首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Attachment to, and migration of leukocytes into the vessel wall is an early event in atherogenesis. Expression of cell adhesion molecules by the arterial endothelium may play a major role in atherosclerosis. It has been suggested that antioxidants inhibit the expression of adhesion molecules and may thus attenuate the processes leading to atherosclerosis. In the present study, the effects of a potent water-soluble antioxidant, salvianolic acid B (Sal B), and an aqueous ethanolic extract (SME), both derived from a Chinese herb, Salvia miltiorrhiza, on the expression of endothelial-leukocyte adhesion molecules by tumor necrosis factor-alpha (TNF-alpha)-treated human aortic endothelial cells (HAECs) were investigated. When pretreated with SME (50 and 100 microg/ml), the TNF-alpha-induced expression of vascular adhesion molecule-1 (VCAM-1) was notably attenuated (77.2 +/- 3.2% and 80.0 +/- 2.2%, respectively); and with Sal B (1, 2.5, 5, 10, and 20 microg/ml), 84.5 +/- 1.9%, 78.8 +/- 1.2%, 58.9 +/- 0.4%, 58.7 +/- 0.9%, and 57.4 +/- 0.3%, respectively. Dose-dependent lowering of expression of intercellular cell adhesion molecule-1 (ICAM-1) was also seen with SME or Sal B. In contrast, the expression of endothelial cell selectin (E-selectin) was not affected. SME (50 microg/ml) or Sal B (5 microg/ml) significantly reduced the binding of the human monocytic cell line, U937, to TNF-alpha-stimulated HAECs (45.7 +/- 2.5% and 55.8 +/- 1.2%, respectively). SME or Sal B significantly inhibited TNF-alpha-induced activation of nuclear factor kappa B (NF-kappaB) in HAECs (0.36- and 0.48-fold, respectively). These results demonstrate that SME and Sal B have anti-inflammatory properties and may explain their anti-atherosclerotic properties. This new mechanism of action of Sal B and SME, in addition to their previously reported inhibition of LDL, may help explain their efficacy in the treatment of atherosclerosis.  相似文献   

2.

Background

Endothelial cells have important functions in e.g. regulating blood pressure, coagulation and host defense reactions. Serglycin is highly expressed by endothelial cells, but there is limited data on the roles of this proteoglycan in immune reactions.

Methods

Cultured primary human endothelial cells were exposed to proinflammatory agents lipopolysaccharide (LPS) and interleukin 1β (IL-1β). The response in serglycin synthesis, secretion and intracellular localization and effect on the proteoglycan binding chemokines CXCL-1 and CXCL-8 were determined by qRT-PCR, Western blotting, immunocytochemistry, ELISA and serglycin knockdown experiments.

Results

Both LPS and IL-1β increased the synthesis and secretion of serglycin, while only IL-1β increased serglycin mRNA expression. Stimulation increased the number of serglycin containing vesicles, with a greater portion of large vesicles after LPS treatment. Also, increased intracellular and secreted levels of CXCL-1 and CXCL-8 were observed. The increase in CXCL-8 secretion was unchanged in serglycin knockdown cells. However, the increase in CXCL-1 secretion from IL-1β stimulation was reduced 27% in serglycin knockdown cells; while the LPS-induced secretion was not affected. In serglycin expressing cells CXCL-1 positive vesicles were evenly distributed throughout the cytoplasm, while confided to the Golgi region in serglycin knockdown cells. This was the case only for IL-1β stimulated cells. LPS-induced CXCL-1 distribution was unaffected by serglycin expression.

Conclusions

These results suggest that different signaling pathways are involved in regulating secretion of serglycin and partner molecules in activated endothelial cells.

