首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present study we have determined the kinetics of 3-deoxy-3-fluoro-D-glucose (3-FG) as a substrate for the aldose reductase reaction in vitro. In addition, we compared the 3-deoxy-3-fluoro-sorbitol (3-FS) production rates from 3-FG in the intact lens using 19F NMR with conventional aldose reductase determinations in extracts from the same lenses. The affinity of in vitro aldose reductase for 3-FG was approximately 20 times greater (9.3 mM) than that for glucose (188 mM). An excellent correlation between the rate of 3-FS production in the intact canine lens, determined with 19F NMR, and extracted aldose reductase activity was observed. The relatively high affinity of aldose reductase for 3-FG and the correlation of 3-FS production with enzyme activity in the intact lens suggests that 3-FS production from 3-FG detected by 19F NMR could provide an accurate noninvasive determination of aldose reductase activity in the eye lens.  相似文献   

2.
Suitable analogs of d-mannoheptulose are currently considered as possible tools for the non-invasive imaging of pancreatic islet insulin-producing cells. Here, we examined whether (19)F-heptuloses could be used for non-invasive imaging of GLUT2-expressing cells. After 20 min incubation, the uptake of (19)F-heptuloses (25 mM) by rat hepatocytes, as assessed by (19)F NMR spectroscopy, ranged from 0.50 (1-deoxy-1-fluoro-d-mannoheptulose and 3-deoxy-3-fluoro-d-mannoheptulose) to 0.25 (1,3-dideoxy-1,3-difluoro-d-mannoheptulose) and 0.13 (1-deoxy-1-fluoro-d-glucoheptulose, 3-deoxy-3-fluoro-d-glucoheptulose and 1,3-dideoxy-1,3-difluoro-d-glucoheptulose) μmol per 3×10(6)cells. (19)F MRI experiments also allowed the detection of 1-deoxy-1-fluoro-d-mannoheptulose in rat hepatocytes. All three (19)F-mannoheptuloses cited above, as well as 7-deoxy-7-fluoro-d-mannoheptulose and 1-deoxy-1-fluoro-d-glucoheptulose inhibited insulin release evoked in rat isolated pancreatic islets by 10mM d-glucose to the same extent as that observed with an equivalent concentration (10mM) of d-mannoheptulose, while 3-deoxy-3-fluoro-d-glucoheptulose and 1,3-dideoxy-1,3-difluoro-d-glucoheptulose (also 10mM) were less potent than d-mannoheptulose in inhibiting insulin release. The 1-deoxy-1-fluoro-d-mannoheptulose and 3-deoxy-3-fluoro-d-mannoheptulose only marginally affected INS-1 cell viability. These findings are compatible with the view that selected (19)F-heptuloses may represent suitable tools for the non-invasive imaging of hepatocytes and insulin-producing cells by (19)F MRI.  相似文献   

