首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The economy of C use by root nodules was examined in two symbioses, Vigna unguiculata (L.) Walp. (cv. Caloona):Rhizobium CB756 and Lupinus albus L. (cv. Ultra):Rhizobium WU425 over a 2-week period in early vegetative growth. Plants were grown in minus N water culture with cuvettes attached to the nodulated zone of their primary roots for collection of evolved CO2 and H2. Increments in total plant N and in C and N of nodules, and C:N weight ratios of xylem and phloem exudates were studied by periodic sampling from the plant populations. Itemized budgets were constructed for the partitioning and utilization of C in the two species. For each milligram N fixed and assimilated by the cowpea association, 1.54 ± 0.26 (standard error) milligrams C as CO2 and negligible H2 were evolved and 3.11 milligrams of translocated C utilized by the nodules. Comparable values for nodules of the lupin association were 3.64 ± 0.28 milligrams C as CO2, 0.22 ± 0.05 milligrams H2, and 6.58 milligrams C. More efficient use of C by cowpea nodules was due to a lesser requirement of C for synthesis of exported N compounds, a smaller allocation of C to nodule dry matter, and a lower evolution of CO2. The activity of phosphoenolpyruvate carboxylase in nodule extracts and the rate of 14CO2 fixation by detached nodules were greater for the cowpea symbiosis (0.56 ± 0.06 and 0.22 milligrams C as CO2 fixed per gram fresh weight per hour, respectively) than for the lupin 0.06 ± 0.02 and 0.01 milligrams C as CO2 fixed per gram fresh weight per hour. The significance of the data was discussed in relation to current information on theoretical costs of nitrogenase functioning and associated nodule processes.  相似文献   

2.
Summary Studies of the C and N economy of a range of temperate and tropical legume/Rhizobium symbioses indicate considerable variation (up to three-fold) in the cost of N2 fixation. Comparisons between and within symbioses indicate that the proportion of net photosynthate utilized in nodule functioning varies almost ten-fold from as low as 3% to as high as 25%. Factors possibly responsible for variation in efficiency of C use in nodules and in the proportioning of translocated photosynthetic products to nodules are discussed.  相似文献   

3.
Shoot/root grafting studies showed organ and host cultivar effects on net H2 evolution from Pisum sativum L. root nodules. Net H2 evolution from those nodules represents the sum of H2 formed by Rhizobium nitrogenase and H2 oxidized by any uptake hydrogenase present in the bacteria. Grafts between pea cultivars `JI1205' or `Alaska' and `Feltham First' in symbioses with R. leguminosarum 128C53 showed that shoots of both JI1205 and Alaska increased H2 uptake significantly (P ≤ 0.05) in Feltham First root nodules. The same plants also had less net H2 evolution at similar rates of C2H2 reduction than plants formed by grafting Feltham First shoots on Feltham First roots. Although JI1205 and Alaska shoots increased H2-uptake activity of Feltham First root nodules 28 days after the graft was made, intermediate to high levels of H2 uptake activity were still present in nodules on roots of both JI1205 and Alaska grafted to Feltham First shoots. These results indicate the presence of a transmissible shoot factor(s) which can increase uptake hydrogenase activity in a Rhizobium symbiont and show that root genotype also can influence that parameter.

Parallel grafting experiments using the same pea cultivars in symbioses with R. leguminosarum strain 300, which lacks uptake hydrogenase activity, suggested that a transmissible shoot factor(s) altered H2 formation from nitrogenase by changing the electron allocation coefficient of that enzyme complex.

The root and shoot factor(s) detected in this study had no permanent effect on strain 128C53. Bacterial cells isolated from Feltham First nodules with low H2 uptake activity formed root nodules on JI1205 and Alaska with high H2 uptake activity. Bacteroids isolated from nodules on intact JI1205, Alaska, or Feltham First plants with high, medium, or low H2 uptake activity, respectively, maintained those phenotypes during in vitro assays.