General significance

This knowledge increases our understanding of the roles of serglycin in immune reactions. This article is part of a Special Issue entitled: Matrix-mediated cell behaviour and properties.  相似文献   

3.
《Free radical research》2013,47(10):1124-1135
Abstract

Reactive oxygen species (ROS) are important mediators for VEGF receptor 2 (VEGFR2) signalling involved in angiogenesis. The initial product of Cys oxidation, cysteine sulfenic acid (Cys-OH), is a key intermediate in redox signal transduction; however, its role in VEGF signalling is unknown. We have previously demonstrated IQGAP1 as a VEGFR2 binding scaffold protein involved in ROS-dependent EC migration and post-ischemic angiogenesis. Using a biotin-labelled Cys-OH trapping reagent, we show that VEGF increases protein-Cys-OH formation at the lamellipodial leading edge where it co-localizes with NADPH oxidase and IQGAP1 in migrating ECs, which is prevented by IQGAP1 siRNA or trapping of Cys-OH with dimedone. VEGF increases IQGAP1-Cys-OH formation, which is prevented by N-acetyl cysteine or dimedone, which inhibits VEGF-induced EC migration and capillary network formation. In vivo, hindlimb ischemia in mice increases Cys-OH formation in small vessels and IQGAP1 in ischemic tissues. In summary, VEGF stimulates localized formation of Cys-OH-IQGAP1 at the leading edge, thereby promoting directional EC migration, which may contribute to post-natal angiogenesis in vivo. Thus, targeting Cys-oxidized proteins at specific compartments may be the potential therapeutic strategy for various angiogenesis-dependent diseases.  相似文献   

4.
Matrix metalloproteinases play a major role in the process of angiogenesis, an important feature of diabetes complications, cancer or rheumatoid arthritis. High glucose concentrations were reported to augment metalloproteinase-2 secretion in some cell types. In the present study we investigated the influence of acetylsalicylic acid on metalloproteinase- 2 secretion and expression in endothelial cells cultured for one week in high glucose conditions (25 mM and 33 mM). Metalloproteinase-2 activity was evidenced by gel zymography, the protein was identified by Western blotting, and the gene expression was quantitated by RT-PCR. The results indicated a marked inhibitory effect of acetylsalicylic acid at gene expression level (approximately 43%) and also at secretion level in samples of conditioned media (approximately 30%) and cellular homogenates (approximately 70%). This may suggest that acetylsalicylic acid could have a beneficial effect in preventing the angiogenic process that appears in diabetes complications.  相似文献   

5.
Sphingosine 1-phosphate (Sph-1-P), a bioactive lysophospholipid capable of inducing a wide spectrum of biological responses, acts as an intercellular mediator, through interaction with the endothelial differentiation gene (EDG)/S1P family of G protein-coupled receptors. In this study, the effects of JTE-013, a specific antagonist of the migration-inhibitory receptor EDG-5, on Sph-1-P-elicited responses were examined in human umbilical vein endothelial cells (HUVECs) and vascular smooth muscle cells (SMCs), which expressed EDG-5 protein weakly and abundantly, respectively. This pyrazolopyridine compound reversed the inhibitory effect of Sph-1-P on SMC migration and further enhanced Sph-1-P-stimulated HUVEC migration. In contrast, its effect on Sph-1-P-induced intracellular Ca(2+) mobilization was marginal. Our results indicate that specific regulation of Sph-1-P-modulated migration responses in vascular cells can be achieved by EDG-5 antagonists and that manipulation of Sph-1-P biological activities by each EDG antagonist may lead to a therapeutical application to control vascular diseases.  相似文献   

