首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aging is associated with insulin resistance, often attributable to obesity and inactivity. Recent evidence suggests that skeletal muscle insulin resistance in aging is associated with mitochondrial alterations. Whether this is true of the senescent myocardium is unknown. Twelve young (Y, 4 years old) and 12 old (O, 11 years old) dogs, matched for body mass, were instrumented with left-ventricular pressure gauges, aortic and coronary sinus catheters, and flow probes on left circumflex artery. Before surgery, all dogs participated in a 6-wk exercise program. Dogs underwent measurements of hemodynamics and plasma substrates before and during a 2-h hyperinsulinemic-euglycemic clamp to measure whole body and myocardial glucose and nonesterified fatty acid uptake. Following the protocol, myocardial and skeletal samples were obtained to measure components of the insulin-signaling cascade and mitochondrial structure. There was no difference in plasma glucose (Y, 90 +/- 4 mg/dl; O, 87 +/- 4 mg/dl), but old dogs had higher (P < 0.02) nonesterified fatty acids (Y, 384 +/- 48 micromol/l; O, 952 +/- 97 micromol/l) and plasma insulin (Y, 39 +/- 11 pmol/l; O, 108 +/- 18 pmol/l). Old dogs had impaired total body glucose disposition (Y, 11.5 +/- 1 mg x kg(-1) x min(-1); O, 8.0 +/- 0.5 mg x kg(-1) x min(-1); P < 0.05) and insulin-stimulated myocardial glucose uptake (Y, 3.5 +/- 0.3 mg x min(-1) x g(-1); O, 1.8 +/- 0.3 mg x min(-1) x g(-1); P < 0.05). The impaired insulin action was associated with altered insulin signaling and glucose transporter (GLUT4) translocation. There were myocardial mitochondrial structural changes observed in association with decreased expression of uncoupling protein-3. Aging is associated with both whole body and myocardial insulin resistance, independent of obesity and inactivity, but involving altered mitochondrial structure and impaired cellular insulin action.  相似文献   

2.
Altered fat distribution is associated with insulin resistance in HIV, but little is known about regional glucose metabolism in fat and muscle depots in this patient population. The aim of the present study was to quantify regional fat, muscle, and whole body glucose disposal in HIV-infected men with lipoatrophy. Whole body glucose disposal was determined by hyperinsulinemic clamp technique (80 mU x m(-2) x min(-1)) in 6 HIV-infected men and 5 age/weight-matched healthy volunteers. Regional glucose uptake in muscle and subcutaneous (SAT) and visceral adipose tissue (VAT) was quantified in fasting and insulin-stimulated states using 2-deoxy-[18F]fluoro-D-glucose positron emission tomography. HIV-infected subjects with lipoatrophy had significantly increased glucose uptake into SAT (3.8 +/- 0.4 vs. 2.3 +/- 0.5 micromol x kg tissue(-1) x min(-1), P < 0.05) in the fasted state. Glucose uptake into VAT did not differ between groups. VAT area was inversely related with whole body glucose disposal, insulin sensitivity, and muscle glucose uptake during insulin stimulation. VAT area was highly predictive of whole body glucose disposal (r2 = 0.94, P < 0.0001). This may be mediated by adiponectin, which was significantly associated with VAT area (r = -0.75, P = 0.008), and whole body glucose disposal (r = 0.80, P = 0.003). This is the first study to directly demonstrate increased glucose uptake in subcutaneous fat of lipoatrophic patients, which may partially compensate for loss of SAT. Furthermore, we demonstrate a clear relationship between VAT and glucose metabolism in multiple fat and muscle depots, suggesting the critical importance of this depot in the regulation of glucose and highlighting the significant potential role of adiponectin in this process.  相似文献   

3.
Inhibition of endothelial nitric oxide (NO) synthase (eNOS) is associated with an increase in glucose uptake by the heart. We have already shown that Type I diabetes also causes a decrease in eNOS protein expression and altered NO control of both coronary vascular resistance and oxygen consumption. Therefore, we predict that the increase in plasma glucose and the reduction in eNOS during diabetes together would result in a large increase in cardiac glucose uptake. Arterial (A) and coronary sinus (C) plasma levels of glucose, free fatty acid (FFA), beta-hydroxybutyric acid (beta-HBA), and lactate were measured, and myocardial uptake was calculated before and at week 1, 2, 3, and 4 of alloxan-induced diabetes. The heart of healthy dogs consumed FFA (19.2 +/- 2.6 microeq/min) and lactate (19.7 +/- 3.4 micromol/min). Dogs in the late stage of diabetes (at week 4) had elevated arterial beta-HBA concentrations (1.6 +/- 0.7 micromol/l) that were accompanied by an increased beta-HBA uptake (0.3 +/- 0.2 micromol/min). In contrast, myocardial lactate (-4.8 +/- 3.0 micromol/min) and FFA uptake (2.5 +/- 1.9 microeq/min) were significantly reduced in diabetic animals. Despite a marked hyperglycemia (449 +/- 25 mg/dl), the heart did not take up glucose (-7.9 +/- 4.1 mg/dl). Our results indicate significant changes in the myocardial substrate utilization in dogs only in the late stage of diabetes, at a time when myocardial NO production is already decreased.  相似文献   

