首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
G J Pazour  C N Ta    A Das 《Journal of bacteriology》1992,174(12):4169-4174
The virulence (vir) genes of Agrobacterium tumefaciens Ti plasmids are positively regulated by virG in conjunction with virA and plant-derived inducing molecules. A procedure that utilizes both genetic selection and a genetic screen was developed to isolate mutations in virG that led to elevated levels of vir gene expression in the absence of virA and plant phenolic inducers. Mutants were isolated at a frequency of 1 in 10(7) to 10(8). Substitution mutations at two positions in the virG coding region were found to result in the desired phenotype. One mutant had an asparagine-to-aspartic acid substitution at residue 54, and the other contained an isoleucine-to-leucine substitution at residue 106. In both cases, the mutant phenotype required the presence of the active-site aspartic acid residue at position 52. Further analysis showed that no other substitution at residue 54 resulted in a constitutive phenotype. In contrast, several substitutions at residue 106 led to a constitutive phenotype. The possible roles of the residues at positions 54 and 106 in VirG function are discussed.  相似文献   

6.
Besides the well-documented integration of DNA flanked by the transfer DNA borders, occasional insertion of fragments from the tumor-inducing plasmid into plant genomes has also been reported during Agrobacterium tumefaciens-mediated transformation. We demonstrate that large (up to approximately 18 kb) gene-bearing fragments of Agrobacterium chromosomal DNA (AchrDNA) can be integrated into Arabidopsis thaliana genomic DNA during transformation. One in every 250 transgenic plants may carry AchrDNA fragments. This has implications for horizontal gene transfer and indicates a need for greater scrutiny of transgenic plants for undesired bacterial DNA.  相似文献   

7.
Early genetic analysis of alternate recombination pathways in Escherichia coli identified the RecE recombination pathway and the required exonuclease VIII encoded by the recE gene. Observations that not ail recombination events promoted by the RecE pathway require recA suggest the existence of an additional homologous pairing protein besides RecA in E. coli. Genetic and biochemical analysis of the recE gene region indicates there are two partially overlapping genes, recE and recT, encoding at least two proteins: exoVIII and the RecT protein. Biochemical analysis has shown that the RecT protein, in combination with exoVIII, promotes homologous pairing and strand exchange in reactions containing linear duplex DNA and homologous, circular, single-stranded DNA as substrates. This reaction occurs in the absence of any high-energy cofactor. These two proteins, RecT and exoVIII, appear to be members of a second class of homologous pairing proteins that are required in genetic recombination and differ from the class of homologous pairing proteins that includes RecA. Members of this second class of proteins appear to include both bacteriophage-encoded proteins and proteins from eukaryotes and their viruses.  相似文献   

8.
9.
The DNA topoisomerase from Agrobacterium tumefaciens has been purified to apparent homogeneity. The enzyme is a single polypeptide of about 100,000 in molecular weight. No apparent separation of the nicking and sealing activities could be obtained in attempts to separate the two activities by a variety of methods, including limited protease digestion, thermal denaturation, and differential inhibition. Monoclonal antibodies obtained from hybridomas likewise did not preferentially inhibit one of the two activities. These results suggest that the two catalytic functions are carried by the same essential residues of the active enzyme site.  相似文献   

10.
11.
12.
采用常规手段提酶切鉴定法,与普通大肠杆菌质粒小量抽提试剂盒提取农杆菌质粒酶切鉴定法(简称试剂盒法)和农杆菌质粒反导大肠杆菌间接酶切鉴定法(简称间接法)进行对比,发现本试验创新的试剂盒法和间接法可轻松做酶切鉴定,可为农杆菌质粒DNA提取经验不足者参考.  相似文献   

13.
H Wabiko  M Kagaya  H Sano 《Plasmid》1991,25(1):3-15
The structure of several T-DNAs of Agrobacterium tumefaciens was determined by molecular cloning and Southern hybridization. The T-DNAs cloned in Escherichia coli vectors from four different nopaline type strains (PyTE1, PO31, PO22, and AKE10) showed various sizes of restriction enzyme fragments. Comparative analysis of the restriction maps revealed that the T-DNAs were composed of three distinct structural domains: (1) the region proximal to the right border (Domain I) containing the portion essential for tumorigenicity, (2) the proximity to the left border (Domain II), and (3) the region between the two domains (Domain III) to both of which no functional assignments have yet been made. The restriction map indicated that the Domains I and II were conserved in the most clones, including the well-characterized T37 T-DNA. The only exception was AKK1 (obtained from AKE10) which differed in Domain I. In the Domain III, insertions of 1.5- or 1.6-kb DNA were found in four clones, whereas an additional 2.5-kb insertion was found in one clone (PO22P1). The individual T-DNAs including Domain III with insertions was demonstrated in petunia and poplar tumors induced by the referred A. tumefaciens strains. However, resulting tumors differed in morphology and growth. These results suggest that the length polymorphism of the nopaline type T-DNA can be accounted by DNA insertions, and that diverse T-DNAs reflect their different roles in tumorigenicity.  相似文献   