6.
Unstimulated endothelial cell (EC)cultures express low levels of intercellular adhesion molecule-1 (ICAM-1) and their expression can be enhanced by inflammatory cytokines such as tumor necrosis factor (TNF). Three monoclonal antibodies (MoAbs) highly reactive with TNF-stimulated human ECs were established and defined to recognize a 95 kDa cell surface protein specifically expressed on cytokine-activated ECs, which was immunochemically identified as ICAM-1. The quantitative immunoassay of soluble and insoluble ICAM-1 could be performed with two different MoAbs. Secretion of fibronectin or the von Willebrand factor, was not significantly enhanced with TNF stimulation. Cellular expression of ICAM-1 was drastically induced by TNF or interleukin-1 stimulation, and the moderate expression with delayed-action was observed only by lipopolysaccharide stimulation. A maximal amount of soluble ICAM-1 was released from ECs stimulated only by TNF, apparently in a dose dependent manner, but no significant release of ICAM-1 was induced by thrombin interleukin-2, or lipopolysacchardes. Released levels of soluble ICAM-1 from interleukin-1-stimulated ECs were apparently diminished as compared with those from TNF-stimulated cells. These results suggest that release of soluble ICAM-1 from EC surfaces can be most significantly enhanced by TNF-specific signaling, and prospectively, should be a sensitive indicator of intravascular inflammation in acute endothelium injury.  相似文献   

7.
Tie-1 is an endothelial specific receptor tyrosine kinase that is upregulated in diseases such as atherosclerosis and rheumatoid arthritis. We recently demonstrated that Tie-1 induced a proinflammatory response when overexpressed in endothelial cells. Here, we used a complementary approach and suppressed endogenous Tie-1 expression in endothelial cells to examine its function by microarray analysis. Tie-1 appeared to govern expression of many genes involved in inflammation. Expression knockdown of Tie-1 significantly reduced endothelial conditioned medium ability to stimulate MCP-1 production in U937 cells. Collectively, our results support the notion that Tie-1 has an inflammatory function in endothelial cells.  相似文献   

8.
A human endothelial cell line is a convenient tool for exploring cell physiology and testing drugs and toxics. Several attempts have been made using SV40 to immortalize endothelial cells. We used human umbilical vein endothelial cells (HUVEC) transformed with a construct made of promoter of the vimentin gene and SV40 Tag. The proliferation of immortalized vascular endothelial cells (IVEC), as measured by [methyl-3H]thymidine incorporation, was compared to that of HUVEC in the presence of endothelial cell growth factor and cytokines: tumor necrosis factor- (TNF-), interleukin-1 (IL-1) and interferon- (IFN-). Inhibition of [methyl-3H]thymidine incorporation by IL-1 was lower than that observed with HUVEC, while TNF- reduced the proliferation of IVEC and HUVEC to similar extents. Induction of intercellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1) and E-selectin by TNF-, measured by a radiometric technique, was similar in IVEC and HUVEC, while the induction of E-selectin by IL-1 on IVEC was limited and significantly different from that observed on HUVEC (p<0.001). The number of 125I-IL-1 binding sites on IVEC is 3-fold less than on HUVEC and the IL-1 receptor number was reduced. Dexamethasone treatment of IVEC restored their reactivity to IL-1 and corrected the IL-1 binding and the receptor number. These results showed that the introduction of SV40 gene not only immortalized the cell but also altered IL-1 receptor expression. This alteration may be improved by addition of corticosteroids to the cell culture, which extends the possibility of using IVEC as a model of endothelial cells.  相似文献   

9.
Cysteine-rich motor neuron 1 (CRIM1) is expressed in vascular endothelial cells and plays a crucial role in angiogenesis. In this study, we investigated the expression of CRIM1 mRNA in human umbilical vein endothelial cells (HUVECs). CRIM1 mRNA levels were not altered in vascular endothelial growth factor (VEGF)-stimulated monolayer HUVECs or in cells in collagen gels without VEGF. In contrast, the expression of CRIM1 mRNA was elevated in VEGF-stimulated cells in collagen gels. The increase in CRIM1 mRNA expression was observed even at 2 h when HUVECs did not form tubular structures in collagen gels. Extracellular signal-regulated kinase (Erk) 1/2, Akt and focal adhesion kinase (FAK) were activated by VEGF in HUVECs. The VEGF-induced expression of CRIM1 mRNA was significantly abrogated by PD98059 or PF562271, but was not affected by LY294002. These results demonstrate that CRIM1 is an early response gene in the presence of both angiogenic stimulation (VEGF) and environmental (extracellular matrix) factors, and Erk and FAK might be involved in the upregulation of CRIM1 mRNA expression in vascular endothelial cells.  相似文献   