3.
The synthetic D-galactose analog 2-deoxy-2-fluoro-D-galactose (dGalF) offers unique advantages for studies of the D-galactose pathway by non-invasive techniques using 19F-NMR spectroscopy or positron emission from the 18F-labeled compound. The metabolism of 2-deoxy-2-fluoro-D-galactose was studied in rodents using the unlabeled, the 18F-labeled, and the 14C-labeled D-galactose analog. Analyses for the metabolites of 2-deoxy-2-fluoro-D-galactose were performed by HPLC, enzymatic methods, and 19F-NMR spectroscopy in vivo and in vitro. The metabolism of 2-deoxy-2-fluoro-D-galactose was most active in the liver which took up the major part of the administered dose of the 14C-labeled D-galactose analog, but renal excretion was also pronounced. This was confirmed by in vivo scanning of the rat using the 18F-labeled sugar (1.5 microCi/g; 25 nmol/g) and examination by positron-emission tomography and gamma camera. The dose dependence of the levels of the hepatic metabolites of 2-deoxy-2-fluoro-D-galactose was investigated for doses between 25 nmol/g body mass and 1 mumols/g body mass. After 1 h, the major part of the acid-soluble uracil nucleotides consisted of UDP-2-deoxy-2-fluoro-D-hexoses when the dose was at least 0.1 mumols/g. With higher doses, 2-deoxy-2-fluoro-D-galactose 1-phosphate became the predominant initial metabolite. After a dose of 1 mumols/g 2-deoxy-2-fluoro-D-galactose 1-phosphate accumulated rapidly (5.3 +/- 0.4 mumols/g liver after 30 min) followed by the formation of UDP-2-deoxy-2-fluoro-D-galactose and UDP-2-deoxy-2-fluoro-D-glucose (0.7 +/- 0.1 mumols/g and 1.8 +/- 0.1 mumols/g, respectively, after 5 h). The diversion of uridylate, due to the accumulation of UDP-2-deoxy-2-fluoro-D-hexoses, was associated with a rapid depletion of hepatic UTP, UDP-glucose, and UDP-galactose. The UTP content was decreased to 11 +/- 6% of normal within 15 min after administration of 2-deoxy-2-fluoro-D-galactose at a dose of 1 mumols/g. The UTP-depleting action was minimal, however, at a dose of 25 nmols/g or less, indicating that interference in uridylate metabolism would be negligible at the doses required for positron-emission tomography of the liver using the 18F-labeled compound. At higher doses, the UTP deficiency induced by 2-deoxy-2-fluoro-D-galactose could be useful in the chemotherapy of D-galactose-metabolizing tumors such as hepatocellular carcinoma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Based on a literature precedent, preparation of methyl 4-azido-3,4,6-trideoxy-3-fluoro-alpha-D-mannopyranoside (18) was attempted via fluorination of methyl 4-azido-2-O-benzyl-4,6-dideoxy-alpha-D-altropyranoside with diethylaminosulfur trifluoride (DAST). Contrary to expectations, the reaction took place with retention of configuration at the site of the fluorination yielding methyl 4-azido-2-O-benzyl-3,4,6-trideoxy-3-fluoro-alpha-D-altropyranoside. Treatment with DAST of methyl 4-azido-2-O-benzyl-4,6-dideoxy-alpha-D-allopyranoside (8), or its 2-(p-methoxybenzyl) analog 9 resulted in fluorination with inversion of configuration at position 3, to give the corresponding 3-deoxy-3-fluoro glucopyranosides 10 and 11, respectively. Accordingly, compound 18 was prepared from 11, by de-p-methoxybenzylation at O-2, followed by inversion of configuration at C-2 in the resulting methyl 4-azido-3,4,6-trideoxy-3-fluoro-alpha-D-glucopyranoside. The 2-O-methyl analog of 18 (19) was prepared by methylation of 18. Compounds 18 and 19 were converted, conventionally, into the 3-fluoro analogs of the terminal determinants of the O-PS of Vibrio cholerae O:1, serotype Inaba and Ogawa, respectively.  相似文献   

5.
Replacement of specific hydroxyl groups by fluorine in carbohydrates is an ongoing challenge from chemical, biological, and pharmaceutical points of view. A rapid and efficient two-step, regio- and stereoselective synthesis of 2-deoxy-2-(R)-fluoro-beta-d-allose (2-(R)-fluoro-2-deoxy-beta-d-allose; 2-FDbetaA), a fluorinated analogue of the rare sugar, d-allose, is described. TAG (3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-d-arabino-hex-1-enitol or 3,4,6-tri-O-acetyl-d-glucal), was fluorinated in anhydrous HF with dilute F(2) in a Ne/He mixture or with CH(3)COOF at -60 degrees C. The fluorinated intermediate was hydrolyzed in 1N HCl and the hydrolysis product was purified by liquid chromatography and characterized by 1D (1)H, (13)C, and (19)F NMR spectroscopy as well as 2D NMR spectroscopy and mass spectrometry. In addition, (18)F-labeled 2-deoxy-2-(R)-fluoro-beta-d-allose (2-[(18)F]FDbetaA) was synthesized for the first time, with an overall decay-corrected radiochemical yield of 33+/-3% with respect to [(18)F]F(2), the highest radiochemical yield achieved to date for electrophilic fluorination of TAG. The rapid and high radiochemical yield synthesis of 2-[(18)F]FDbetaA has potential as a probe for the bioactivity of d-allose.  相似文献   