  相似文献   

4.
Photosynthetic data collected from Pisum sativum L. and Phaseolus vulgaris L. plants at different stages of development were related to symbiotic N2 fixation in the root nodules. The net carbon exchange rate of each leaf varied directly with carboxylation efficiency and inversely with the CO2 compensation point. Net carbon exchange of the lowest leaves reputed to supply fixed carbon to root nodules declined in parallel with H2 evolution from root nodules. The decrease in H2 evolution also coincided with the onset of flowering but preceded the peak in N2 fixation activity measured by acetylene-dependent ethylene production. A result of these changes was that the relative efficiency of N2 fixation in peas increased to 0.7 from an initial value of 0.4. The data reveal that attempts to identify photosynthetic contributions of leaves to root nodules will require careful timing and suggest that the relative efficiency of N2 fixation may be influenced by source-sink relationships.  相似文献   

5.
Nodulated cowpea (Vigna unguiculata L. Walp. cv Vita 3:Bradyrhizobium CB 756) plants were cultured with their whole root system or crown root nodulation zone maintained for periods from 5 to 69 days after planting in atmospheres containing a range of pO2 (1-80%, v/v) while the rest of the plant grew in normal air. Growth (dry matter yield) and N2 fixation were largely unaffected by pO2 from 10 to 40%. Decrease in fixation at pO2 below 5% was due to lower nodulation and nodule mass and, at pO2 above 60%, to a fall in specific N2-fixing activity of nodules. Root:shoot ratios were significantly lower at pO2 below 2.5%. The effect of pO2 on nitrogenase activity (acetylene reduction), both of whole nodulated root systems and crown root nodulation zones, varied with plant age but was generally lower at supra- and subambient extremes of O2. H2 evolution showed a sharp optimum at 20% O2 but was at most 4% of total nitrogenase activity. The ratio of CO2 evolved to substrate (C2H2+H+) reduced by crown root nodulation zones was constant (6 moles CO2 per mole substrate reduced) from 2.5 to 60% O2 but at levels below 2.5 and above 80% O2 reached values between 20 and 30 moles CO2 per mole substrate reduced. Effects of long-term growth with nonambient pO2 on adaptation and efficiency of functioning of nodules are discussed.  相似文献   

6.
Byrd GT  Brown RH 《Plant physiology》1989,90(3):1022-1028
The possibility of altering CO2 exchange of C3-C4 species by growing them under various CO2 and O2 concentrations was examined. Growth under CO2 concentrations of 100, 350, and 750 micromoles per mole had no significant effect on CO2 exchange characteristics or leaf anatomy of Flaveria pringlei (C3), Flaveria floridana (C3-C4), or Flaveria trinervia (C4). Carboxylation efficiency and CO2 compensation concentrations in leaves of F. floridana developed under the different CO2 concentrations were intermediate to F. pringlei and F. trinervia. When grown for 12 days at an O2 concentration of 20 millimoles per mole, apparent photosynthesis was strongly inhibited in Panicum milioides (C3-C4) and to a lesser degree in Panicum laxum (C3). In P. milioides, acute starch buildup was observed microscopically in both mesophyll and bundle sheath cells. Even after only 4 days exposure to 20 millimoles per mole O2, the presence of starch was more pronounced in leaf cross-sections of P. milioides compared to those at 100 and 210 millimoles per mole. Even though this observation suggests that P. milioides has a different response to low O2 with respect to translocation of photosynthate or sink activity than C3 species, the concentration of total available carbohydrate increased in shoots of all species by 33% or more when grown at low O2. This accumulation occurred even though relative growth rates of Festuca arundinacea (C3) and P. milioides grown for 4 days at 210 millimoles per mole O2, were inhibited 83 and 37%, respectively, when compared to plants grown at 20 millimoles per mole O2.  相似文献   