4.
Prolonged growth hormone (GH) excess is known to be associated with insulin resistance, but the underlying mechanisms remain unknown. The aim of this study was to assess the impact of GH on insulin-stimulated glucose metabolism and insulin signaling in human skeletal muscle. In a cross-over design, eight healthy male subjects (age 26.0 +/- 0.8 yr and body mass index 24.1 +/- 0.5 kg/m2) were infused for 360 min with either GH (Norditropin, 45 ng.kg(-1).min(-1)) or saline. During the final 180 min of the infusion, a hyperinsulinemic euglycemic clamp was performed (insulin infusion rate: 1.2 mU.kg(-1).min(-1)). Muscle biopsies from vastus lateralis were taken before GH/saline administration and after 60 min of hyperinsulinemia. GLUT4 content and insulin signaling, as assessed by insulin receptor substrate (IRS)-1-associated phosphatidylinositol 3-kinase and Akt activity were determined. GH levels increased to a mean (+/-SE) level of 20.0 +/- 2.3 vs. 0.5 +/- 0.2 microg/l after saline infusion (P < 0.01). During GH infusion, the glucose infusion rate during hyperinsulinemia was reduced by 38% (P < 0.01). In both conditions, free fatty acids were markedly suppressed during hyperinsulinemia. Despite skeletal muscle insulin resistance, insulin still induced a similar approximately 3-fold rise in IRS-1-associated PI 3-kinase activity (269 +/- 105 and 311 +/- 71% compared with baseline, GH vs. saline). GH infusion did not change Akt protein expression, and insulin caused an approximately 13-fold increase in Akt activity (1,309 +/- 327 and 1,287 +/- 173%) after both GH and saline infusion. No difference in total GLUT4 content was noted (114.7 +/- 7.4 and 107.6 +/- 16.7 arbitrary units, GH vs. saline, compared with baseline). In conclusion, insulin resistance in skeletal muscle induced by short-term GH administration is not associated with detectable changes in the upstream insulin-signaling cascade or reduction in total GLUT4. Yet unknown mechanisms in insulin signaling downstream of Akt may be responsible.  相似文献   

5.
The primary purpose of this study was to determine the effect of prior exercise on insulin-stimulated glucose uptake with physiological insulin in isolated muscles of mice. Male C57BL/6 mice completed a 60-min treadmill exercise protocol or were sedentary. Paired epitrochlearis, soleus, and extensor digitorum longus (EDL) muscles were incubated with [3H]-2-deoxyglucose without or with insulin (60 microU/ml) to measure glucose uptake. Insulin-stimulated glucose uptake for paired muscles was calculated by subtracting glucose uptake without insulin from glucose uptake with insulin. Muscles from other mice were assessed for glycogen and AMPK Thr172 phosphorylation. Exercised vs. sedentary mice had decreased glycogen in epitrochlearis (48%, P < 0.001), soleus (51%, P < 0.001), and EDL (41%, P < 0.01) and increased AMPK Thr172 phosphorylation (P < 0.05) in epitrochlearis (1.7-fold), soleus (2.0-fold), and EDL (1.4-fold). Insulin-independent glucose uptake was increased 30 min postexercise vs. sedentary in the epitrochlearis (1.2-fold, P < 0.001), soleus (1.4-fold, P < 0.05), and EDL (1.3-fold, P < 0.01). Insulin-stimulated glucose uptake was increased (P < 0.05) approximately 85 min after exercise in the epitrochlearis (sedentary: 0.266 +/- 0.045 micromol x g(-1) x 15 min(-1); exercised: 0.414 +/- 0.051) and soleus (sedentary: 0.102 +/- 0.049; exercised: 0.347 +/- 0.098) but not in the EDL. Akt Ser473 and Akt Thr308 phosphorylation for insulin-stimulated muscles did not differ in exercised vs. sedentary. These results demonstrate enhanced submaximal insulin-stimulated glucose uptake in the epitrochlearis and soleus of mice 85 min postexercise and suggest that it will be feasible to probe the mechanism of enhanced postexercise insulin sensitivity by using genetically modified mice.  相似文献   