6.
Vocadlo DJ  Mayer C  He S  Withers SG 《Biochemistry》2000,39(1):117-126
The novel mechanism-based reagent 2-acetamido-2-deoxy-5-fluoro-alpha-L-idopyranosykl fluoride has been synthesized, and the kinetic parameters K(M) = 0.23 mM and K(CAT)= 0.55 min(-1) for its hydrolysis by vibrio furnisi beta-N-acetylglucosaminidase (ExoII) HAVE been determined. Investigation of mixtures of enzyme with this slow substrate by electrospray mass spectrometry revealed a high steady-state population of the 2-acetamido-2-deoxy-5-fluoro-beta-L-idopyranosyl-enzyme, indicating that the hydrolytic mechanism of ExoII involves the formation and rate-determining hydrolysis of a glycosyl-enzyme intermediate. Analysis of a peptic digest of the glycosyl-enzyme by HPLC/ESMS/MS in the netural-loss mode permitted identification of a peptide bearing the 5-fluoro-sugar moiety. Tandem MS sequencing of the labeled peptide, in conjuction with multiple sequence alignmentsS of family 3 members, allowed the identification of ASP242 as the catalytic nucleophile within the sequence IVFSDDLSM.  相似文献   

7.
Recent studies have demonstrated that 3-deoxy-3-fluoro-D-glucose (3-FG) is metabolized to 3-deoxy-3-fluoro-D-sorbitol (3-FS), via aldose reductase, and 3-deoxy-3-fluoro-D-fructose (3-FF), via the sorbitol dehydrogenase reaction with 3-FS, in rat cerebral tissue (Kwee, I. L., Nakada, T., and Card, P. J. (1987) J. Neurochem. 49, 428-433). However, the biochemistry of 3-FG in other mammalian organs has not been investigated making the application of 3-FG as a metabolic tracer uncertain. To address this issue we investigated 3-FG metabolism and distribution in isolated cell lines and in rabbit tissues in vivo with 19F NMR and gas chromatography-mass spectrometry. In general, the production of 3-FS is well correlated with the known distribution of aldose reductase in all the systems studied. Further metabolism of 3-FS to 3-FF was verified to occur in cerebral tissue. Surprisingly, two new fluorinated compounds were found in the liver and kidney cortex. These compounds are identified as 3-deoxy-3-fluoro-D-gluconic acid, which is produced via glucose dehydrogenase activity on 3-FG, and 3-deoxy-3-fluoro-D-gluconate-6-phosphate. Based on enzyme studies, it is argued that the 3-deoxy-3-fluoro-D-gluconate-6-phosphate is derived directly from 3-deoxy-3-fluoro-D-gluconic acid and not as a product of pentose phosphate activity. Direct oxidation and reduction are the major metabolic routes of 3-FG, not metabolism through glycolysis or the pentose phosphate shunt. Thus, 3-FG metabolism coupled with 19F NMR appears to be very useful for monitoring aldose reductase and glucose dehydrogenase activity in vivo.  相似文献   