7.
8.
Field soybean plants were inoculated with Hup+ wild-type or H2 uptake-negative (Hup) mutants of Bradyrhizobium japonicum. For two consecutive summers we found an enrichment for acinetobacters associated with the surfaces of the H2-evolving nodules. Soybean root nodules that evolved H2 had up to 12 times more Acinetobacter spp. bacteria associated with their surfaces than did nodules incapable of evolving H2. All of the newly isolated strains identified as Acinetobacter obtained from the surfaces of root nodules, as well as known established Acinetobacter strains, were capable of oxidizing H2, a property not previously described for this alkane-degrading soil bacterium.  相似文献   

9.
The total metabolic cost of soybean (Glycine max L. Mer Clark) nodule nitrogen fixation was empirically separated into respiration associated with electron flow through nitrogenase and respiration associated with maintenance of nodule function.

Rates of CO2 evolution and H2 evolution from intact, nodulated root systems under Ar:O2 atmospheres decreased in parallel when plants were maintained in an extended dark period. While H2 evolution approached zero after 36 hours of darkness at 22°C, CO2 evolution rate remained at 38° of the rate measured in light. Of the remaining CO2 evolution, 62% was estimated to originate from the nodules and represents a measure of nodule maintenance respiration. The nodule maintenance requirement was temperature dependent and was estimated at 79 and 137 micromoles CO2 (per gram dry weight nodule) per hour at 22°C and 30°C, respectively.

The cost of N2 fixation in terms of CO2 evolved per electron pair utilized by nitrogenase was estimated from the slope of H2 evolution rate versus CO2 evolution rate. The cost was 2 moles CO2 evolved per mole H2 evolved and was independent of temperature.

In this symbiosis, nodule maintenance consumed 22% of total respiratory energy while the functioning of nitrogenase consumed a further 52%. The remaining respiratory energy was calculated to be associated with ammonia assimilation, transport of reduced N, and H2 evolution.

  相似文献   

10.
Nodulated and denodulated roots of adzuki bean (Vigna angularis), soybean (Glycine max), and alfalfa (Medicago sativa) were exposed to 14CO2 to investigate the contribution of nodule CO2 fixation to assimilation and transport of fixed nitrogen. The distribution of radioactivity in xylem sap and partitioning of carbon fixed by nodules to the whole plant were measured. Radioactivity in the xylem sap of nodulated soybean and adzuki bean was located primarily (70 to 87%) in the acid fraction while the basic (amino acid) fraction contained 10 to 22%. In contrast, radioactivity in the xylem sap of nodulated alfalfa was primarily in amino acids with about 20% in organic acids. Total ureide concentration was 8.1, 4.7, and 0.0 micromoles per milliliter xylem sap for soybean, adzuki bean, and alfalfa, respectively. While the major nitrogen transport products in soybeans and adzuki beans are ureides, this class of metabolites contained less than 20% of the total radioactivity. When nodules of plants were removed, radioactivity in xylem sap decreased by 90% or more. Pulse-chase experiments indicated that CO2 fixed by nodules was rapidly transported to shoots and incorporated into acid stable constituents. The data are consistent with a role for nodule CO2 fixation providing carbon for the assimilation and transport of fixed nitrogen in amide-based legumes. In contrast, CO2 fixation by nodules of ureide transporting legumes appears to contribute little to assimilation and transport of fixed nitrogen.  相似文献   

11.
In vivo CO2 fixation activity and in vitro phosphoenolpyruvate carboxylase activity were demonstrated in effective and ineffective nodules of alfalfa (Medicago sativa L.) and in the nodules of four other legume species. Phosphoenolpyruvate carboxylase activity was greatly reduced in nodules from both host and bacterially conditioned ineffective alfalfa nodules as compared to effective alfalfa nodules.

Forage harvest and nitrate application reduced both in vivo and in vitro CO2 fixation activity. By day 11, forage harvest resulted in a 42% decline in in vitro nodule phosphoenolpyruvate carboxylase activity while treatment with either 40 or 80 kilograms nitrogen per hectare reduced activity by 65%. In vitro specific activity of phosphoenolpyruvate carboxylase and glutamate synthase were positively correlated with each other and both were positively correlated with acetylene reduction activity.

