首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective: We investigated the long‐term effects of maternal/postnatal magnesium (Mg) restriction on adiposity, glucose tolerance, and insulin secretion in the offspring and the probable biochemical mechanisms associated with them. Methods and Procedures: Female weanling Wistar/NIN (WNIN) rats received a control diet or 70% Mg‐restricted (MgR) diet for 9 weeks and mated with control males. A third of the restricted dams were shifted to control diet from parturition. Half of the pups born to the remaining restricted dams were weaned on to control diet, while the other half continued on MgR diet. Various parameters were determined in the offspring at 18 months of age. Results: The percentage of body fat increased, lean body mass (LBM) and fat free mass (FFM) decreased in restricted offspring and were irreversible by rehabilitation. While glucose tolerance and insulin resistance (IR) were comparable among groups, glucose‐stimulated insulin secretion and basal glucose uptake by the diaphragm were significantly decreased in restricted offspring and not corrected by rehabilitation. Plasma leptin was lower, and tumor necrosis factor‐α (TNF‐α) was higher in restricted offspring, whereas expression of fatty acid synthase (FAS) and fatty acyl transport protein 1 (FATP 1) was higher in liver and adipose tissue. While changes in FAS and FATP 1 were not correctible by rehabilitation, those in leptin and TNF‐α were corrected by rehabilitation from parturition but not from weaning. Tissue oxidative stress and antioxidant status were comparable among groups. Discussion: Results indicate that maternal and postnatal Mg status is important in the long‐term programming of body adiposity and insulin secretion in rat offspring.  相似文献   

2.
We examined the effects of T-1095, an orally active inhibitor of Na(+)-glucose cotransporter (SGLT), on the development and severity of diabetes in Goto-Kakizaki (GK) rat, a spontaneous, non-obese model of type 2 diabetes. T-1095 was administered as dietary admixture (0.1% w/w) beginning at 7 weeks of age for 32 weeks. Untreated male GK rats were hyperglycemic compared with Wistar rats. Throughout the study, T-1095 treatment significantly decreased both blood glucose and hemoglobin A(1C) levels in the GK rats. The concomitant increase of urinary glucose excretion indicated that the hypoglycemic action of T-1095 is derived from the enhancement of urinary glucose disposal. Although food intake was not changed in the T-1095-treated rats, the body weight gain was retarded. T-1095 treatment partially ameliorated oral glucose tolerance but not the impaired glucose-induced insulin secretion. Homeostasis model assessment (HOMA) indicated the existence of insulin resistance in GK rats and a significant restoration by T-1095-treatment. There was a reduction of the thermal response in tail-flick testing following long-term hyperglycemia (diabetic neuropathy). Treatment of T-1095 significantly prevented the development of diabetic neuropathy in male GK rats. Sustained improvement of hyperglycemia and prevention of diabetic neuropathy by the T-1095-treatment provide further support the use of SGLT inhibitors for the treatment of diabetes.  相似文献   

3.
Protein restriction during the suckling phase can malprogram rat offspring to a lean phenotype associated with metabolic dysfunctions later in life. We tested whether protein-caloric restriction during lactation can exacerbate the effect of a high-fat (HF) diet at adulthood. To test this hypothesis, we fed lactating Wistar dams with a low-protein (LP; 4% protein) diet during the first 2 weeks of lactation or a normal-protein (NP; 23% protein) diet throughout lactation. Rat offspring from NP and LP mothers received a normal-protein diet until 60 days old. At this time, a batch of animals from both groups was fed an HF (35% fat) diet, while another received an NF (7% fat) diet. Maternal protein-caloric restriction provoked lower body weight and fat pad stores, hypoinsulinemia, glucose intolerance, higher insulin sensitivity, reduced insulin secretion and altered autonomic nervous system (ANS) function in adult rat offspring. At 90 days old, NP rats fed an HF diet in adulthood displayed obesity, impaired glucose homeostasis and altered insulin secretion and ANS activity. Interestingly, the LP/HF group also presented fat pad and body weight gain, altered glucose homeostasis, hyperleptinemia and impaired insulin secretion but at a smaller magnitude than the NP-HF group. In addition, LP/HF rats displayed elevated insulin sensitivity. We concluded that protein-caloric restriction during the first 14 days of life programs the rat metabolism against obesity and insulin resistance exacerbation induced by an obesogenic HF diet.  相似文献   