8.
H P Meloche  C T Monti 《Biochemistry》1975,14(16):3682-3687
The enzyme 2-keto-3-deoxy-6-phosphogalactonate aldolase of Pseudomonas saccharophila is inactivated by the substrate analog beta-bromopyruvate, which satisfies several criteria of being an active site directed reagent. The inactivation exhibits saturation kinetics, and both bromopyruvate and pyruvate (substrate) compete for free enzyme. Upon prolonged incubation, inactivation is virtually complete. The Kinact for bromopyruvate is 12 mM and the minimum inactivation half-time is 16 min with a k of 0.0433 min minus 1. Bromopyruvate is also a substrate for the enzyme in that 3(R,S)-[3-3H2]bromopyruvate is asymmetrically detritiated by the enzyme yielding 3(S)-[3-3H,H]bromopyruvate concomitant with inactivation. At various concentrations of bromopyruvate which affect the inactivation rate, the ratio of nanomoles of bromopyruvate turned over/unit of enzyme inactivated remains constant averaging 12:1, consistent with both inactivation and catalysis occurring at a single protein site, the catalytic site. The above value does not take into account a possible hydrogen isotope effect and is not thus an absolute value. The stereochemistry of bromopyruvate turnover catalyzed by this enzyme is the same as that for 2-keto-3-deoxy-6-phosphogluconate aldolase of P. putida. This fact provides the first evidence that the pyruvate-specific portions of the two active sites may have evolved from a common precursor.  相似文献   

9.
10.
Trehalose is an unusual non-reducing disaccharide that plays a variety of biological roles, from food storage to cellular protection from environmental stresses such as desiccation, pressure, heat-shock, extreme cold, and oxygen radicals. It is also an integral component of the cell-wall glycolipids of mycobacteria. The primary enzymatic route to trehalose first involves the transfer of glucose from a UDP-glucose donor to glucose-6-phosphate to form alpha,alpha-1,1 trehalose-6-phosphate. This reaction, in which the configurations of two glycosidic bonds are set simultaneously, is catalyzed by the glycosyltransferase trehalose-6-phosphate synthase (OtsA), which acts with retention of the anomeric configuration of the UDP-sugar donor. The classification of activated sugar-dependent glycosyltransferases into approximately 70 distinct families based upon amino acid sequence similarities places OtsA in glycosyltransferase family 20 (see afmb.cnrs-mrs.fr/CAZY/). The recent 2.4 A structure of Escherichia coli OtsA revealed a two-domain enzyme with catalysis occurring at the interface of the twin beta/alpha/beta domains. Here we present the 2.0 A structures of the E. coli OtsA in complex with either UDP-Glc or the non-transferable analogue UDP-2-deoxy-2-fluoroglucose. Both complexes unveil the donor subsite interactions, confirming a strong similarity to glycogen phosphorylases, and reveal substantial conformational differences to the previously reported complex with UDP and glucose 6-phosphate. Both the relative orientation of the two domains and substantial (up to 10 A) movements of an N-terminal loop (residues 9-22) characterize the more open "relaxed" conformation of the binary UDP-sugar complexes reported here.  相似文献   

11.
2,4-Dinitrophenyl 2-acetamido-2-deoxy-beta-d-glucopyranosyl-(1-->4)-2-deoxy-2-fluoro-beta-d-glucopyranoside (GN2FG-DNP) and 2-acetamido-2-deoxy-beta-d-glucopyranosyl-(1-->4)-2-deoxy-2-fluoro-beta-d-glucopyranosyl fluoride (GN2FG-F) were prepared using a divergent synthetic approach involving 10 steps. The key steps involved the preparation of 1-O-acetyl-3,6-di-O-benzyl-2-deoxy-2-fluoro-alpha/beta-d-glucopyranose using Selectfluor(trade mark) in the presence of acetic acid and the subsequent glycosylation of this acceptor to generate the core 2-fluorodisaccharide. After further elaboration, the target molecules were obtained and tested as probes of the mechanism of hen egg white lysozyme (HEWL). Compound GN2FG-DNP is not a substrate for the enzyme while compound GN2FG-F is cleaved slowly with an apparent K(m) greater than 5mM and a second-order rate constant of k(cat)/K(m)=9.6s(-1)M(-1). Comparison of this value to that estimated for the hydrolysis of beta-chitobiosyl fluoride by HEWL (1200s(-1)M(-1)) [Ballardie, F. W.; Capon, B.; Cuthbert, M. W.; Dearie, W. M. Bioorg. Chem.1977, 6, 483-509] revealed a 126-fold rate decrease upon substitution of a fluorine group for the 2-acetamido group of beta-chitobiosyl fluoride. This decrease resulted in the steady-state accumulation of an intermediate as visualized by mass spectrometry and the ultimate crystallographic determination of its structure [Vocadlo, D. J.; Davies, G. J.; Laine, R.; Withers, S. G. Nature2001, 412, 835-838].  相似文献   