The distribution of radioactivity in the nodules of control plants (unharvested, 0 kilograms nitrogen per hectare) averaged 73% into the organic acid and 27% into the amino acid fraction. In nodules from harvested plants treated with nitrate, near equal distribution of radioactivity was observed in the organic acid (52%) and amino acid (48%) fractions by day 8. Recovery to control distribution occurred only in those nodules whose in vitro phosphoenolpyruvate carboxylase activity recovered.

The results demonstrate that CO2 fixation is correlated with nitrogen fixation in alfalfa nodules. The maximum rate of CO2 fixation for attached and detached alfalfa nodules at low CO2 concentrations (0.13-0.38% CO2) were 18.3 and 4.9 nanomoles per hour per milligram dry weight, respectively. Nodule CO2 fixation was estimated to provide 25% of the carbon required for assimilation of symbiotically fixed nitrogen in alfalfa.

  相似文献   

12.
Soybean (Glycine max [L.] Merr. cv Davis) was grown in a split-root growth system designed to maintain control of the root atmosphere. Two experiments were conducted to examine how 80% Ar:20% O2 (Ar:O2) and air (Air) atmospheres affected N assimilation (NH4NO3 and N2 fixation) and the partitioning of photosynthate to roots and nodules. Application of NH4NO3 to nonnodulated half-root systems enhanced root growth and root respiration at the site of application. A second experiment applied Ar:O2 or air to the two sides of nodulated soybean half-root systems for 11 days in the following combinations: (a) Air to both sides (Air/Air); (b) Air to one side, Ar:O2 to the other (Air/Ar:O2), and (c) Ar:O2 to both sides (Ar:O2/Ar:O2). Results indicated that dry matter and current photosynthate (14C) were selectively partitioned to nodules and roots where N2 was available. Both root and nodule growth on the Air side of Air/Ar:O2 plants was significantly greater than the Ar:O2 side. The relative partitioning of carbon and current photosynthate between roots and nodules on a half-root system was also affected by N2 availability. The Ar:O2 sides partitioned relatively more current photosynthate to roots (57%) than nodules (43%), while N2-fixing root systems partitioned 36 and 64% of the carbon to roots and nodules, respectively. The Ar:O2 atmosphere decreased root and nodule respiration by 80% and nitrogenase activity by 85% compared to half-root systems in Air while specific nitrogenase activity of nodules in Ar:O2 was 50% of nodules supplied Air. Results indicated that nitrogen assimilation, whether from N2 fixation or inorganic sources, had a localized effect on root development. Nodule development accounted for the major decrease in total photosynthate partitioning to non-N2-fixing nodules. Soybean compensates for ineffective nodulation by controlling the flux of carbon to ineffective nodules and their associated roots.  相似文献   

13.
The daily (24 hour) changes in carbon balance, water loss, and leaf area of whole sorghum plants (Sorghum bicolor L. Moench, cv BTX616) were measured under controlled environment conditions typical of warm, humid, sunny days. Plants were either (a) irrigated frequently with nutrient solution (osmotic potential −0.08 kilojoules per kilogram = −0.8 bar), (b) not irrigated for 15 days, (c) irrigated frequently with moderately saline nutrient (80 millimoles NaCl + 20 millimoles CaCl2·2H2O per kilogram water, osmotic potential −0.56 kilojoules per kilogram), or (d) preirrigated with saline nutrient and then not irrigated for 22 days.

Under frequent irrigation, salt reduced leaf expansion and carbon gain, but water use efficiency was increased since the water loss rate was reduced more than the carbon gain. Water stress developed more slowly in the salinized plants and they were able to adjust osmotically by a greater amount. Leaf expansion and carbon gain continued down to lower leaf water potentials.