6.
Insulin action is decreased by high muscle glycogen concentrations in skeletal muscle. Patients with McArdle's disease have chronic high muscle glycogen levels and might therefore be at risk of developing insulin resistance. In this study, six patients with McArdle's disease and six matched control subjects were subjected to an oral glucose tolerance test and a euglycemic-hyperinsulinemic clamp. The muscle glycogen concentration was 103 +/- 45% higher in McArdle patients than in controls. Four of six McArdle patients, but none of the controls, had impaired glucose tolerance. The insulin-stimulated glucose utilization and the insulin-stimulated increase in glycogen synthase activity during the clamp were significantly lower in the patients than in controls (51.3 +/- 6.0 vs. 72.6 +/- 13.1 micromol x min(-1) x kg lean body mass(-1), P < 0.05, and 53 +/- 15 vs. 79 +/- 9%, P < 0.05, n = 6, respectively). The difference in insulin-stimulated glycogen synthase activity between the pairs was significantly correlated (r = 0.96, P < 0.002) with the difference in muscle glycogen level. The insulin-stimulated increase in Akt phosphorylation was smaller in the McArdle patients than in controls (45 +/- 13 vs. 76 +/- 13%, P < 0.05, respectively), whereas basal and insulin-stimulated glycogen synthase kinase 3alpha and protein phosphatase-1 activities were similar in the two groups. Furthermore, the ability of insulin to decrease and increase fat and carbohydrate oxidation, respectively, was blunted in the patients. In conclusion, these data show that patients with McArdle's glycogen storage disease are insulin resistant in terms of glucose uptake, glycogen synthase activation, and alterations in fuel oxidation. The data further suggest that skeletal muscle glycogen levels play an important role in the regulation of insulin-stimulated glycogen synthase activity.  相似文献   

7.
Elevation of plasma lactate levels induces peripheral insulin resistance, but the underlying mechanisms are unclear. We examined whether lactate infusion in rats suppresses glycolysis preceding insulin resistance and whether lactate-induced insulin resistance is accompanied by altered insulin signaling and/or insulin-stimulated glucose transport in skeletal muscle. Hyperinsulinemic euglycemic clamps were conducted for 6 h in conscious, overnight-fasted rats with or without lactate infusion (120 micromol x kg(-1) x min(-1)) during the final 3.5 h. Lactate infusion increased plasma lactate levels about fourfold. The elevation of plasma lactate had rapid effects to suppress insulin-stimulated glycolysis, which clearly preceded its effect to decrease insulin-stimulated glucose uptake. Both submaximal and maximal insulin-stimulated glucose transport decreased 25-30% (P < 0.05) in soleus but not in epitrochlearis muscles of lactate-infused rats. Lactate infusion did not alter insulin's ability to phosphorylate the insulin receptor, the insulin receptor substrate (IRS)-1, or IRS-2 but decreased insulin's ability to stimulate IRS-1- and IRS-2-associated phosphatidylinositol 3-kinase activities and Akt/protein kinase B activity by 47, 75, and 55%, respectively (P < 0.05 for all). In conclusion, elevation of plasma lactate suppressed glycolysis before its effect on insulin-stimulated glucose uptake, consistent with the hypothesis that suppression of glucose metabolism could precede and cause insulin resistance. In addition, lactate-induced insulin resistance was associated with impaired insulin signaling and decreased insulin-stimulated glucose transport in skeletal muscle.  相似文献   

8.
Changes in insulin-stimulated glucose metabolism were studied in young and aged subjects, subjects with impaired glucose tolerance, and patients with NIDDM by means of the glucose clamp technique. The diabetic group includes obese and non-obese patients treated without insulin and non-obese patients treated with insulin. The glucose disposal rate (GDR) was decreased in aged subjects (5.8 +/- 0.4 mg/kg/min) compared with young controls (7.4 +/- 0.3 mg/kg/min). In patients with IGT, it was further decreased to 3.6 +/- 0.5 mg/kg/min, which was comparable to the rate in NIDDM without insulin treatment (3.3 +/- 0.4 mg/kg/min). There were no differences in the GDR between obese (3.0 +/- 0.3 mg/kg/min) and non-obese (3.4 +/- 0.6 mg/kg/min) diabetic patients. In insulin-treated diabetic patients, GDR ranged widely, but the mean value was partially normalized (5.2 +/- 0.9 mg/kg/min). In the diabetic group, no correlation was observed between fasting blood glucose and GDR. These results suggest that in the course of developing NIDDM, a decrease in insulin-stimulated glucose uptake precedes a rise in fasting blood glucose. Thus, as previously reported for Caucasian NIDDM patients, resistance to insulin-stimulated glucose uptake may be one of the basic defects in Japanese patients with NIDDM. The degree of glycemia, however, is not directly related to the magnitude of the defect in insulin action.  相似文献   