10.
Although TFAs (trans fatty acids) do have effects on many endothelial functions, systemic inflammation and immune disorders, only limited experimental evidence is available that TFAs participate in the pathogenesis of endothelial cell apoptosis. HUVEC (human umbilical vein endothelial cells) were grown in medium with elaidic acid (9t-C18:1) at 50, 100, 200 and 400 μmol/l for 24 h. Apoptosis was measured by flow cytometry, and caspase 3, 8 and 9 activities by colorimetric assay and their mRNA expression by qRT-PCR (quantitative real-time PCR). Results showed that 9t-C18:1 induced apoptosis of HUVEC in a dose-dependent manner. The activities and mRNA expression of caspases 8, 9 and 3 were significantly increased compared with that of the control. Z-IETD-FMK and Z-LEHD-FMK inhibited the activation of caspase 3 and apoptosis induced by 9t-C18:1. Also Z-IETD-FMK inhibited the activation of caspase 9. mRNA expressions of Bid and Smac (second mitochondria-derived activator of caspase)/DIABLO [direct IAP (inhibitor of apoptosis)-binding protein with low pI] were also significantly elevated. We conclude that 9t-C18:1 induces apoptosis of HUVEC through activating caspases 8, 9 and 3. The death receptor pathway and the mitochondrial pathway both participated in the apoptosis course induced by 9t-C18:1.  相似文献   

11.
Proteome analysis of human umbilical endothelial cells was performed to identify proteins that are modified during vascular endothelial cell growth factor (VEGF)-induced transition from the quiescent into the proliferating-migrative phenotype. Subtractive analysis of two-dimensional gel patterns of human endothelial cells, before and after stimulation with VEGF(165), revealed differences in 85 protein spots. All proteins were identified by peptide sequencing and peptide mass fingerprinting using an electrospray spectrometer. The proteins identified were members of specific families including Ca(2+)-binding proteins, fatty-acid binding proteins, structural proteins, and chaperones. Remarkably, there was a massive activation of cellular machinery for both protein synthesis and protein degradation. Thus, among up-regulated proteins there were members of all groups of heat shock proteins (HSPs; HSP 27, HSP 60, HSP 70p5, HSP 70p8, HSP 90, and HSP 96) and some other proteins showing either chaperone activity or which participate in assembly of multimolecular structures (TCP-1, desmoplakins, junction plakoglobin, GRP 94, thioredoxin related protein, and peptidylprolyl isomerase). The increased expression of HSPs was confirmed at the mRNA level at different stages of treatment with VEGF. Similarly, components of the proteolytic machinery for the degradation of misfolded proteins (ER-60, cathepsin D, proteasome subunits, and protease inhibitor 6) were also up-regulated. On the other hand, changes in the expression of structural proteins (T-plastin, vimentin, alpha tubulin, actin, and myosin) could account, at least in part, for the different morphologies displayed by migrating endothelial cells. In summary, our data show that VEGF levels similar to those during physiological stresses induce a number of genes and multiple endogenous pathways seem to be engaged in restoring cellular homeostasis. To ensure cell survival, the molecular chaperones (the heat shock family of stress proteins) are highly up-regulated providing protein-folding machinery to repair or degrade misfolded proteins.  相似文献   