12.
Benzyl 2-[(benzyloxycarbonyl)methylamino]-2-deoxy-α-D-mannopyranoside (10) and its furanose isomer (9), the derived N-methyloxazolidinones 11 and 6, benzyl 2-[(benzyloxycarbonyl)methylamino]-2-deoxy-β-D-glucofuranoside (15) and methyl 2-deoxy-2-methylacetamido-β-D-galactofuranoside (20), were prepared from appropriate diethyl dithioacetals. They were considered the most suitable starting materials for synthesis of O-methyl-2-deoxy-2-methylamino-hexoses because of their ease of preparation and the presence of suitable blocking groups. Oxazolidinones were prepared from N-benzyloxycarbonyl derivatives of 2-amino-2-deoxy-D-mannose by using methanolic sodium methoxide. Their use in preparation of 2-deoxy-2-methyl-amino derivatives is discussed. The Kuhn reagent was used in these syntheses for N-methylating amides. However, certain amides containing comparatively bulky substituents in the vicinity of the NH group are resistant to methylation.  相似文献   

13.
The behavior of 2-deoxy-2-fluoro-D-glucose (FDG) in mouse has been studied by F-19 NMR method for long period. The F-19 NMR signals of FDG or its metabolites were observed in tissues without serious broadening. FDG was found to be accumulated in organs in the form of FDG or FDG-6-phosphate and 2-deoxy-2-fluoro-D-mannose (FDM) or FDM-6-phosphate, and the latter dominated the former in the heart sampled at 24 hr or later. The fluorine compounds were excreted in urine in both forms. The clearance was rapid from brain, liver, and blood, but was slow from heart.  相似文献   

14.
The synthesis and NMR characterizations of 1,2,3,6-tetra-O-benzoyl-4-deoxy-4-fluoro-β-d-galactopyranoside, the 4-deoxy-4-fluoro epimer of an intermediate in the synthesis of a drug substance, needed for use as a potential impurity standard and to confirm the stereoselectivity of a key fluorination step, are described.  相似文献   

15.
Coenzyme B(12)-dependent 2-methyleneglutarate mutase from the strict anaerobe Eubacterium barkeri catalyzes the equilibration of 2-methyleneglutarate with (R)-3-methylitaconate. Proteins with mutations in the highly conserved coenzyme binding-motif DXH(X)(2)G(X)(41)GG (D483N and H485Q) exhibited decreased substrate turnover by 2000-fold and >4000-fold, respectively. These findings are consistent with the notion of H485 hydrogen-bonded to D483 being the lower axial ligand of adenosylcobalamin in 2-methyleneglutarate mutase. (E)- and (Z)-2-methylpent-2-enedioate and all four stereoisomers of 1-methylcyclopropane-1,2-dicarboxylate were synthesized and tested, along with acrylate, with respect to their inhibitory potential. Acrylate and the 2-methylpent-2-enedioates were noninhibitory. Among the 1-methylcyclopropane-1,2-dicarboxylates only the (1R,2R)-isomer displayed weak inhibition (noncompetitive, K(i) = 13 mM). Short incubation (5 min) of 2-methyleneglutarate mutase with 2-methyleneglutarate under anaerobic conditions generated an electron paramagnetic resonance (EPR) signal (g(xy) approximately 2.1; g(z) approximately 2.0), which by analogy with the findings on glutamate mutase from Clostridium cochlearium [Biochemistry, 1998, 37, 4105-4113] was assigned to cob(II)alamin coupled to a carbon-centered radical. At longer incubation times (>1 h), inactivation of the mutase occurred concomitant with the formation of oxygen-insensitive cob(II)alamin (g(xy) approximately 2.25; g(z) approximately 2.0). In order to identify the carbon-centered radical, various (13)C- and one (2)H-labeled substrate/product molecules were synthesized. Broadening (0.5 mT) of the EPR signal around g = 2.1 was observed only when C2 and/or C4 of 2-methyleneglutarate was labeled. No effect on the EPR signals was seen when [5'-(13)C]adenosylcobalamin was used as coenzyme. The inhibition and EPR data are discussed in the context of the addition-elimination and fragmentation-recombination mechanisms proposed for 2-methyleneglutarate mutase.  相似文献   