9.
Nonalcoholic fatty liver (NAFL) is a common comorbidity in patients with type 2 diabetes and links to the risk of coronary syndromes. The aim was to determine the manifestations of metabolic syndrome in different organs in patients with liver steatosis. We studied 55 type 2 diabetic patients with coronary artery disease using positron emission tomography. Myocardial perfusion was measured with [15O]H2O and myocardial and skeletal muscle glucose uptake with 2-deoxy-2-[18F]fluoro-D-glucose during hyperinsulinemic euglycemia. Liver fat content was determined by magnetic resonance proton spectroscopy. Patients were divided on the basis of their median (8%) into two groups with low (4.6 +/- 2.0%) and high (17.4 +/- 8.0%) liver fat content. The groups were well matched for age, BMI, and fasting plasma glucose. In addition to insulin resistance at the whole body level (P = 0.012) and muscle (P = 0.002), the high liver fat group had lower insulin-stimulated myocardial glucose uptake (P = 0.040) and glucose extraction rate (P = 0.0006) compared with the low liver fat group. In multiple regression analysis, liver fat content was the most significant explanatory variable for myocardial insulin resistance. In addition, the high liver fat group had increased concentrations of high sensitivity C-reactive protein, soluble forms of E-selectin, vascular adhesion protein-1, and intercellular adhesion molecule-1 (P < 0.05) and lower coronary flow reserve (P = 0.02) compared with the low liver fat group. In conclusion, in patients with type 2 diabetes and coronary artery disease, liver fat content is a novel independent indicator of myocardial insulin resistance and reduced coronary functional capacity. Further studies will reveal the effect of hepatic fat reduction on myocardial metabolism and coronary function.  相似文献   

10.
Insulin-stimulated muscle glucose uptake is inversely associated with the muscle glycogen concentration. To investigate whether this association is a cause and effect relationship, we compared insulin-stimulated muscle glucose uptake in noncontracted and postcontracted muscle of GSL3-transgenic and wild-type mice. GSL3-transgenic mice overexpress a constitutively active form of glycogen synthase, which results in an abundant storage of muscle glycogen. Muscle contraction was elicited by in situ electrical stimulation of the sciatic nerve. Right gastrocnemii from GSL3-transgenic and wild-type mice were subjected to 30 min of electrical stimulation followed by hindlimb perfusion of both hindlimbs. Thirty minutes of contraction significantly reduced muscle glycogen concentration in wild-type (49%) and transgenic (27%) mice, although transgenic mice retained 168.8 +/- 20.5 micromol/g glycogen compared with 17.7 +/- 2.6 micromol/g glycogen for wild-type mice. Muscle of transgenic and wild-type mice demonstrated similar pre- (3.6 +/- 0.3 and 3.9 +/- 0.6 micromol.g(-1).h(-1) for transgenic and wild-type, respectively) and postcontraction (7.9 +/- 0.4 and 7.0 +/- 0.4 micromol.g(-1).h(-1) for transgenic and wild-type, respectively) insulin-stimulated glucose uptakes. However, the [14C]glucose incorporated into glycogen was greater in noncontracted (151%) and postcontracted (157%) transgenic muscle vs. muscle of corresponding wild-type mice. These results indicate that glycogen synthase activity is not rate limiting for insulin-stimulated glucose uptake in skeletal muscle and that the inverse relationship between muscle glycogen and insulin-stimulated glucose uptake is an association, not a cause and effect relationship.  相似文献   