12.
CCN2 consists of 4 distinct modules that are conserved among various CCN family protein members. From the N-terminus, insulin-like growth factor binding protein (IGFBP), von Willebrand factor type C repeat (VWC), thrombospondin type 1 repeat (TSP1) and C-terminal cysteine-knot (CT) modules are all aligned tandem therein. The multiple functionality of CCN2 is thought to be enabled by the differential use of these modules when interacting with other molecules. In this study, we independently prepared all 4 purified module proteins of human CCN2, utilizing a secretory production system with Brevibacillus choshinensis and thus evaluated the cell biological effects of such single modules. In human umbilical vascular endothelial cells (HUVECs), VWC, TSP and CT modules, as well as a full-length CCN2, were capable of efficiently activating the ERK signal transduction cascade, whereas IGFBP was not. In contrast, the IGFBP module was found to prominently activate JNK in human chondrocytic HCS-2/8 cells, while the others showed similar effects at lower levels. In addition, ERK1/2 was modestly, but significantly activated by IGFBP and VWC in those cells. No single module, but a mixture of the 4 modules provoked a significant activation of p38 MAPK in HCS-2/8 cells, which was activated by the full-length CCN2. Therefore, the signals emitted by CCN2 can be highly differential, depending upon the cell types, which are thus enabled by the tetramodular structure. Furthermore, the cell biological effects of each module on these cells were also evaluated to clarify the relationship among the modules, the signaling pathways and biological outcomes. Our present results not only demonstrate that single CCN2 modules were potent activators of the intracellular signaling cascade to yield a biological response per se, while also providing new insight into the module-wise structural and functional relationship of a prototypic CCN family member, CCN2.  相似文献   

13.
14.
Intracellular calcium signals activated by growth factors in endothelial cells during angiogenesis regulate cytosolic and nuclear events involved in survival, proliferation and motility. Among the intracellular messengers released upon proangiogenic stimulation, arachidonic acid (AA) and its metabolites play a key role, and their effects are strictly related to calcium homeostasis. In human breast tumor-derived endothelial cells (B-TECs) AA stimulates proliferation and tubulogenesis in a calcium-dependent way. Here, to characterize the proteins whose expression is regulated by AA-induced calcium entry, we used a proteomic approach (two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization mass spectrometry, 2-DE and MALDI-MS) and we compared the proteomes of B-TECs stimulated with AA in presence or in absence of calcium entry (with addition to the culture medium of the calcium chelator EGTA, which completely prevents calcium fluxes throughout the plasma membrane). We found that six proteins increased their levels of expression, all higher when AA-induced calcium entry was abolished. These proteins have been identified by mass spectrometry and database search, and their potential roles in AA-stimulated pathway and in angiogenesis are discussed.  相似文献   

15.
为避免一种来自五特征转基因小鼠的全人VEGF单克隆IgM抗体分子量大的不足,本研究探讨了该抗体单一重链可变区的功能特性。首先,PCR获得该抗体的重链可变区,将该序列克隆至pET28a表达载体内,在大肠杆菌中进行了诱导表达。通过变性纯化和复性等方法获得了具有生物学活性的16kDa重组抗体片段——rhVVH。体外结合实验表明,rhVVH保留有完整免疫球蛋白的人VEGF结合活性。人脐静脉内皮细胞(HUVEC)增殖抑制实验表明:rhVVH可以剂量依赖性的抑制HUVEC的增殖。上述结果揭示了该抗体单一重链可变区保留有完整抗体的部分功能,为进一步开展全人源VEGF单克隆IgM抗体小型化研究奠定了基础。  相似文献   

16.
Zheng YN  Zhu RJ  Wang DW  Wei L  Wei DB 《生理学报》2011,63(2):155-163
动物组织微血管密度(microvessel density,MVD)的大小与其对低氧的适应能力有关.为进一步探讨高原鼢鼠对严重低氧、高CO2洞道环境的适应机制,本文就高原鼢鼠脑组织中血管内皮生长因子(vascular endothelial growth factor,VEGF)的mRNA表达水平及MVD与其它鼠类进行...  相似文献   