4.
The isolated rat diaphragm was used to study the effects of 17β-estradiol on basal and insulin-mediated glucose uptake. Rats were injected with estradiol for 2 wk in daily doses of 10 μg/100 g of body weight and were compared to untreated control animals. Estrogen treatment resulted in a 16% decrease in basal glucose uptake by diaphragm muscle as compared to controls. In contrast, in the presence of insulin, glucose uptake by muscle increased 103% above basal in estradiol-treated animals as compared to a 38% rise in the control group. The absolute rate of glucose uptake induced by insulin in the estradiol treated animals (5.8 mg/g/hr) was 22% higher than in controls. These findings were not accompanied by changes in weight gain, plasma glucose and plasma immunoreactive insulin concentrations in the treated animals. In vitro incubation of diaphragm muscle with estradiol did not have an effect on basal or insulin-mediated glucose uptake.  相似文献   

5.
Colony-bred sand rats were fed with rat pellet chow in restricted quantities or ad libitum for 8--10 or 28--31 weeks after weaning. The changes of glucose metabolism were characterized by an intraperitoneal glucose tolerance test. The daily food intake and the average weight gain differed only in the first 5--7 weeks of pellet nutrition. In the impaired glucose tolerance tests of all sand rats the high basal plasma IRI levels were not significantly increased by the grossly enhanced blood glucose concentrations. The insulin secretion of either acutely incubated or for 8 days cultivated isolated pancreatic islets, however, was stimulated already by low (1.7 and 5 mM) glucose concentrations in all diet groups. Otherwise the glucagon secretion of isolated islets was not suppressed by high glucose concentrations. No changes of insulin or glucagon contents of islets were found in the different diet groups. The adipocytes of all animals revealed a complete ineffectiveness of insulin on the glucose utilization to CO2 and triglycerides. The basal glucose conversion to CO2 and glycogen in skeletal muscle and the stimulatory potency of insulin was low and not distinctly different in all groups. In liver glycogen and triglyceride contents as well as gluconeogenic enzyme activities were not influenced by feeding of different quantities of pellet diet at the investigated time points. The time course of the metabolic and clinical alterations demonstrates that the peripheral organs become insensitive to insulin in the first weeks after weaning.  相似文献   

6.
The effect of a 4-week diet regulation on non-obese, adul-onset diabetics was studied. The diet, which was prescribed for them, was composed of 60% carbohydrate, 15-20% protein and 20-25% fat. The total caloric intake was restricted to 30, 35 and 40 Cal/kg ideal body weight depending on their physical activity. In the group whose calculated diet showed over 10% reduction in total caloric intake and carbohydrate intake, fasting glucose was decreased and glucose tolerance was improved significantly after the 4-week dietary therapy. Insulin response to oral glucose loading was improved, particularly in the later stage of oral glucose tolerance test. As a result, insulin area, i. e. the total area under the insulin curve was increased to almost two times. The sensitivity to insulin did not show any significant changes after diet regulation. The present data indicate that the therapeutic effect of the diet restriction should be at least in part ascribed to the increased secretion of insulin. In the treatment of diabetics, a restricted diet is essential and beneficial from the point of view that it could improve the pancreatic beta-cell function.  相似文献   