11.
We examined whether intraportal delivery of neuropeptide Y (NPY) affects glucose metabolism in 42-h-fasted conscious dogs using arteriovenous difference methodology. The experimental period was divided into three subperiods (P1, P2, and P3). During all subperiods, the dogs received infusions of somatostatin, intraportal insulin (threefold basal), intraportal glucagon (basal), and peripheral intravenous glucose to increase the hepatic glucose load twofold basal. Following P1, in the NPY group (n = 7), NPY was infused intraportally at 0.2 and 5.1 pmol.kg(-1).min(-1) during P2 and P3, respectively. The control group (n = 7) received intraportal saline infusion without NPY. There were no significant changes in hepatic blood flow in NPY vs. control. The lower infusion rate of NPY (P2) did not enhance net hepatic glucose uptake. During P3, the increment in net hepatic glucose uptake (compared with P1) was 4 +/- 1 and 10 +/- 2 micromol.kg(-1).min(-1) in control and NPY, respectively (P < 0.05). The increment in net hepatic fractional glucose extraction during P3 was 0.015 +/- 0.005 and 0.039 +/- 0.008 in control and NPY, respectively (P < 0.05). Net hepatic carbon retention was enhanced in NPY vs. control (22 +/- 2 vs. 14 +/- 2 micromol.kg(-1).min(-1), P < 0.05). There were no significant differences between groups in the total glucose infusion rate. Thus, intraportal NPY stimulates net hepatic glucose uptake without significantly altering whole body glucose disposal in dogs.  相似文献   

12.
We investigated the effect of insulin on total and regional myocardial blood flow (MBF) and glucose uptake (MGU) in healthy subjects (50 +/- 5 yr) by means of positron emission tomography (PET) with oxygen-15-labeled water (H(2)(15)O) and fluorine-18 labeled fluorodeoxyglucose ((18)FDG) before and during physiological hyperinsulinemia (40 mU.min(-1).m(-2)). Twelve male subjects were included in the study. During hyperinsulinemia, MBF increased from 0.91 +/- 0.28 to 1.01 +/- 0.31 ml.min(-1).g(-1) (n = 7 patients, P = 0.05; n = 112 regions, P < 0.005). Intersubject variability ranged from -3.0 to +41%. MGU increased from 0.11 +/- 0.08 (n = 5) to 0.56 +/- 0.08 micromol.min(-1).g(-1) (P < 0.0001, n = 7). MBF and insulin-mediated MGU were higher in the septum and anterior and lateral wall along short-axis regions of the heart. During hyperinsulinemia, MBF was also higher in the apex and midventricle compared with the base. MBF and MGU were positively correlated before (r = 0.66, P < 0.0001) and during hyperinsulinemia (r = 0.24, P < 0.05). These results provide evidence that insulin stimulates MBF in normal human hearts and appears to involve mainly those regions of the heart where insulin-mediated MGU is higher. Furthermore, regional distribution of insulin-stimulated MBF and MGU does not appear to be uniform across the left ventricular wall of healthy subjects.  相似文献   

13.
Insulin resistance in acromegaly causes glucose intolerance and diabetes, but it is unknown whether it involves protein metabolism, since both insulin and growth hormone promote protein accretion. The effects of acromegaly and of its surgical cure on the insulin sensitivity of glucose and amino acid/protein metabolism were evaluated by infusing [6,6-(2)H(2)]glucose, [1-(13)C]leucine, and [2-(15)N]glutamine during a euglycemic insulin (1 mU x kg(-1) x min(-1)) clamp in 12 acromegalic patients, six studied again 6 mo after successful adenomectomy, and eight healthy controls. Acromegalic patients, compared with postsurgical and control subjects, had higher postabsorptive glucose concentration (5.5 +/- 0.3 vs. 4.9 +/- 0.2 micromol/l, P < 0.05, and 5.1 +/- 0.1 micromol/l) and flux (2.7 +/- 0.1 vs. 2.0 +/- 0.2 micromol x kg(-1) x min(-1), P < 0.01, and 2.2 +/- 0.1 micromol x kg(-1) x min(-1), P < 0.05) and reduced insulin-stimulated glucose disposal (+15 +/- 9 vs. +151 +/- 18%, P < 0.01, and 219 +/- 58%, P < 0.001 from basal). Postabsorptive leucine metabolism was similar among groups. In acromegalic and postsurgical subjects, insulin suppressed less than in controls the endogenous leucine flux (-9 +/- 1 and -12 +/- 2 vs. -18 +/- 2%, P < 0.001 and P < 0.05), the nonoxidative leucine disposal (-4 +/- 3 and -1 +/- 3 vs. -18 +/- 2%, P < 0.01 and P < 0.05), respectively, indexes of proteolysis and protein synthesis, and leucine oxidation (-17 +/- 6% in postsurgical patients vs. -26 +/- 6% in controls, P < 0.05). Within 6 mo, surgery reverses insulin resistance for glucose but not for protein metabolism. After adenomectomy, more leucine is oxidized during hyperinsulinemia.  相似文献   

