首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD34 is a positive marker for haematopoietic stem cells and endothelial cells. Recent evidence suggests that haematopoietic progenitor cells are involved in atherogenesis. CD34-positive haematopoietic progenitor cells have never been described in rabbit atherosclerotic tissues. The aim of this study is to identify CD34-positive haematopoietic progenitor cells in rabbit atherosclerotic tissues, and to compare this with macrophage (RAM-11), alpha smooth muscle cell actin and fibroblast (prolyl-4-hydroxylase) immunoreactive cells. Sixteen Male New Zealand White rabbits were divided into two groups: Group 1, control diet (Con); group 2, 0.5% cholesterol diet, and killed after 12 weeks. Immunohistochemistry was used to detect CD34 haematopoietic progenitor cells. CD34-positive haematopoietic progenitor cells were identified both within and overlying atherosclerotic plaques. As well, these haematopoietic progenitor cells also stained for RAM-11, CD45, prolyl-4 hydroxylase and alpha smooth muscle cell actin. These findings suggest that in the rabbit model of atherosclerosis, the previously identified macrophages, smooth muscle cells and fibroblasts within and overlying atherosclerotic plaques might be of haematopoietic origin.  相似文献   

2.
‘Requirements for human haematopoietic stem/progenitor cells’ is the first set of guidelines on human haematopoietic stem/progenitor cells in China, jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research. This standard specifies the technical requirements, inspection methods, inspection rules, instructions for usage, labelling requirements, packaging requirements, storage requirements and transportation requirements for human haematopoietic stem/progenitor cells, which is applicable to the quality control for human haematopoietic stem/progenitor cells. We hope that publication of these guidelines will promote institutional establishment, acceptance and execution of proper protocols, and accelerate the international standardization of human haematopoietic stem/progenitor cells for applications.  相似文献   

3.
To explore the physiological significance of AC133 expression on human haematopoietic cells, we phenotyped normal and malignant human haematopoietic cells for AC133 expression, evaluated the utility of AC133 for isolating human stem/progenitor cells in comparison to other known early haematopoietic cell markers, investigated the role of AC133 in regulating hematopoiesis, and evaluated the possibility that MYB might regulate AC133. We found that while human CD34+ progenitor cells expressed AC133, expression was rapidly downregulated during differentiation. In apparent contrast, AC133 mRNA was detectable in cells isolated from CFU-Mix, BFU-E, CFU-GM and CFU-Meg colonies. Human cord blood CD34+ cells expressed AC133 at higher levels than their normal bone marrow counterparts. In apparent contrast to normal primitive haematopoietic cells, the AC133 protein was undetectable on cells from 24 different human haematopoietic cells lines, even though the majority of these cells expressed AC133 mRNA. Since CD34, AC133 and the c-kit (KIT) receptor are all co-expressed on human stem/progenitor cells, we compared the ability of monoclonal antibodies directed against each of these proteins to isolate early progenitor cells. Using these antibodies and magnetized particles in a standard immunoaffinity isolation protocol, we found that anti-CD34 and anti-KIT MoAbs could isolate > 80-90% of the clonogeneic cell population present in a given marrow sample. Anti-AC133 MoAbs recovered approximately 75-80% of CFU-GM and CFU-Meg, but only about 30% of CFU-Mix and BFU-E. Perturbation of AC133 expression with antisense oligodeoxynucleotides (AS ODN) resulted in transient downregulation of AC133 protein on human CD34+ cells but no apparent effect on cell survival or cloning efficiency ex vivo. Finally, downregulation of MYB expression with AS ODN had no effect on the AC133 expression at either the mRNA or protein level. Based on these results, we conclude that AC133 offers no distinct advantage over CD34 or c-kit as a target for immunoaffinity based isolation of primitive hematopoietic cells, that AC133 expression is not required for normal hematopoietic progenitor cell development in vitro, and finally that AC133 expression may not be MYB-dependent.  相似文献   

4.
The ability to track the distribution and differentiation of progenitor and stem cells by high-resolution in vivo imaging techniques would have significant clinical and research implications. We have developed a cell labeling approach using short HIV-Tat peptides to derivatize superparamagnetic nanoparticles. The particles are efficiently internalized into hematopoietic and neural progenitor cells in quantities up to 10-30 pg of superparamagnetic iron per cell. Iron incorporation did not affect cell viability, differentiation, or proliferation of CD34+ cells. Following intravenous injection into immunodeficient mice, 4% of magnetically CD34+ cells homed to bone marrow per gram of tissue, and single cells could be detected by magnetic resonance (MR) imaging in tissue samples. In addition, magnetically labeled cells that had homed to bone marrow could be recovered by magnetic separation columns. Localization and retrieval of cell populations in vivo enable detailed analysis of specific stem cell and organ interactions critical for advancing the therapeutic use of stem cells.  相似文献   