Some additional metabolic cost associated with salt stress was detected, but under water stress this was balanced by the reduced cost of storing photosynthate rather than converting it to new biomass. Reirrigation produced a burst of respiration associated with renewed synthesis of biomass from stored photosynthate.

It is concluded that although irrigation of sorghum with moderately saline water inhibits plant growth in comparison with irrigation with nonsaline water, it also inhibits water loss and allows a greater degree of osmotic adjustment, so that the plants are able to continue growing longer and reach lower leaf water potentials between irrigations.

  相似文献   

14.
The economy of carbon, nitrogen and water during growth of nodulated, nitrogen-fixing plants of white lupin (Lupinus albus L.) was studied by measuring C, N and H2O content of plant parts, concentrations of C and N in bleeding sap of xylem and phloem, transpirational losses of whole shoots and shoot parts, and daily exchanges of CO2 between shoot and root parts and the surrounding atmosphere. Relationships were studied between water use and dry matter accumulation of shoot and fruits, and between net photosynthesis rate and leaf area, transpiration rate and nitrogen fixation. Conversion efficiencies were computed for utilization of net photosynthate for nitrogen fixation and for production of dry matter and protein in seeds. Partitioning of the plant's intake of C, N and H2O was described in terms of growth, transpiration, and respiration of plant parts. An empirically-based model was developed to describe transport exchanges in xylem and phloem for a 10-day interval of growth. The model depicted quantitatively the mixtures of xylem and phloem streams which matched precisely the recorded amounts of C, N and H2O assimilated, absorbed or consumed by the various parts of the plant. The model provided information on phloem translocation of carbon and nitrogen to roots from shoots, the cycling of carbon and nitrogen through leaves, the relationship between transpiration and nitrogen partitioning to shoot organs through the xylem, the relative amount of the plant's water budget committed to phloem translocation, and the significance of xylem to phloem transfer of nitrogen in stems as a means of supplying nitrogen to apical regions of the shoot.  相似文献   

15.
The study aimed to test the hypothesis that ammonia production by Rhizobium bacteroids provides not only a source of nitrogen for growth but has a central regulatory role in maintaining the metabolic activity and functional integrity of the legume nodule. Production of ammonia in intact, attached nodules was interrupted by short-term (up to 3 days) exposure of the nodulated root systems of cowpea (Vigna unguiculata L. Walp cv Vita 3: Rhizobium CB 756) and lupin (Lupinus albus L. cv Ultra: Rhizobium WU 425) to atmospheres of argon:oxygen (80:20; v/v). Treatment did not affect nodule growth, levels of plant cell and bacteroid protein, leghaemoglobin content, or nitrogenase (EC 1.7.99.2) activity (acetylene reduction) but severely reduced (by 90%) synthesis and export of the major nitrogenous solutes produced by the two symbioses (ureides in cowpea, amides in lupin). Glutamine synthetase (EC 6.3.1.2) and NAD:glutamate oxidoreductase (EC I.4.1.2) were more or less stable to Ar:O2 treatment, but activities of the glutamine-utilizing enzymes, glutamate synthase (EC 2.6.1.53), asparagine synthetase (EC 6.3.5.4) (lupin only), and de novo purine synthesis (cowpea only), were all markedly reduced. Production and export of nitrogenous solutes by both symbioses resumed within 2 hours after transferring Ar:O2-treated plants back to air. In each case the major exported product of fixation after transfer was initially glutamine, reflecting the relative stability of glutamine synthetase activity. Subsequently, glutamine declined and products of its assimilation became predominant consistent with resurgence of enzymes for the synthesis of asparagine in lupin and ureides in cowpea. Enzymes not directly involved with either ammonia or glutamine assimilation (purine synthesis, purine oxidation, and carbon metabolism of both bacteroids and plant cells) also showed transient changes in activity following interruption of N2 supply. These data have been interpreted to indicate a far-reaching effect of the production of ammonia by bacteroids on a wide range of enzymes, possibly through control of protein turnover, rather than a highly specific effect of ammonia, or some product of its assimilation, on a few enzyme species.  相似文献   