14.
We have shown previously that the glucagon-like peptide-1 (GLP-1)-(7-36) amide increases myocardial glucose uptake and improves left ventricular (LV) and systemic hemodynamics in both conscious dogs with pacing-induced dilated cardiomyopathy (DCM) and humans with LV systolic dysfunction after acute myocardial infarction. However, GLP-1-(7-36) is rapidly degraded in the plasma to GLP-1-(9-36) by dipeptidyl peptidase IV (DPP IV), raising the issue of which peptide is the active moiety. By way of methodology, we compared the efficacy of a 48-h continuous intravenous infusion of GLP-1-(7-36) (1.5 pmol.kg(-1).min(-1)) to GLP-1-(9-36) (1.5 pmol.kg(-1).min(-1)) in 28 conscious, chronically instrumented dogs with pacing-induced DCM by measuring LV function and transmyocardial substrate uptake under basal and insulin-stimulated conditions using hyperinsulinemic-euglycemic clamps. As a result, dogs with DCM demonstrated myocardial insulin resistance under basal and insulin-stimulated conditions. Both GLP-1-(7-36) and GLP-1-(9-36) significantly reduced (P < 0.01) LV end-diastolic pressure [GLP-1-(7-36), 28 +/- 1 to 15 +/- 2 mmHg; GLP-1-(9-36), 29 +/- 2 to 16 +/- 1 mmHg] and significantly increased (P < 0.01) the first derivative of LV pressure [GLP-1-(7-36), 1,315 +/- 81 to 2,195 +/- 102 mmHg/s; GLP-1-(9-36), 1,336 +/- 77 to 2,208 +/- 68 mmHg] and cardiac output [GLP-1-(7-36), 1.5 +/- 0.1 to 1.9 +/- 0.1 l/min; GLP-1-(9-36), 2.0 +/- 0.1 to 2.4 +/- 0.05 l/min], whereas an equivolume infusion of saline had no effect. Both peptides increased myocardial glucose uptake but without a significant increase in plasma insulin. During the GLP-1-(9-36) infusion, negligible active (NH2-terminal) peptide was measured in the plasma. In conclusion, in DCM, GLP-1-(9-36) mimics the effects of GLP-1-(7-36) in stimulating myocardial glucose uptake and improving LV and systemic hemodynamics through insulinomimetic as opposed to insulinotropic effects. These data suggest that GLP-1-(9-36) amide is an active peptide.  相似文献   

15.
The effect of small amounts of fructose on net hepatic glucose uptake (NHGU) during hyperglycemia was examined in the presence of insulinopenia in conscious 42-h fasted dogs. During the study, somatostatin (0.8 microg.kg(-1).min(-1)) was given along with basal insulin (1.8 pmol.kg(-1).min(-1)) and glucagon (0.5 ng.kg(-1).min(-1)). After a control period, glucose (36.1 micromol.kg(-1).min(-1)) was continuously given intraportally for 4 h with (2.2 micromol.kg(-1).min(-1)) or without fructose. In the fructose group, the sinusoidal blood fructose level (nmol/ml) rose from <16 to 176 +/- 11. The infusion of glucose alone (the control group) elevated arterial blood glucose (micromol/ml) from 4.3 +/- 0.3 to 11.2 +/- 0.6 during the first 2 h after which it remained at 11.6 +/- 0.8. In the presence of fructose, glucose infusion elevated arterial blood glucose (micromol/ml) from 4.3 +/- 0.2 to 7.4 +/- 0.6 during the first 1 h after which it decreased to 6.1 +/- 0.4 by 180 min. With glucose infusion, net hepatic glucose balance (micromol.kg(-1).min(-1)) switched from output (8.9 +/- 1.7 and 13.3 +/- 2.8) to uptake (12.2 +/- 4.4 and 29.4 +/- 6.7) in the control and fructose groups, respectively. Average NHGU (micromol.kg(-1).min(-1)) and fractional glucose extraction (%) during last 3 h of the test period were higher in the fructose group (30.6 +/- 3.3 and 14.5 +/- 1.4) than in the control group (15.0 +/- 4.4 and 5.9 +/- 1.8). Glucose 6-phosphate and glycogen content (micromol glucose/g) in the liver and glucose incorporation into hepatic glycogen (micromol glucose/g) were higher in the fructose (218 +/- 2, 283 +/- 25, and 109 +/- 26, respectively) than in the control group (80 +/- 8, 220 +/- 31, and 41 +/- 5, respectively). In conclusion, small amounts of fructose can markedly reduce hyperglycemia during intraportal glucose infusion by increasing NHGU even when insulin secretion is compromised.  相似文献   