5.
Regulation of haematopoiesis was investigated by studying the response of haematopoietic tissues of mice to a perturbation of the steady state by vinblastine (VLB). Progenitor cells were quantified ly limiting dilution analysis of diffusion chamber cultures of haematopoietic cells and by the spleen colony technique. The diffusion chamber technique appears to assay granulocyte progenitor cells and those multipotent progenitor cells that become committed to granulopoiesis during chamber culture. The spleen colony technique probably assays multipotent progenitor cells. Decaying oscillatory responses to VLB were observed for progenitor cells as well as for differentiating cells in bone marrow. The period lengths of the diffusion chamber progenitor cell oscillations might indicate that these were induced by humoral feedback signal(s) from nonproliferative granulocytes. The oscillations of the multipotent progenitor cells of bone marrow were less pronounced and were earlier damped than those of the granulocyte progenitor cells. This may support the hypotesis that multipotent progenitor cells are regulated by more efficient mechanisms, which may depend on short range cell-cell interactions rather than long range humoral regulators.  相似文献   

6.
《Research in virology》1990,141(2):185-193
In order to elucidate the mechanisms responsible for the disturbances of haematopoiesis in HIV-infected individuals, bone marrow from 25 patients with either ARC or AIDS was studied. There is a stage-related decrease in CFU-GEMM, CFU-MK, BFU-E and CFU-GM, with the latter being least affected. This decrease is inversely correlated with the number of circulating CD4 cells and the CD4/CD8 ratio. Immunohistochemical and in situ hybridization studies of haematopoietic colonies failed to demonstrate HIV infection of haematopoietic cells. Neither the depletion of adherent mononuclear cells from haematopoietic cell cultures nor the addition of plasma containing antibodies against HIV gp120 could demonstrate an inhibitory effect of HIV-infected macrophages or immune-mediated progenitor cell lysis, respectively. Hence, imbalances of T-cell subpopulations appear to be mainly responsible for the progressive impairment of proliferation and differentiation of bone marrow progenitor cells observed in HIV-infected individuals.  相似文献   

7.
8.
Generation time of leukaemic blast progenitor cells   总被引:1,自引:0,他引:1  
Previous studies have indicated that the generation time of human leukaemic cells is longer than that of normal haematopoietic cells. We have employed a modification of the thymidine (TdR)-suicide technique to measure directly the generation time of leukaemic progenitor cells capable of colony formation. The results obtained with two human leukaemic cell lines (KG-1 and HL-60) and with blast progenitor cells from two patients with acute myelogenous leukaemia indicate generation times ranging from 9 X 0-22 X 0 hr and S-phase durations ranging from 5 X 5-8 X 0 hr. Using the same technique, the generation time of normal bone marrow CFU-c was determined to be 9-11 hr. These findings suggest that the proliferation rate of human leukaemic blast progenitor cells is similar to that of normal haematopoietic stem cells.  相似文献   

9.
Hoxa5 is preferentially expressed in haematopoietic stem cells (HSCs) and multipotent progenitor cells (MPPs), and is more highly expressed in expanding HSCs. To date, little is known regarding the role of Hoxa5 in HSCs and downstream progenitor cells in vivo. In this study, we show that increased expression of Hoxa5 in haematopoietic stem cells leads to aberrant erythropoiesis in vivo. Hoxa5 differentially modifies the cell cycle of HSCs and lineage committed progenitor cells, depending on the cellular context. Hoxa5 drives HSCs, but not MPPs, through the cell cycle and arrests erythroid progenitor cells in G0 phase. Although the HSC pool shrinks after overexpression of Hoxa5, HSCs sustain the abilities of self-renewal and multipotency. In vivo, Hoxa5 has two effects on erythropoiesis: it causes a predominance of mature erythroid lineage cells and the partial apoptosis of erythroid progenitors. RNA-seq indicates that multiple biological processes, including erythrocyte homeostasis, cell metabolism, and apoptosis, are modified by Hoxa5. The results of this study indicate that Hoxa5 is a key regulator of the HSC cell cycle, and the inappropriate expression of Hoxa5 in lineage-committed progenitor cells leads to aberrant erythropoiesis.  相似文献   