17.
Angiogenesis is critical to a wide range of physiological and pathological processes. Scutellarin, a major flavonoid of a Chinese herbal medicine Erigeron breviscapus (Vant.) Hand. Mazz. has been shown to offer beneficial effects on cardiovascular and cerebrovascular functions. However, scutellarin’s effects on angiogenesis and underlying mechanisms are not fully elucidated. Here, we studied angiogenic effects of scutellarin on human umbilical vein endothelial cells (HUVECs) in vitro. Scutellarin was found by MTT assay to induce proliferation of HUVECs. In scutellarin-treated HUVECs, a dramatic increase in migration was measured by wound healing assay; Transwell chamber assay found significantly more invading cells in scutellarin-treated groups. Scutellarin also promoted capillary-like tube formation in HUVECs on Matrigel, and significantly upregulated platelet endothelial cell adhesion molecule-1 at both mRNA and protein levels. Scutellarin’s angiogenic mechanism was investigated in vitro by measuring expression of angiogenic factors associated with cell migration and invasion. Scutellarin strongly induced MMP-2 activation and mRNA expression in cultured HUVECs in a concentration-dependent manner. Taken together, these results suggest that scutellarin promotes angiogenesis and may form a basis for angiogenic therapy.  相似文献   

18.
19.
Cardiovascular endothelial barrier dysfunction is associated with a number of cardiovascular diseases. This study aims to investigate the role of platelet endothelial cell adhesion molecule‐1 (PECAM1) in the maintenance of the vascular endothelial barrier integrate. Human umbilical vein endothelial cells (HUVECs) were cultured into monolayers using as an in vitro model to assess the endothelial barrier function. Knockdown of the gene of PECAM1 markedly reduced the transendothelial resistance and increased the permeability of the HUVEC monolayers. From the wild HUVECs, we detected a complex of PECAM1, claudin1, occluding and endothelial cell selective adhesion molecule (ESAM); such a complex was not detected in the PECAM1‐deficient HUVECs. Knockdown of either claudin1, or occludin, or ESAM, did not affect the formation of the tight junction (TJ) complex. Exposure to recombinant interleukin (IL)‐13 inhibited the expression of PECAM1 and down‐regulated the HUVEC monolayer barrier function. PECAM1 plays an important role in the formation of TJ complex. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Airway remodeling and associated angiogenesis are documented features of asthma, of which the molecular mechanisms are not fully understood. Angiotensin (ANG)II and endothelin (ET)-1 are potent vasoconstricting circulatory hormones implicated in asthma. We investigated the effects of ANG II and ET-1 on human airway smooth muscle (ASM) cells proliferation and growth and examined the mRNA expression and release of the angiogenic peptide, vascular endothelial growth factor (VEGF). Serum deprived (48 h) human ASM cells were incubated with ANG II (100 nM) or ET-1 (10nM) for 30 min, 1, 2, 4, 8, 16, and 24 h and the endogenous synthesis of VEGF was examined in relation to control cells receiving serum free culture medium. ET-1 induced time dependent DNA biosynthesis as determined by [3H]-thymidine incorporation assay. Using northern blot hybridization, we detected two mRNA species of 3.9 and 1.7 kb encoding VEGF in the cultured smooth muscle cells. Both ANG II and ET-1 induced the mRNA expression (two-to threefold) and secretion (1.8-to 2.8-fold) of VEGF reaching maximal levels between 4–8 h of incubation. Induced expression and release of VEGF declined after 8 h of ANG II incubation while levels remained elevated in the case of ET-1. The conditioned medium derived from ET-1-treated ASM cells induced [3H]-thymidine incorporation and cell number in porcine pulmonary artery endothelial as well as human umbilical vein endothelial cells. Moreover, the VEGF tyrosine kinase receptor inhibitor blocked the conditioned medium induced mitogenesis in endothelial cells. Our results suggest a potential role for ANG II and ET-1 in ASM cell growth and upregulation of VEGF that may participate in endothelial cell proliferation via paracrine mechanisms and thus causing pathological angiogenesis and vascular remodelling seen during asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号