16.
Insulin has been shown to alter long-chain fatty acid (LCFA) metabolism and malonyl-CoA production in muscle. However, these alterations may have been induced, in part, by the accompanying insulin-induced changes in glucose uptake. Thus, to determine the effects of insulin on LCFA metabolism independently of changes in glucose uptake, rat hindquarters were perfused with 600 microM palmitate and [1-(14)C]palmitate and with either 20 mM glucose and no insulin (G) or 6 mM glucose and 250 microU/ml of insulin (I). As dictated by our protocol, glucose uptake was not significantly different between the G and I groups (10.3 +/- 0.6 vs. 11.0 +/- 0.5 micromol x g(-1) x h(-1); P > 0.05). Total palmitate uptake and oxidation were not significantly different (P > 0.05) between the G (10.1 +/- 1.0 and 0.8 +/- 0.1 nmol x min(-1) x g(-1)) and I (10.2 +/- 0.6 and 1.1 +/- 0.2 nmol. min(-1) x g(-1)) groups. Preperfusion muscle triglyceride and malonyl-CoA levels were not significantly different between the G and I groups and did not change significantly during the perfusion (P > 0.05). Similarly, muscle triglyceride synthesis was not significantly different between groups (P > 0.05). These results demonstrate that the presence of insulin under conditions of similar glucose uptake does not alter LCFA metabolism and suggest that cellular mechanisms induced by carbohydrate availability, but independent of insulin, may be important in the regulation of muscle LCFA metabolism.  相似文献   

17.
Previous measurement of insulin in human muscle has shown that interstitial muscle insulin and glucose concentrations are approximately 30-50% lower than in plasma during hyperinsulinemia in normal subjects. The aims of this study were to measure interstitial muscle insulin and glucose in patients with type 2 diabetes to evaluate whether transcapillary transport is part of the peripheral insulin resistance. Ten patients with type 2 diabetes and ten healthy controls matched for sex, age, and body mass index were investigated. Plasma and interstitial insulin, glucose, and lactate (measured by intramuscular in situ-calibrated microdialysis) in the medial quadriceps femoris muscle were analyzed during a hyperinsulinemic euglycemic clamp. Blood flow in the contralateral calf was measured by vein plethysmography. At steady-state clamping, at 60-120 min, the interstitial insulin concentration was significantly lower than arterial insulin in both groups (409 +/- 86 vs. 1,071 +/- 99 pmol/l, P < 0.05, in controls and 584 +/- 165 vs. 1, 253 +/- 82 pmol/l, P < 0.05, in diabetic subjects, respectively). Interstitial insulin concentrations did not differ significantly between diabetic subjects and controls. Leg blood flow was significantly higher in controls (8.1 +/- 1.2 vs. 4.4 +/- 0.7 ml. 100 g(-1).min(-1) in diabetics, P < 0.05). Calculated glucose uptake was less in diabetic patients compared with controls (7.0 +/- 1.2 vs. 10.8 +/- 1.2 micromol. 100 g(-1).min(-1), P < 0.05, respectively). Arterial and interstitial lactate concentrations were both higher in the control group (1.7 +/- 0.1 vs. 1.2 +/- 0.1, P < 0. 01, and 1.8 +/- 0.1 vs. 1.2 +/- 0.2 mmol/l, P < 0.05, in controls and diabetics, respectively). We conclude that, during hyperinsulinemia, muscle interstitial insulin and glucose concentrations did not differ between patients with type 2 diabetes and healthy controls despite a significantly lower leg blood flow in diabetic subjects. It is suggested that decreased glucose uptake in type 2 diabetes is caused by insulin resistance at the cellular level rather than by a deficient access of insulin and glucose surrounding the muscle cell.  相似文献   

