaM content in this fraction was minute (0.013-0.016%, w/w). The kinase activity observed in the absence of exogenous CaM became insensitive to Ca2+ when a 20-60%-satd.-(NH4)2SO4 fraction was applied to a DEAE-cellulose column, but exogenous addition of CaM increased the enzyme activity from 80-120 to 450 pmol/min per mg of protein, with addition of 10 microM free Ca2+. A fraction separated by DEAE-cellulose chromatography was applied to a CaM affinity column. The kinase activity was retained on the column in the presence of Ca2+, and was eluted by lowering the free Ca2+ concentration by adding EGTA. These results directly show that CaM activates InsP3 3-kinase activity and the enzyme becomes sensitive to Ca2+.  相似文献   

17.
Previous studies with antigen-stimulated rat basophilic leukemia (RBL-2H3) cells indicated the formation of multiple isomers of each of the various categories of inositol phosphates. The identities of the different isomers have been elucidated by selective labeling of [3H]inositol 1,3,4,5-tetrakisphosphate with [32P]phosphate in the 3'-or 4',5'-positions and by following the metabolism of different radiolabeled inositol phosphates in extracts of RBL-2H3 cells. We report here that inositol 1,3,4,5-tetrakisphosphate, when incubated with the membrane fraction of extracts of RBL-2H3 cells, was converted to inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate. Further dephosphorylation of the inositol polyphosphates proceeded rapidly in whole extracts of cells, although the process was significantly retarded when ATP (2 mM) levels were maintained by an ATP-regenerating system. The degradation of inositol 1,4,5-trisphosphate proceeded with the sequential formation of inositol 1,4-bisphosphate, the inositol 4-monophosphate (with smaller amounts of the 1-monophosphate), and finally inositol. Inositol 1,3,4-trisphosphate, on the other hand, was converted to inositol 1,3-bisphosphate and inositol 3,4-bisphosphate and subsequently to inositol 4-monophosphate and inositol 1-monophosphate (stereoisomeric forms were undetermined). The possible implications of the apparent interconversion between inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in regulating histamine secretion in the RBL-2H3 cells are discussed.  相似文献   

18.
Production of inositol 1,4,5-trisphosphate (IP3) in cells results in the mobilization of intracellular calcium. Therefore, the dynamics of IP3 metabolism is important for calcium dependent processes in cells. This report investigates the coupling of mAChRs to the inositol lipid pathway in the CNS of the larval Manduca sexta. Stimulation of intact abdominal ganglia prelabeled with [3H]-inositol using a muscarinic agonist, oxotremorine-M (oxo-M), increased total inositol phosphate levels in a dose dependent manner (EC50 = 4.23 microM). These inositol phosphates consisted primarily of inositol 1,4-bisphosphate (IP2) and inositol monophosphate (IP1). Similarly, when nerve cord homogenates were provided with [3H]-phosphatidylinositol 4,5-bisphosphate ([3H]-PIP2) (10-13 microM) the predominant products were IP2 and IP1. In contrast, incubation of purified membranes with 1 mM oxo-M in the presence of 100 microM GTP gamma S and [3H]-PIP2 increased IP3 levels, suggesting that the direct activation of phospholipase C (PLC) by mAChRs occurs in a membrane delimited process. Together, these results suggest that in the intact nerve cord and in crude homogenates, a cytosolic 5-phosphatase quickly metabolizes IP3 to produce to IP2 and IP1. This enzyme was kinetically characterized using IP3 (Km = 43.7 microM, Vmax = 864 pmoles/min/mg) and IP4 (Km = 0.93 microM; Vmax = 300pmoles/min/mg) as substrates. The enzyme activity can be potently inhibited by two IP thiol compounds; IP3S3 (1,4,6) and IP3S3 (2,3,5), that show complex binding kinetics (Hill numbers < 1) and can distinguish different forms of the 5-phosphatase in purified membranes. These two inhibitors could be very useful tools to determine the role of the inositol lipid pathway in neuroexcitability.  相似文献   

19.
An inositol 1,4,5-trisphosphate 3-kinase purified from human platelets contains two major components, 53 and 36 kDa polypeptides. Each polypeptide expresses Ca2+/calmodulin-dependent enzymatic activity and is phosphorylated by an unidentified protein kinase in the enzyme preparation. The 36-kDa polypeptide may be further phosphorylated on serine residues by protein kinase C to a stoichiometry of 0.8 mole phosphate per mole of protein. Phosphorylation of the 36-kDa component is correlated with inhibition of the kinase activity; the inhibitory effect is dependent upon Ca2+ and phosphatidylserine/diolein and may be blocked by a selective peptide inhibitor of protein kinase C. Phosphorylation by protein kinase C decreases the Vmax of the enzyme from 160 to 28 nmol/mg/min; the Km (0.76 microM) is not altered. These data suggest that protein kinase C may negatively regulate inositol 1,4,5-trisphosphate 3-kinase activity in the human platelet.  相似文献   

20.
A simple procedure for assay of Ins(1,4,5)P3 5-phosphatase is described. The reaction products [( 3H]Ins(1,4)P2, [3H]InsP and myo-[3H]inositol) are completely separated from one another, with quantitative yield, on Amprep SAX (100 mg) minicolumns. [3H]Ins(1,4,5)P3 [and [3H]Ins(1,3,4,5)P4] are adsorbed to the columns but not released to any appreciable extent by the elution conditions used. In GH3 cells, the stepwise dephosphorylation of [3H]Ins(1,4,5)P3 to myo-[3H]inositol was demonstrated, and was inhibited by 2.3-bisphosphoglycerate. The Km of the soluble form of the enzyme was lower in GH3 cells (8-13 microM) than in IMR-32 cells (26-32 microM) or in rat cerebral-cortical samples (22 microM. The Km of the particulate form of the enzyme was similar in all three preparations (10-16 microM). The pH profiles of the two soluble 5-phosphatases differed, with a wider pH optimum for the GH3-cell activity than for the IMR-32-cell activity. The soluble and particulate GH3 enzymes were more sensitive than the corresponding IMR-32 enzymes to inhibition by p-hydroxymercuribenzoate, whereas there were no differences in their sensitivities to glucose 6-phosphate, 2,3-bisphosphoglycerate, fructose 1.6- and 2.6-bisphosphate and non-radioactive Ins(1,3,4,5)P4. Dialysis of the soluble fractions and washing of the particulate fractions did not affect the inhibitor sensitivities, except for the soluble IMR-32 fraction and p-hydroxymercuribenzoate. The Km value of the soluble GH3 5-phosphatase activity was lower, and the inhibition by Ins(1,3,4,5)P4 greater, after adsorption to and elution from phosphocellulose. It is concluded that there are qualitative differences in the properties of the soluble 5-phosphatase activity from GH3 and IMR-32 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号