10.
Hoxa5 is preferentially expressed in haematopoietic stem cells (HSCs) and multipotent progenitor cells (MPPs), and is more highly expressed in expanding HSCs. To date, little is known regarding the role of Hoxa5 in HSCs and downstream progenitor cells in vivo. In this study, we show that increased expression of Hoxa5 in haematopoietic stem cells leads to aberrant erythropoiesis in vivo. Hoxa5 differentially modifies the cell cycle of HSCs and lineage committed progenitor cells, depending on the cellular context. Hoxa5 drives HSCs, but not MPPs, through the cell cycle and arrests erythroid progenitor cells in G0 phase. Although the HSC pool shrinks after overexpression of Hoxa5, HSCs sustain the abilities of self-renewal and multipotency. In vivo, Hoxa5 has two effects on erythropoiesis: it causes a predominance of mature erythroid lineage cells and the partial apoptosis of erythroid progenitors. RNA-seq indicates that multiple biological processes, including erythrocyte homeostasis, cell metabolism, and apoptosis, are modified by Hoxa5. The results of this study indicate that Hoxa5 is a key regulator of the HSC cell cycle, and the inappropriate expression of Hoxa5 in lineage-committed progenitor cells leads to aberrant erythropoiesis.  相似文献   

11.
There is rapidly increasing interest in the use of magnetic resonance imaging (MRI) to track cell migration in vivo. Iron oxide MR contrast agents can be detected at micromolar concentrations of iron, and offer sufficient sensitivity for T2*-weighted imaging. Cellular MRI shows potential for assessing aspects of cardiovascular disease. Labeling in vivo and tracking macrophages using iron oxide nanoparticles has been a goal for cellular MRI because macrophages play a pivotal role in the pathophysiology of many human diseases, including atherosclerosis. Cellular MRI has also been using to track transplanted therapeutic cells in myocardial regeneration. This review looked at iron oxide nanoparticles, methods of cell labeling, image acquisition techniques and limitations encountered for visualization. Particular attention was paid to stem cells and macrophages for the cardiovascular system.  相似文献   

12.
To investigate whether the 60-kDa heat shock chaperonin protein (hsp60) is present on the surface of mammalian cells, we used immunogold labeling of intact cells and backscattered electron imaging to image gold particles. Chinese hamster ovary cells and the human leukemic CD4-positive T-cell line CEM-SS on glass coverslips were labeled using affinity-purified monoclonal and polyclonal antibodies specific for hsp60 and 30 nm gold markers. Cells were imaged using the scanning mode of the conventional transmission electron microscope. Backscattered electron imaging provided definitive identification of the gold markers while secondary electron imaging gave information on surface architecture. Labeling intensity was 250–800 gold particles per cell in Chinese hamster ovary cells and 600–2000 in CEM-SS human lymphoblasts. The finding of hsp60 on the cell surface of mammalian cells may signify chaperone involvement in surface functions.  相似文献   

13.
The purpose of this study was to determine the ability of superparamagnetic iron oxide (SPIO) nanoparticles to function as a long-term tracking label for multi-modal imaging of implanted engineered tissues containing muscle-derived progenitor cells using magnetic resonance imaging (MRI) and X-ray micro-computed tomography (μCT). SPIO-labeled primary myoblasts were embedded in fibrin sealant and imaged to obtain intensity data by MRI or radio-opacity information by μCT. Each imaging modality displayed a detection gradient that matched increasing SPIO concentrations. Labeled cells were then incorporated in fibrin sealant, injected into the atrioventricular groove of rat hearts, and imaged in vivo and ex vivo for up to 1 year. Transplanted cells were identified in intact animals and isolated hearts using both imaging modalities. MRI was better able to detect minuscule amounts of SPIO nanoparticles, while μCT more precisely identified the location of heavily-labeled cells. Histological analyses confirmed that iron oxide particles were confined to viable, skeletal muscle-derived cells in the implant at the expected location based on MRI and μCT. These analyses showed no evidence of phagocytosis of labeled cells by macrophages or release of nanoparticles from transplanted cells. In conclusion, we established that SPIO nanoparticles function as a sensitive and specific long-term label for MRI and μCT, respectively. Our findings will enable investigators interested in regenerative therapies to non-invasively and serially acquire complementary, high-resolution images of transplanted cells for one year using a single label.  相似文献   