18.
The ability of glucose and insulin to modify insulin-stimulated glucose transport and uptake was investigated in perfused skeletal muscle. Here we report that perfusion of isolated rat hindlimbs for 5 h with 12 mM-glucose and 20,000 microunits of insulin/ml leads to marked, rapidly developing, impairment of insulin action on muscle glucose transport and uptake. Thus maximal insulin-stimulated glucose uptake at 12 mM-glucose decreased from 34.8 +/- 1.9 to 11.5 +/- 1.1 mumol/h per g (mean +/- S.E.M., n = 10) during 5 h perfusion. This decrease in glucose uptake was accompanied by a similar change in muscle glucose transport as measured by uptake of 3-O-[14C]-methylglucose. Simultaneously, muscle glycogen stores increased to 2-3.5 times initial values, depending on fibre type. Perfusion for 5 h in the presence of glucose but in the absence of insulin decreased subsequent insulin action on glucose uptake by 80% of the effect of glucose with insulin, but without an increase in muscle glycogen concentration. Perfusion for 5 h with insulin but without glucose, and with subsequent addition of glucose back to the perfusate, revealed glucose uptake and transport similar to initial values obtained in the presence of glucose and insulin. The data indicate that exposure to a moderately increased glucose concentration (12 mM) leads to rapidly developing resistance of skeletal-muscle glucose transport and uptake to maximal insulin stimulation. The effect of glucose is enhanced by simultaneous insulin exposure, whereas exposure for 5 h to insulin itself does not cause measurable resistance to maximal insulin stimulation.  相似文献   

19.
Physiological increases in circulating insulin level significantly increase myocardial glucose uptake in vivo. To what extent this represents a direct insulin action on the heart or results indirectly from reduction in circulating concentrations of free fatty acids (FFA) is uncertain. To examine this, we measured myocardial glucose, lactate, and FFA extraction in 10 fasting men (ages 49-76 yr) with stable coronary artery disease during sequential intracoronary (10 mU/min, coronary plasma insulin = 140 +/- 20 microU/ml) and intravenous (100 mU/min, systemic plasma insulin = 168 +/- 26 microU/ml) insulin infusion. Basally, hearts extracted 2 +/- 2% of arterial glucose and extracted 27 +/- 6% of FFA. Coronary insulin infusion increased glucose extraction to 5 +/- 3% (P < 0.01 vs. basal) without changing plasma FFA or heart FFA extraction. Conversion to intravenous infusion lowered plasma FFA by approximately 50% and heart FFA extraction by approximately 75%, increasing heart glucose extraction still further to 8 +/- 3% (P < 0. 01 vs. intracoronary). This suggests the increase in myocardial glucose extraction observed in response to an increment in systemic insulin concentration is mediated equally by a reduction in circulating FFA and by direct insulin action on the heart itself. Coronary insulin infusion increased myocardial lactate extraction as well (from 20 +/- 10% to 29 +/- 9%, P < 0.05), suggesting the local action may include stimulation of a metabolic step distal to glucose transport and glycolysis.  相似文献   

20.
The impact of increased GlcN availability on insulin-stimulated p85/p110 phosphatidylinositol 3-kinase (PI3K) activity in skeletal muscle was examined in relation to GlcN-induced defects in peripheral insulin action. Primed continuous GlcN infusion (750 micromol/kg bolus; 30 micromol/kg.min) in conscious rats limited both maximal stimulation of muscle PI3K by acute insulin (I) (1 unit/kg) bolus (I + GlcN = 1.9-fold versus saline = 3.3-fold above fasting levels; p < 0.01) and chronic activation of PI3K following 3-h euglycemic, hyperinsulinemic (18 milliunits/kg.min) clamp studies (I + GlcN = 1.2-fold versus saline = 2.6-fold stimulation; p < 0.01). To determine the time course of GlcN-induced defects in insulin-stimulated PI3K activity and peripheral insulin action, GlcN was administered for 30, 60, 90, or 120 min during 2-h euglycemic, hyperinsulinemic clamp studies. Activation of muscle PI3K by insulin was attenuated following only 30 min of GlcN infusion (GlcN 30 min = 1.5-fold versus saline = 2.5-fold stimulation; p < 0.05). In contrast, the first impairment in insulin-mediated glucose uptake (Rd) developed following 110 min of GlcN infusion (110 min = 39.9 +/- 1.8 versus 30 min = 42.8 +/- 1.4 mg/kg.min, p < 0.05). However, the ability of insulin to stimulate phosphatidylinositol 3,4, 5-trisphosphate production and to activate glycogen synthase in skeletal muscle was preserved following up to 180 min of GlcN infusion. Thus, increased GlcN availability induced (a) profound and early inhibition of proximal insulin signaling at the level of PI3K and (b) delayed effects on insulin-mediated glucose uptake, yet (c) complete sparing of insulin-mediated glycogen synthase activation. The pattern and time sequence of GlcN-induced defects suggest that the etiology of peripheral insulin resistance may be distinct from the rapid and marked impairment in insulin signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号