16.
O-α-d-Mannopyranosyl-(1→6)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1→4)-2-acetamido-N-(l-aspart-4-oyl)-2-deoxy-β-d-glucopyranosylamine (12), used in the synthesis of glycopeptides and as a reference compound in the structure elucidation of glycoproteins, was synthesized via condensation of 2,3,4,6-tetra-O-acetyl-α-d-mannopyranosyl bromide with 2-acetamido-4-O-(2-acetamido-3-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-2-deoxy-β-d-glucopyranosyl azide (5) to give the intermediate, trisaccharide azide 7. [Compound 5 was obtained from the known 2-acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-2-deoxy-β-d-glucopyranosyl azide by de-O-acetylation, condensation with benzaldehyde, acetylation, and removal of the benzylidene group.] The trisaccharide azide 6 was then acetylated, and the acetate reduced in the presence of Adams' catalyst. The resulting amine was condensed with 1-benzyl N-(benzyloxycarbonyl)-l-aspartate, and the O-acetyl, N-(benzyloxycarbonyl), and benzyl protective groups were removed, to give the title compound.  相似文献   

17.
The effect of substitution of the HO-6 of D-galactose with fluorine on the ability of alpha-(1-->3)-galactosyltransferase (EC 2.4.1.151) and beta-(1-->4)-galactosyltransferase (EC 2.4.1.22) to catalyze its transfer from UDP to an appropriate acceptor was determined. HPLC analyses indicated that each transferase properly catalyzed formation of the expected product [beta-D-Gal-(1-->4)-D-GlcNAc] for the beta-(1-->4)-galactosyltransferase and alpha-D-Gal-(1-->3)-beta-D-Gal-(1-->4)-D-GlcNAc for the alpha-(1-->3)-D-galactosyltransferase] when UDP-alpha-D-Gal was the substrate. When UDP-6-deoxy-6-fluoro-alpha-D-galactose (6) was used in conjunction with each transferase, no product indicative of transfer of 6-deoxy-6-fluoro-D-galactose to its respective acceptor sugar was identified. 6-Deoxy-6-fluoro-D-galactose (3) was obtained by hydrolysis of methyl 6-deoxy-6-fluoro-alpha-D-galactopyranoside, synthesized by the selective fluorination of methyl alpha-D-galactopyranoside with diethylaminosulfur trifluoride (DAST), with aqueous trifluoroacetic acid. Acetylation of 3 gave crystalline 1,2,3,4-tetra-O-acetyl-6-deoxy-6-fluoro-beta-D-galactopyranose, which was converted to the corresponding 1-alpha-phosphate and used for the synthesis of 6.  相似文献   