14.
Recently, it was shown that Agrobacterium tumefaciens can transfer transferred DNA (T-DNA) to Saccharomyces cerevisiae and that this T-DNA, when used as a replacement vector, is integrated via homologous recombination into the yeast genome. To test whether T-DNA can be a suitable substrate for integration via the gap repair mechanism as well, a model system developed for detection of homologous recombination events in plants was transferred to S. cerevisiae. Analysis of the yeast transformants revealed that an insertion type T-DNA vector can indeed be integrated via gap repair. Interestingly, the transformation frequency and the type of recombination events turned out to depend strongly on the orientation of the insert between the borders in such an insertion type T-DNA vector.  相似文献   

15.
The intact T-region of the B6Ti plasmid of Agrobacterium tumefaciens was stepwise cloned into a site in transposon Tn3. In this way a suitable vehicle (Tn1882) was obtained for translocating the T-region to different replicons, i.e., to other plasmids or the chromosome. The IncP plasmid R772::Tn1882 conferred tumorigenicity on Agrobacterium if the virulence genes were provided in trans in the same cell. This result showed that the T-region present on Tn1882 was transferred efficiently to plant cells. Normal tumor development also occurred if the T-region was placed in the chromosome of A. tumefaciens and an R' plasmid was present carrying virA–E or virA–F. We conclude that the plasmid location of the T-region is not a prerequisite for transfer to the plant cell. The apparently normal delivery of the T-DNA from a bacterial chromosomal location supports a model involving a processing step within Agrobacterium effecting transfer of the T-region as a separate entity.  相似文献   

16.
17.
18.
On the isolation of TI-plasmid from Agrobacterium tumefaciens.   总被引:3,自引:0,他引:3  
An efficient lysis method for Agrobacterium cells was developed, which allows a reproducible isolation of the tumor inducing (TI)-plasmid. The lysis method is based on the sensitivity of this bacterium to incubation with lysozyme, n-dodecylamine,EDTA, followed by Sarkosyl, after growth in the presence of carbenicillin. We also present a procedure for the isolation of the TI-plasmid on a large scale, that might be used for the mass isolation of other large plasmids which like the TI-plasmid, can not be cleared with earlier described procedures. The purity of the plasmid preparations was determined with DNA renaturation kinetics, which method has the advantage that the plasmid need not to be in the supercoiled or open circular form.  相似文献   

19.
20.
We have screened strains of Agrobacterium tumefaciens for spontaneous mutants showing constitutive transfer of the nopaline Ti plasmid pTiC58 during conjugation. The Ti plasmid derivatives obtained could be transferred not only to A. tumefaciens but also to E. coli cells. The Ti plasmid cannot survive as a freely replicating plasmid in E. coli, but it can occasionally integrate into the E. coli chromosome. However, insertion in tandem of plasmids carrying fd replication origins (pfd plasmids) into the T-DNA provides an indicator for all transfer events into E. coli cells, providing fd gene 2 protein is present in these cells. This viral protein causes the excision of one copy of the pfd plasmid and allows its propagation in the host cell. By using this specially designed Ti plasmid, which was also made constitutive in transfer functions, we found plasmid exchange among A. tumefaciens strains and between A. tumefaciens and E. coli cells to be equally efficient. A Ti plasmid with repressed transfer functions was transferred to E. coli with a rate similar to the low frequency at which it was transferred to A. tumefaciens. The expression of transfer functions of plasmid RP4 either in A. tumefaciens or in E. coli did not increase the transfer of the Ti plasmid into E. coli cells, nor did the addition of acetosyringone, an inducer of T-DNA transfer to plant cells. The results show that A. tumefaciens can transfer the Ti plasmid to E. coli with the same efficiency as within its own species. Conjugational transmission of extrachromosomal DNA like the narrow-host-range Ti plasmid may often not only occur among partners allowing propagation of the plasmid, but also on a 'try-all' basis including hosts which do not replicate the transferred DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号