7.
In non-insulin-dependent diabetes mellitus, insulin-stimulated glucose uptake is impaired in muscle, contributing in a major way to development of hyperglycemia. We previously showed that expression of the glucose phosphorylating enzyme glucokinase (GK) in cultured human myocytes improved glucose storage and disposal, suggesting that GK delivery to muscle in situ could potentially enhance glucose clearance. Here we have tested this idea directly by intramuscular delivery of an adenovirus containing the liver GK cDNA (AdCMV-GKL) into one hind limb. We injected an adenovirus containing the beta-galactosidase gene (AdCMV-lacZ) into the hind limb of newborn rats. beta-Galactosidase activity was localized in muscle for as long as 1 month after delivery, with a large percentage of fibers staining positive in the gastrocnemius. Using the same approach with AdCMV-GKL, GK protein content was increased from zero to 50-400% of the GK in normal liver sample, and total glucose phosphorylating activity was increased in GK-expressing muscles relative to the counterpart uninfected muscle. Expression of GK in muscle improved glucose tolerance rather than changing basal glycemic control. Glucose levels were reduced by approximately 35% 10 min after administration of a glucose bolus to fed animals treated with AdCMV-GKL relative to AdCMV-lacZ-treated controls. The enhanced rate of glucose clearance was reflected in increases in muscle 2-deoxy glucose uptake and blood lactate levels. We conclude that restricted expression of GK in muscle leads to an enhanced capacity for muscle glucose disposal and whole body glucose tolerance under conditions of maximal glucose-insulin stimulation, suggesting that under these conditions glucose phosphorylation becomes rate-limiting. Our findings also show that gene delivery to a fraction of the whole body is sufficient to improve glucose disposal, providing a rationale for the development of new therapeutic strategies for treatment of diabetes.-Jiménez-Chillarón, J. C., Newgard, C. B., Gómez-Foix, A. M. Increased glucose disposal induced by adenovirus-mediated transfer of glucokinase to skeletal muscle in vivo.  相似文献   

8.
We have shown recently that oxidative stress by chronic hyperglycemia damages the pancreatic beta-cells of GK rats, a model of non-obese type 2 diabetes, which may worsen diabetic condition and suggested the administration of antioxidants as a supportive therapy. To determine if natural antioxidant alpha-tocopherol (vitamin E) has beneficial effects on the glycemic control of type 2 diabetes, GK rats were fed a diet containing 0, 20 or 500 mg/kg diet alpha-tocopherol. Intraperitoneal glucose tolerance test revealed a significant increment of insulin secretion at 30 min and a significant decrement of blood glucose levels at 30 and 120 min after glucose loading in the GK rats fed with high alpha-tocopherol diet. The levels of glycated hemoglobin A1c, an indicator of glycemic control, were also reduced. Vitamin E supplementation clearly ameliorated diabetic control of GK rats, suggesting the importance of not only dietary supplementation of natural antioxidants but also other antioxidative intervention as a supportive therapy of type 2 diabetic patients.  相似文献   

9.
Calorie restriction [CR; ~40% below ad libitum (AL) intake] improves the health of many species, including rats, by mechanisms that may be partly related to enhanced insulin sensitivity for glucose disposal by skeletal muscle. Excessive activation of several mitogen-activated protein kinases (MAPKs), including JNK1/2, p38, and ERK1/2 has been linked to insulin resistance. Although insulin can activate ERK1/2, this effect is not required for insulin-mediated glucose uptake. We hypothesized that skeletal muscle from male 9-mo-old Fischer 344/Brown Norway rats CR (35-40% beginning at 3 mo old) versus AL rats would have 1) attenuated activation of JNK1/2, p38, and ERK1/2 under basal conditions; and 2) no difference for insulin-induced ERK1/2 activation. In contrast to our hypothesis, there were significant CR-related increases in the phosphorylation of p38 (epitrochlearis, soleus, and gastrocnemius), JNK1 (epitrochlearis and soleus), and JNK2 (gastrocnemius). Consistent with our hypothesis, CR did not alter insulin-mediated ERK1/2 activation. The greater JNK1/2 and p38 phosphorylation with CR was not attributable to diet effects on muscle oxidative stress (assessed by protein carbonyls and 4-hydroxynonenal protein conjugates). In muscles from the same rats used for the present study, we previously reported a CR-related increase in insulin-mediated glucose uptake by the epitrochlearis and the soleus (Sharma N, Arias EB, Bhat AD, Sequea DA, Ho S, Croff KK, Sajan MP, Farese RV, Cartee GD. Am J Physiol Endocrinol Metab 300: E966-E978, 2011). The present results indicate that the improved insulin sensitivity with CR is not attributable to attenuated MAPK phosphorylation in skeletal muscle.  相似文献   