18.
Cellular ascorbic acid accumulation occurs in vitro by two distinct mechanisms: transport of ascorbate itself or transport and subsequent intracellular reduction of its oxidized product, dehydroascorbic acid. It is unclear which mechanism predominates in vivo. An easily detectable compound resembling ascorbate but not dehydroascorbic acid could be a powerful tool to distinguish the two transport activities. To identify compounds, 21 ascorbate analogs were tested for inhibition of ascorbate or dehydroascorbic acid transport in human fibroblasts. The most effective analogs, competitive inhibitors of ascorbate transport with K(i) values of 3 microM, were 6-deoxy-6-bromo-, 6-deoxy-6-chloro-, and 6-deoxy-6-iodo-L-ascorbate. No analog inhibited dehydroascorbic acid transport. Using substitution chemistry, [(125)I]6-deoxy-6-iodo-L-ascorbate (1.4 x 10(4) mCi/mmol) was synthesized. HPLC detection methods were developed for radiolabeled and nonradiolabeled compounds, and transport kinetics of both compounds were characterized. Transport was sodium-dependent, inhibited by excess ascorbate, and similar to that of ascorbate. Transport of oxidized ascorbate and oxidized 6-deoxy-6-iodo-L-ascorbate was investigated using Xenopus laevis oocytes expressing glucose transporter isoform GLUT1 or GLUT3. Oxidation of ascorbate or its analog in media increased uptake of ascorbate in oocytes by 6-13-fold compared with control but not that of 6-deoxy-6-iodo-L-ascorbate. Therefore, 6-deoxy-6-iodo-L-ascorbate, although an effective inhibitor of ascorbate transport, either in its reduced or oxidized form was not a substrate for dehydroascorbic acid transport. Thus, radiolabeled and nonradiolabeled 6-deoxy-6-iodo-L-ascorbate provide a new means for discriminating dehydroascorbic acid and ascorbate transport in ascorbate recycling.  相似文献   

19.
Alkaline degradation of the ascorbigen 2-C-[(indol-3-yl)methyl]-alpha-L-xylo-hex-3-ulofuranosono-1,4-lactone (1a) led to a mixture of 1-deoxy-1-(indol-3-yl)-L-sorbose (2a) and 1-deoxy-1-(indol-3-yl)-L-tagatose (3a). The mixture of diastereomeric ketoses underwent acetylation and pyranose ring opening under the action of acetic anhydride in pyridine in the presence of 4-dimethylaminopyridine (DMAP) with the formation of a mixture of (E)-2,3,4,5,6-penta-O-acetyl-1-deoxy-1-(indol-3-yl)-L-xylo-hex-1-enitol (4a) and (E)-2,3,4,5,6-penta-O-acetyl-1-deoxy-1-(indol-3-yl)-L-lyxo-hex-1-enitol (5a), which were separated chromatographically. Deacetylation of 4a or 5a afforded cyclised tetrols, tosylation of which in admixture resulted in 1-deoxy-1-(indol-3-yl)-3,5-di-O-tosyl-alpha-L-sorbopyranose (12a) and 1-deoxy-1-(indol-3-yl)-4,5-di-O-tosyl-alpha-L-tagatopyranose (13a). Under alkaline conditions 13a readily formed 2-hydroxy-4-hydroxymethyl-3-(indol-3-yl)cyclopenten-2-one (15a) in 90% yield. Similar transformations were performed for N-methyl- and N-methoxyindole derivatives.  相似文献   

20.
2-Acetamido-4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2-deoxy-α-d-glucopyranosyl phosphate, pure according to thin-layer and gas—liquid chromatography, optical rotation, and treatment with alkaline phosphatase and 2-acetamido-2-deoxy-β-d-glucosidase, was prepared by treatment of 2-methyl-[4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-1,2-dideoxy-α-d-glucopyrano]-[2,1-d]-2-oxazoline with dibenzyl phosphate, followed by the removal of the benzyl groups by catalytic hydrogenolysis, and O-deacetylation. In contrast, a sample prepared by the phosphoric acid procedure was shown to consist mainly of the β anomer. 2-Acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-2-deoxy-α-d-glucopyranosyl phosphate was treated wit P1-diphenyl P2-dolichyl pyrophosphate to give a fully acetylated pyrophosphoric diester, which was O-deacetylated to give P1-2-acetamido-4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2-deoxy-α-d-glucopyranosyl P2-dolichyl pyrophosphate. This compound could be separated from the β anomer by t.l.c., and its behavior under dilute acid and alkaline conditions was investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号