14.
OBJECTIVES: To review information on cord blood banking and transplantation with respect to the author's studies, and in context of this field of investigation. RESULTS: Cord blood transplantation has been successfully used to treat a number of malignant and non-malignant disorders. However, this technique is still associated with limited numbers of cells for transplantation, and with delayed engraftment of neutrophils and platelets. The field of cord blood transplantation will benefit from enhanced and mechanistically based information on haematopoietic stem cell function and potential means to enhance its effectiveness are reviewed. This includes notions concerning possibility of retrieving more cells from the placenta and cord blood, to expand haematopoietic stem cells ex vivo and to increase efficiency of homing and engraftment of these cells. Also discussed are cryopreservation and long-term storage of cord blood haematopoietic and progenitor cells, and new laboratory findings and animal studies for non-haematopoietic uses of cord blood.  相似文献   

15.
Background aimsTracking the fate of cells after infusion would be a valuable asset for many stem cell therapies, but very few (cell) labels are approved for human therapeutic use. Superparamagnetic iron oxide particles (SPIO) can be internalized into stem cells in vitro to allow real-time tracking with gradient echo magnetic resonance imaging, but SPIO are approved for (diagnostic) imaging and not for (therapeutic) cell labeling in vivo. In this study, we investigated the possibility of labeling stem cells with an SPIO approved for patient use, albeit in a novel manner by enhancing uptake with the use of a transfection agent, also approved for patient use. Although there are many reports of hematopoietic stem cells being labeled with SPIO, there is some controversy regarding the efficiency of this and whether undifferentiated CD34+ progenitor (stem) cells are able to take up iron in the absence of a transfection agent to enhance the process.MethodsHuman CD34+ cells were treated in vitro as follows: incubation with (i) medium only (control), (ii) ferumoxide (Endorem) and (iii) ferumoxide (Endorem) plus exposure to a transfection agent (protamine sulfate). Cells were incubated for 2, 4 and 24 hours and assessed for viability, differentiation capacity and visualized in vitro with 3-T magnetic resonance imaging. The cells were also analyzed by means of flow cytometry and morphology examined by electron microscopy.ResultsCD34+ hematopoietic progenitor cells can internalize ferumoxide (Endorem) independently of a transfection agent. However, uptake of ferumoxide is enhanced after exposure to protamine sulfate. Iron labeling of CD34+ cells in this manner does not affect cell viability and does not appear to affect the potential of the cells to grow in culture. Iron-labeled CD34+ cells can be visualized in vitro on 3-T magnetic resonance image scanning.ConclusionsEndorem and protamine sulfate can be combined to promote iron oxide nanoparticle uptake by CD34+ cells, and this methodology can potentially be used to track the fate of cells in a clinical trial setting because both compounds are (separately) approved for clinical use.  相似文献   

16.
The Drosophila lymph gland is a haematopoietic organ in which progenitor cells, which are most akin to the common myeloid progenitor in mammals, proliferate and differentiate into three types of mature cell--plasmatocytes, crystal cells and lamellocytes--the functions of which are reminiscent of mammalian myeloid cells. During the first and early second instars of larval development, the lymph gland contains only progenitors, whereas in the third instar, a medial region of the primary lobe of the lymph gland called the medullary zone contains these progenitors, and maturing blood cells are found juxtaposed in a peripheral region designated the cortical zone. A third group of cells referred to as the posterior signalling centre functions as a haematopoietic niche. Similarly to mammalian myeloid cells, Drosophila blood cells respond to multiple stresses including hypoxia, infection and oxidative stress. However, how systemic signals are sensed by myeloid progenitors to regulate cell-fate determination has not been well described. Here, we show that the haematopoietic progenitors of Drosophila are direct targets of systemic (insulin) and nutritional (essential amino acid) signals, and that these systemic signals maintain the progenitors by promoting Wingless (WNT in mammals) signalling. We expect that this study will promote investigation of such possible direct signal sensing mechanisms by mammalian myeloid progenitors.  相似文献   

17.
The trans-differentiation hypothesis of adult tissue-specific stem cells has been recently questioned because of insufficient proof that the so-called plasticity experiments were performed on pure populations of tissue-specific stem cells. It was shown recently, for example, that the formation of haematopoietic colonies by muscle cells depended on the presence of haematopoietic stem/progenitor cells residing within the muscle tissue and hence was not related to the plasticity of the muscle stem cells. The explanation for the presence in, or homing into, muscles of haematopoietic stem cells is, however, not clear. In our study, we hypothesised that muscle tissues secrete stromal-derived factor (SDF)- 1, an alpha-chemokine for haematopoietic stem cells (HSC), which could attract HSC circulating in peripheral blood into muscle tissue. We found, using RT-PCR and immunocytochemistry, that SDF-1 was expressed in human heart and skeletal muscles. Moreover, muscle satellite cells, which are pivotal for regeneration of muscle, highly expressed on their surface CXCR4, a G-protein-coupled receptor that binds SDF-1. To determine whether the CXCR4 receptor is functional on muscle satellite/progenitor cells, we stimulated murine satellite cells (the C2C12 cell line) with SDF-1 and demonstrated the phosphorylation of p42/44 MAPK and AKT serine-threonine kinase in these cells. Moreover, we showed that SDF-1 gradient chemoattracts these cells. We postulate that the CXCR4-positive muscle satellite and CXCR4-positive HSC circulating in the peripheral blood compete for occupancy of SDF-1-positive stem cell niches that are present in bone marrow and muscle tissues. Thus, we suggest that competition for common niches by various circulating CXCR4-positive stem cells and their ability to home to the SDF-1-positive niches in various organs, is a better explanation than stem cell plasticity of why (i) haematopoietic colonies can be cultured from muscles and (ii) early muscle progenitors could be cultured from bone marrow.  相似文献   