10.
The adult Goto-Kakizaki (GK) rat is characterized by impaired glucose-induced insulin secretion in vivo and in vitro, decreased beta-cell mass, decreased insulin sensitivity in the liver, and moderate insulin resistance in muscles and adipose tissue. GK rats do not exhibit basal hyperglycemia during the first 3 wk after birth and therefore could be considered prediabetic during this period. Our aim was to identify the initial pathophysiological changes occurring during the prediabetes period in this model of type 2 diabetes (T2DM). To address this, we investigated beta-cell function, insulin sensitivity, and body composition in normoglycemic prediabetic GK rats. Our results revealed that the in vivo secretory response of GK beta-cells to glucose is markedly reduced and the whole body insulin sensitivity is increased in the prediabetic GK rats in vivo. Moreover, the body composition of suckling GK rats is altered compared with age-matched Wistar rats, with an increase of the number of adipocytes before weaning despite a decreased body weight and lean mass in the GK rats. None of these changes appeared to be due to the postnatal nutritional environment of GK pups as demonstrated by cross-fostering GK pups with nondiabetic Wistar dams. In conclusion, in the GK model of T2DM, beta-cell dysfunction associated with increased insulin sensitivity and the alteration of body composition are proximal events that might contribute to the establishment of overt diabetes in adult GK rats.  相似文献   

11.
Restricted fetal growth is associated with increased risk for the future development of Type 2 diabetes in humans. The study aim was to assess the glucose tolerance of old (seventeen months) male rats, which were growth restricted in early life due to maternal protein restriction during gestation and lactation. Rat mothers were fed diets containing either 20% or 8% protein and all offspring weaned onto a standard rat diet. In old-age fasting plasma glucose concentrations were significantly higher in the low protein offspring: 8.4 (1.3)mmol/l v. 5.3 (1.3)mmol/l (p = 0.005), Areas under the curves were increased by 67% for glucose (p = 0.01) and 81% for insulin (p = 0.01) in these rats in intravenous glucose tolerance tests, suggesting (a degree of) insulin resistance. These results show that early growth retardation due to maternal protein restriction leads to the development of diabetes in old male rat offspring. The diabetes is predominantly associated with insulin resistance.  相似文献   

12.
Glucokinase (GK) plays a key role in the control of blood glucose homeostasis. We identified a small molecule GK activator, compound A, that increased the glucose affinity and maximal velocity (V(max)) of GK. Compound A augmented insulin secretion from isolated rat islets and enhanced glucose utilization in primary cultured rat hepatocytes. In rat oral glucose tolerance tests, orally administrated compound A lowered plasma glucose elevation with a concomitant increase in plasma insulin and hepatic glycogen. In liver, GK activity is acutely controlled by its association to the glucokinase regulatory protein (GKRP). In order to decipher the molecular aspects of how GK activator affects the shuttling of GK between nucleus and cytoplasm, the effect of compound A on GK-GKRP interaction was further investigated. Compound A increased the level of cytoplasmic GK in both isolated rat primary hepatocytes and the liver tissues from rats. Experiments in a cell-free system revealed that compound A interacted with glucose-bound free GK, thereby impairing the association of GK and GKRP. On the other hand, compound A did not bind to glucose-unbound GK or GKRP-associated GK. Furthermore, we found that glucose-dependent GK-GKRP interaction also required ATP. Given the combined prominent role of GK on insulin secretion and hepatic glucose metabolism where the GK-GKRP mechanism is involved, activation of GK has a new therapeutic potential in the treatment of type 2 diabetes.  相似文献   