16.
The peanut plant (Arachis hypogaea L.), unlike other known legumes, can sustain nitrogen fixation when prolonged periods of darkness or detopping curtail the supply of photosynthate to the nodule. This ability to withstand photosynthate stress is attributed to the presence of lipid bodies in infected nodule cells. In both dark-treated and detopped plants, the lipid bodies show a gradual decrease in numbers, suggesting their utilization as a source of energy and carbon for nitrogen fixation. Lipolytic activity can be localized in the lipid bodies, and the existence of β-oxidation pathway and, glyoxylate cycle is shown by the release of 14CO2 from 14C lineoleoyl coenzyme A by the nodule homogenate.  相似文献   

17.
After 40 days of growth at 25°C, Lotus pedunculatus cav., cv. Maku plants infected with Rhizobium loti strain NZP2037 displayed similar relative growth rates but had twice the nodule mass and only one third the whole plant dry weight of plants infected with Bradyrhizobium sp. (Lotus) strain CC814s. In the NZP2037 symbiosis, the rate of CO2 evolution (per g dry weight of nodulated root) was 1.6 times as high as that in the CC814s symbiosis while the rate of C2H2 reduction (per g dry weight of nodule) was only 48% of that in the CC814s symbiosis. Studies of the effect of short term temperature changes on the gas exchange characteristics (CO2 and H2 evolution, C2H2 reduction) of these symbioses revealed wide differences in the optima for C2H2 reduction. Nodules infected with NZP2037 displayed maximal C2H2 reduction rates [157 μmol (g dry weight nodule)?1 h?1] at 12°C, whereas nodules infected with CC814s were optimal at 30°C [208 μmol (g dry weight nodule)?1 h?1]. These short term studies suggested that differences in temperature optima for N2 may have partially accounted for the poorer effectivity, at 25°C, of strain NZP2037 when compared with strain CC-814s. The relative efficiency [RE = 1 – (H2 evolution/C2H2 reduction)] of N2 fixation varied widely with temperature in the two symbioses, but there was a general trend toward higher RE with lower temperatures. The ratio of CO2 evolution: C2H2 reduction (mol/mol) in nodulated roots infected with CC814s was constant (ca 10 CO2/C2H2) between 5°C and 30°C, whereas in plants infected with NZP2037 it reached a minimal value of 3.3 CO2/C2H2 at 10°C and was 19 CO2/C2H2 at the growing temperature (25°C).  相似文献   

18.
Products of the nodule cytosol in vivo dark [14C]CO2 fixation were detected in the plant cytosol as well as in the bacteroids of pea (Pisum sativum L. cv “Bodil”) nodules. The distribution of the metabolites of the dark CO2 fixation products was compared in effective (fix+) nodules infected by a wild-type Rhizobium leguminosarum (MNF 300), and ineffective (fix) nodules of the R. leguminosarum mutant MNF 3080. The latter has a defect in the dicarboxylic acid transport system of the bacterial membrane. The 14C incorporation from [14C]CO2 was about threefold greater in the wild-type nodules than in the mutant nodules. Similarly, in wild-type nodules the in vitro phosphoenolpyruvate carboxylase activity was substantially greater than that of the mutant. Almost 90% of the 14C label in the cytosol was found in organic acids in both symbioses. Malate comprised about half of the total cytosol organic acid content on a molar basis, and more than 70% of the cytosol radioactivity in the organic acid fraction was detected in malate in both symbioses. Most of the remaining 14C was contained in the amino acid fraction of the cytosol in both symbioses. More than 70% of the 14C label found in the amino acids of the cytosol was incorporated in aspartate, which on a molar basis comprised only about 1% of the total amino acid pool in the cytosol. The extensive 14C labeling of malate and aspartate from nodule dark [14C]CO2 fixation is consistent with the role of phosphoenolpyruvate carboxlase in nodule dark CO2 fixation. Bacteroids from the effective wild-type symbiosis accumulated sevenfold more 14C than did the dicarboxylic acid transport defective bacteroids. The bacteroids of the effective MNF 300 symbiosis contained the largest proportion of the incorporated 14C in the organic acids, whereas ineffective MNF 3080 bacteroids mainly contained 14C in the amino acid fraction. In both symbioses a larger proportion of the bacteroid 14C label was detected in malate and aspartate than their corresponding proportions of the organic acids and amino acids on a molar basis. The proportion of 14C label in succinate, 2-oxogultarate, citrate, and fumarate in the bacteroids of the wild type greatly exceeded that of the dicarboxylate uptake mutant. The results indicate a central role for nodule cytosol dark CO2 fixation in the supply of the bacteroids with dicarboxylic acids.  相似文献   