18.
Antibody-conjugated iron oxide nanoparticles offer a specific and sensitive tool to enhance magnetic resonance (MR) images of both local and metastatic cancer. Prostate-specific membrane antigen (PSMA) is predominantly expressed on the neovasculature of solid tumors and on the surface of prostate cells, with enhanced expression following androgen deprivation therapy. Biotinylated anti-PSMA antibody was conjugated to streptavidin-labeled iron oxide nanoparticles and used in MR imaging and confocal laser scanning microscopic imaging studies using LNCaP prostate cancer cells. Labeled iron oxide nanoparticles are internalized by receptor-mediated endocytosis, which involves the formation of clathrin-coated vesicles. Endocytosed particles are not targeted to the Golgi apparatus for recycling but instead accumulate within lysosomes. In T(1)-weighted MR images, the signal enhancement owing to the magnetic particles was greater for cells with magnetic particles bound to the cell surface than for cells that internalized the particles. However, the location of the particles (surface vs internal) did not significantly alter their effect on T(2)-weighted images. Our findings indicate that targeting prostate cancer cells using PSMA offers a specific and sensitive technique for enhancing MR images.  相似文献   

19.
Wnt 信号通路在造血干/祖细胞自我更新的过程中发挥至关重要的作用 . 纯化的 Wnt3a 蛋白可以实现造血干/祖细胞的扩增 . 通过病毒转染原代小鼠骨髓基质细胞,建立转基因滋养层细胞 . 通过共培养对转基因滋养层细胞扩增 CD34+ 造血干/祖细胞的作用进行了研究 . 实验结果显示 , 与普通滋养层加细胞因子组相比,经转基因滋养层加细胞因子组培养的 CD34+造血干/祖细胞集落形成能力 (CFC) 是其 (1.55±0.06) 倍;混合集落形成能力是其 (1.95±0.26) 倍;高增殖潜能集落形成能力 (HPP-CFC) 是其 (1.45±0.40) 倍; LTC-IC 活性是其 (3.83±0.86) 倍 . 结果表明,转基因滋养层细胞通过分泌具有天然活性的 Wnt3a 蛋白能在体外有效地扩增造血干/祖细胞的数量 .  相似文献   

20.
Objectives: Stem cell factor receptor, c‐kit, is considered to be the master signalling molecule of haematopoietic stem cells. It develops the orchestral pattern of haematopoietic cell lineages, seen by its varying degree of omnipresence in progenitors, lineage committed and mature cells. We have investigated the effect of over‐expressing c‐kit on early recovery of the haematopoietic compartment, in irradiated hosts. Materials and methods: Normal bone marrow cells (BMCs) were transfected with Kitwt (wild‐type c‐kit) or its variant Kitmu (asp814tyr) by electroporation. Lethally irradiated mice were transplanted with normal or transfected congeneic BMCs. The effect of ectopic expression of c‐kit on haematopoietic cell recovery was determined by analysing donor‐derived cells. Furthermore, effects of both types of c‐kit over‐expression on progenitor and lineage‐committed cells were examined by flow cytometric analysis of Sca‐1 and lineage‐committed (Lin+) cells respectively. Results: Hyper‐activating Kitmu significantly improved recovery of the haematopoietic system in irradiated hosts. In vivo results showed that the donor‐derived c‐kit+ cell population was increased to more than 3‐fold in the case of Kitmu‐transfected cells compared to normal and Kitwt over‐expressing BMCs. In general, survival of progenitor and committed cell was improved in the Kitmu over‐expressing system compared to the other two cohorts. Conclusion: These results suggest that recruitment of the hyper‐activating variant of c‐kit (Kitmu) lead to early recovery of the bone marrow of lethally irradiated mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号