13.
The increase in body and white adipose tissue weights induced by a high-fat diet were prevented by treatment with the beta3-adrenergic agonist Trecadrine. Plasma insulin levels were slightly elevated in overweight rats, while a decrease was observed in Trecadrine-treated groups. Insulin-dependent glucose uptake was impaired in adipocytes of the overweight rats in relation to lean animals. The beta3-adrenergic agonist induced an increase in insulin-stimulated glucose uptake by adipocytes as compared to the nontreated animals. In fact, Trecadrine treatment was able to restore to control values the impairment in insulin-mediated glucose uptake induced by the cafeteria diet, suggesting that Trecadrine prevents the development of insulin resistance in overweight animals. Basal leptin secretion was increased in adipocytes of the overweight rats in relation to lean animals. Trecadrine treatment induced a decrease in basal leptin secretion compared to the untreated animals. Insulin-stimulated leptin secretion reached similar levels in adipocytes of the overweight rats as in lean animals. There was a trend for insulin-induced leptin secretion to be lower at 24 h in Trecadrine-treated rats, but it did not reach statistical significance. In conclusion, adipocytes of diet-induced overweight animals have a higher basal leptin secretion, which is reduced by treatment with Trecadrine. However, neither the cafeteria diet nor the Trecadrine treatment significantly alters the ability of adipocytes to increase leptin secretion in response to insulin.  相似文献   

14.
The atypical antipsychotic drug olanzapine induces weight gain and defects in glucose metabolism in patients. Using a rat model we investigated the effects of acute and long term olanzapine treatment on weight gain, food preference and glucose metabolism. Olanzapine treated rats fed a chow diet grew more slowly than vehicle controls but olanzapine treated animals fed a high fat/sugar diet grew faster than control animals on the same diet. These changes in weight were paralleled by changes in fat mass. Olanzapine also induced a strong preference for a high fat/high sugar diet. Acute exposure to olanzapine rapidly induced severe impairments of glucose tolerance and increased insulin secretion but did not impair insulin tolerance. These results indicate the defect in glucose metabolism induced by acute olanzapine treatment was most likely due to increased hepatic glucose output associated with a reduction in active GLP-1 levels and correspondingly high glucagon levels.  相似文献   

15.
Methionine restriction (MR) decreases body weight and adiposity and improves glucose homeostasis in rodents. Similar to caloric restriction, MR extends lifespan, but is accompanied by increased food intake and energy expenditure. Most studies have examined MR in young animals; therefore, the aim of this study was to investigate the ability of MR to reverse age‐induced obesity and insulin resistance in adult animals. Male C57BL/6J mice aged 2 and 12 months old were fed MR (0.172% methionine) or control diet (0.86% methionine) for 8 weeks or 48 h. Food intake and whole‐body physiology were assessed and serum/tissues analyzed biochemically. Methionine restriction in 12‐month‐old mice completely reversed age‐induced alterations in body weight, adiposity, physical activity, and glucose tolerance to the levels measured in healthy 2‐month‐old control‐fed mice. This was despite a significant increase in food intake in 12‐month‐old MR‐fed mice. Methionine restriction decreased hepatic lipogenic gene expression and caused a remodeling of lipid metabolism in white adipose tissue, alongside increased insulin‐induced phosphorylation of the insulin receptor (IR) and Akt in peripheral tissues. Mice restricted of methionine exhibited increased circulating and hepatic gene expression levels of FGF21, phosphorylation of eIF2a, and expression of ATF4, with a concomitant decrease in IRE1α phosphorylation. Short‐term 48‐h MR treatment increased hepatic FGF21 expression/secretion and insulin signaling and improved whole‐body glucose homeostasis without affecting body weight. Our findings suggest that MR feeding can reverse the negative effects of aging on body mass, adiposity, and insulin resistance through an FGF21 mechanism. These findings implicate MR dietary intervention as a viable therapy for age‐induced metabolic syndrome in adult humans.  相似文献   