19.
Summary Isotopic15N2 experiments confirmed nitrogen fixation inParasponia parviflora. The conversion ratio C2H4/N2 was 6.7 under the experimental conditions employed. Measurements of the δ15N in leaves of Parasponia and Trema showed on the basis of these determinations thatParasponia parviflora possesses N2-fixing capacity and can be distinguished in this respect from the non-nitrogen-fixingTrema cannabina tested by the same method. Therefore, δ15N can be used to monitor N2 fixation in natural ecosystems. Hydrogen evolution and the relative efficiency of N2 fixation in this relation have been determined. DetachedParasponia parviflora root nodules grown in soil and tested in an argon/oxygen atmosphere produced appr. 4 μmol H2.h−1.g−1 fresh weight root nodules. The relative efficiency of hydrogen utilization as measured in argon, air, and in the presence of C2H2 10% (v/v) was for both equations used for to express this efficiency 0.96 and 0.97, respectively. This indicates that Parasponia like the root nodules of some actinorhizal symbioses (Alnus, Myrica, Elaeagnus) and some tropical legumes (Vigna sinensis) has evolved mechanisms of minimizing net hydrogen production in air, thus increasing the efficiency of electron transfer to nitrogen. The oxygen relation of nitrogen fixation (C2H2) inParasponia parviflora root nodules was determined. The nitrogenase activity of Parasponia root nodules increased at increasing oxygen concentrations up till c. 40% O2. At oxygen levels above 40% O2, the nitrogenase activity of the root nodules was nil or very erratic suggesting that at these oxygen levels the nitrogenase is not longer protected against the harmful effect of oxygen. In this respect Parasponia root nodules differ from actinorhizal root nodules in other nonlegumes, where optimal nitrogenase activity was observed in the range of 12–25% oxygen. Respiration experiments with Parasponia root nodules showed that in the range 10, 20, and 40% oxygen, the respiration rate (CO2 evolution) increased concomitantly with an increase of the acetylene reduction rate. The CO2/C2H4 values obtained varied between 8.1 and 19.2, being therefore 2–3 times higher than similar estimations in some actinorhizal and legume root nodules. The respiratory quotient (RQ) of detachedParasponia parviflora root nodules was in air initially approximately 2.0, but this value dropped to about 1.0 in a 3-hours period.  相似文献   

20.
Actual nitrogen fixation of root nodules of differentAlbizia-rhizobium symbioses, was compared with the potential nitrogen fixation of isolated bacteroids. The potential nitrogen fixation exceeded actual nitrogen fixation in all symbionts. After addition of nitrate the actual nitrogen fixation decreased more than did potential nitrogen fixation in effective symbiosis, whereas in a less effective symbiosis, the actual and potential nitrogen fixation increased as a result of better photosynthate supply to the roots and nodules. As confirmed by correlation analysis, the nitrogen fixation and photosynthetic yield of suboptimum symbioses were relatively enhanced by dressing with inorganic nitrogen fertilizer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号