16.
Alpha-lipoic acid mitigates insulin resistance in Goto-Kakizaki rats.   总被引:5,自引:0,他引:5  
Impaired glucose uptake and metabolism by peripheral tissues is a common feature in both type I and type II diabetes mellitus. This phenomenon was examined in the context of oxidative stress and the early events within the insulin signalling pathway using soleus muscles derived from non-obese, insulin-resistant type II diabetic Goto-Kakizaki (GK) rats, a well-known genetic rat model for human type II diabetes. Insulin-stimulated glucose transport was impaired in soleus muscle from GK rats. Oxidative and non-oxidative glucose disposal pathways represented by glucose oxidation and glycogen synthesis in soleus muscles of GK rats appear to be resistant to the action of insulin when compared to their corresponding control values. These diabetes-related abnormalities in glucose disposal were associated with a marked diminution in the insulin-mediated enhancement of protein kinase B (Akt/PKB) and insulin receptor substrate-1 (IRS-1)-associated phosphatidylinostol 3-kinase (PI 3-kinase) activities; these two kinases are key elements in the insulin signalling pathway. Moreover, heightened state of oxidative stress, as indicated by protein bound carbonyl content, was evident in soleus muscle of GK diabetic rats. Chronic administration of the hydrophobic/hydrophilic antioxidant alpha -lipoic-acid (ALA, 100 mg/kg, i.p.) partly ameliorated the diabetes-related deficit in glucose metabolism, protein oxidation as well as the activation by insulin of the various steps of the insulin signalling pathway, including the enzymes Akt/PKB and PI-3 kinase. Overall, the current investigation illuminates the concept that oxidative stress may indeed be involved in the pathogenesis of certain types of insulin resistance. It also harmonizes with the notion of including potent antioxidants such as ALA in the armamentarium of antidiabetic therapy.  相似文献   

17.
In its vanadate (V5+) or vanadyl (V4+) forms, vanadium has been demonstrated to possess antidiabetic activity. Oral treatment of streptozotocin (STZ)-diabetic animals with either form is associated with correction of hyperglycemia, and prevention of diabetes-induced complications, although weight gain is unaffected. Vanadium treatment of non-diabetic animals lowers plasma insulin levels by reducing insulin demand, as these animals remain normoglycemic. These results suggest that vanadium hasin vivo insulin-mimetic or insulin-enhancing effects, in agreement with severalin vitro observations.Chronic treatment with vanadium has also been shown to result in sustained antidiabetic effects in STZ-diabetic animals long after treatment has ceased. Thus, at 13 weeks after withdrawal from treatment, corrected animals had normalized glucose and weight gain, and improved basal insulin levels. In addition, near-normal glucose tolerance was found despite an insignificant insulin response. Since vanadium accumulates in several tissue sites (e.g. bone, kidney) when pharmacological doses are administered, it is possible that stored vanadium may be important in maintaining near-normal glucose tolerance at least in the short-term following withdrawal from treatment. Recently, following withdrawal of vanadyl treatment up to 30 weeks, diabetic animals which had remained normoglycemic and had normalized glucose tolerance showed improvements in plasma insulin levels both in the basal state and in response to oral glucose, as compared to those which had reverted to hyperglycemia. The observed significant improvements in insulin capacity over the long-term (>3 months) suggests that a restored and/or preserved insulin secretion may be essential for maintained reversal of the diabetic state over a prolonged period after treatment is withdrawn.  相似文献   

18.
Our objective was to determine if a cafeteria-type diet with increased fat content would block the decrease in insulin secretion induced by adrenalectomy in obese rats. Five week old Zucker (fa/fa) rats were adrenalectomized. One week later, half of the adrenalectomized groups, and age-matched, sham-operated animals were given a diet of 16% fat and 44% carbohydrate. Control animals were maintained on standard rat chow (4.6% fat and 49% carbohydrate). After 4 weeks on the diets, in vivo measurements included caloric intake, weight gain, plasma corticosterone, triglyceride, free fatty acids, and oral glucose tolerance tests. In vitro measurements included glucose-stimulated insulin secretion, glucose phosphorylating activity, islet triglyceride content, and fatty acid oxidizing activity of cultured islets. Generally, the cafeteria diet did not block the effects of adrenalectomy on in vitro insulin secretion parameters, even though in sham-operated animals weight gain and insulin resistance was induced by the diet in vivo. Adrenalectomy and the diet exerted independent effects on glucose phosphorylation and fatty acid oxidation in islets. In conclusion, adrenalectomy decreased the elevated insulin secretion in fa/fa rats. The failure of a cafeteria diet enriched in fat to block the adrenalectomy-mediated changes in B-cell function indicates the importance of glucocorticoids and centrally-mediated effects on insulin secretion and other metabolic parameters.  相似文献   

19.
We have investigated the effect of alloxan on insulin secretion and glucose homeostasis in rats maintained on a 17% protein (normal protein, NP) or 6% protein (low protein, LP) diet from weaning (21 days old) to adulthood (90 days old). The incidence of alloxan diabetes was higher in the NP (3.5 times) than in the LP group. During an oral glucose tolerance test, the area under serum glucose curve was lower in LP (57%) than in NP rats while there were no differences between the two groups in the area under serum insulin curve. The serum glucose disappearance rate (Kitt) after exogenous insulin administration was higher in LP (50%) than in NP rats. In pancreatic islets isolated from rats not injected with alloxan, acute exposure to alloxan (0.05 mmol/L) reduced the glucose- or arginine-stimulated insulin secretion of NP islets by 78% and 56%, respectively, whereas for islets from LP rats, the reduction was 47% and 17% in the presence of glucose and arginine, respectively. Alloxan treatment reduced the glucose oxidation in islets from LP rats to a lesser extent than in NP islets (23% vs. 56%). In conclusion, alloxan was less effective in producing hyperglycemia in rats fed a low protein diet than in normal diet rats. This effect is attributable to an increased peripheral sensivity to insulin in addition to a better preservation of glucose oxidation and insulin secretion in islets from rats fed a low protein diet.  相似文献   

20.
Background: We have shown that individually, dietary fiber and protein increase secretion of the anorexigenic and insulinotropic hormone, glucagon‐like peptide‐1 (GLP‐1). Objective: Our objective was to combine, in one diet, high levels of fiber and protein to maximize GLP‐1 secretion, improve glucose tolerance, and reduce weight gain. Methods and Procedures: Lean (+/?) and obese (cp/cp) male James C Russell corpulent (JCR:LA‐cp) rats lacking a functional leptin receptor were fed one of four experimental diets (control, high protein (HP), high fiber (HF, prebiotic fiber inulin), or combination (CB)) for 3 weeks. An oral glucose tolerance test (OGTT) was performed to evaluate plasma GLP‐1, insulin and glucose. Plasma lipids and intestinal proglucagon mRNA expression were determined. Results: Energy intake was lower with the HF diet in lean and obese rats. Weight gain did not differ between diets. Higher colonic proglucagon mRNA in lean rats fed a CB diet was associated with higher GLP‐1 secretion during OGTT. The HP diet significantly reduced plasma glucose area under the curve (AUC) during OGTT in obese rats, which reflected both an increased GLP‐1 AUC and higher fasting insulin. Diets containing inulin resulted in the lowest plasma triglyceride and total cholesterol levels. Discussion: Overall, combining HP with HF in the diet increased GLP‐1 secretion in response to oral glucose, but did not improve glucose tolerance or lipid profiles more than the HF diet alone did. We also suggest that glycemic and insulinemic response to prebiotics differ among rat models and future research work should examine their role in improving glucose tolerance in diet‐induced vs. genetic obesity with overt hyperleptinemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号