首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Na/H exchange regulatory factor 1 (NHERF1) is a scaffolding protein that regulates signaling and trafficking of several G protein-coupled receptors (GPCRs), including the parathyroid hormone receptor (PTH1R). GPCRs activate extracellular signal-regulated kinase (ERK)1/2 through different mechanisms. Here, we characterized NHERF1 regulation of PTH1R-stimulated ERK1/2. Parathyroid hormone (PTH) stimulated ERK1/2 phosphorylation by a protein kinase A (PKA)-dependent, but protein kinase C-, cyclic adenosine 5'-monophosphate-, and Rap1-independent pathway in Chinese hamster ovary cells stably transfected with the PTH1R and engineered to express NHERF1 under the control of tetracycline. NHERF1 blocked PTH-induced ERK1/2 phosphorylation downstream of PKA. This suggested that NHERF1 inhibitory effects on ERK1/2 occur at a postreceptor locus. Forskolin activated ERK1/2, and this effect was blocked by NHERF1. NHERF1 interacted with AKT and inhibited ERK1/2 activation by decreasing the stimulatory effect of 14-3-3 binding to B-Raf, while increasing the inhibitory influence of AKT negative regulation on ERK1/2 activation. This novel regulatory mechanism provides a new model by which cytoplasmic adapter proteins modulate ERK1/2 activation through a receptor-independent mechanism involving B-Raf.  相似文献   

2.
Na/H exchange regulatory factor-1 (NHERF1) is a PDZ protein that regulates trafficking of several G protein-coupled receptors. The phenotype of NHERF1-null mice suggests that the parathyroid hormone (PTH) receptor (PTH1R) is the principal GPCR interacting with NHERF1. The effect of NHERF1 on receptor recycling is unknown. Here, we characterized NHERF1 effects on PTH1R membrane tethering and recycling by radio-ligand binding and recovery after maximal receptor endocytosis. Using Chinese hamster ovary cells expressing the PTH1R, where NHERF1 expression could be induced by tetracycline, NHERF1 inhibited PTH1R endocytosis and delayed PTH1R recycling. NHERF1 also inhibited PTH-induced receptor internalization in MC4 osteoblast cells. Reducing constitutive NHERF1 levels in HEK-293 cells with short hairpin RNA directed against NHERF1 augmented PTH1R endocytosis in response to PTH. Mutagenesis of the PDZ-binding domains or deletion of the MERM domain of NHERF1 demonstrated that both are required for inhibition of endocytosis and recycling. Likewise, an intact COOH-terminal PDZ recognition motif in PTH1R is needed. The effect of NHERF1 on receptor internalization and recycling was not associated with altered receptor expression or binding, activation, or phosphorylation but involved beta-arrestin and dynamin. We conclude that NHERF1 inhibits endocytosis without affecting PTH1R recycling in MC4 and PTH1R-expressing HEK-293 cells. Such an effect may protect against PTH resistance or PTH1R down-regulation in certain cells harboring NHERF1.  相似文献   

3.
Parathyroid hormone (PTH) regulates extracellular calcium homeostasis through the type 1 PTH receptor (PTH1R) expressed in kidney and bone. The PTH1R undergoes beta-arrestin/dynamin-mediated endocytosis in response to the biologically active forms of PTH, PTH-(1-34), and PTH-(1-84). We now show that amino-truncated forms of PTH that do not activate the PTH1R nonetheless induce PTH1R internalization in a cell-specific pattern. Activation-independent PTH1R endocytosis proceeds through a distinct arrestin-independent mechanism that is operative in cells lacking the adaptor protein Na/H exchange regulatory factor 1 (NHERF1) (ezrin-binding protein 50). Using a combination of radioligand binding experiments and quantitative, live cell confocal microscopy of fluorescently tagged PTH1Rs, we show that in kidney distal tubule cells and rat osteosarcoma cells, which lack NHERF1, the synthetic antagonist PTH-(7-34) and naturally circulating PTH-(7-84) induce internalization of PTH1R in a beta-arrestin-independent but dynamin-dependent manner. Expression of NHERF1 in these cells inhibited antagonist-induced endocytosis. Conversely, expression of dominant-negative forms of NHERF1 conferred internalization sensitivity to PTH-(7-34) in cells expressing NHERF1. Mutation of the PTH1R PDZ-binding motif abrogated interaction of the receptor with NHERF1. These mutated receptors were fully functional but were now internalized in response to PTH-(7-34) even in NHERF1-expressing cells. Removing the NHERF1 ERM domain or inhibiting actin polymerization allowed otherwise inactive ligands to internalize the PTH1R. These results demonstrate that NHERF1 acts as a molecular switch that legislates the conditional efficacy of PTH fragments. Distinct endocytic pathways are determined by NHERF1 that are operative for the PTH1R in kidney and bone cells.  相似文献   

4.
The Na(+)/H(+) exchanger regulatory factor-1 (NHERF1) is a molecular scaffold important for the signaling of the G-protein coupled receptor for the parathyroid hormone (PTH1R). The two PDZ (PSD-95, Discs-large, ZO1) domains of NHERF1 through association with the C-termini of PTH1R and phospholipase C enhance the signaling pathway associated with PTH. To examine these interactions, we have produced the individual PDZ1 and PDZ2 domains as well as the tandem PDZ1-PDZ2 domains (PDZ12) of NHERF1 and have characterized the binding affinities of the C-terminal motifs of PTH1R and PLCbeta using fluorescence anisotropy. Circular dichroism indicates that the PDZ1 and PDZ2 are properly folded. Based on fluorescence anisotropy we find that the C-terminus of PTH1R, containing ETVM, has similar affinities (approximately 10 microm) for both PDZ1 and PDZ2. The PTH1R displayed reduced binding affinity for the tandem PDZ12 (16 microm) compared with the individual domains or a solution of equal molar concentrations of PDZ1 and PDZ2 (5.8 microm), suggesting negative cooperativity between the PDZ domains or intervening region. The C-termini of PLCbeta (both beta1 and beta2 isozymes were examined, containing DTPL and ESRL, respectively) displayed a diminished affinity for PDZ2 (approximately 30 microm) over that of PDZ1 (approximately 8 microm). Finally, we demonstrate trans PDZ1-PDZ2 association that is enhanced in the presence of the C-terminus of PTH1R or PLCbeta, suggesting oligomerization of NHERF as a mode for enhancing the signaling associated with PTH.  相似文献   

5.
6.
Congenital defects in the Na/H exchanger regulatory factor-1 (NHERF1) are linked to disordered phosphate homeostasis and skeletal abnormalities in humans. In the kidney, these mutations interrupt parathyroid hormone (PTH)-responsive sequestration of the renal phosphate transporter, Npt2a, with ensuing urinary phosphate wasting. We now report that NHERF1, a modular PDZ domain scaffolding protein, coordinates the assembly of an obligate ternary complex with Npt2a and the PKA-anchoring protein ezrin to facilitate PTH-responsive cAMP signaling events. Activation of ezrin-anchored PKA initiates NHERF1 phosphorylation to disassemble the ternary complex, release Npt2a, and thereby inhibit phosphate transport. Loss-of-function mutations stabilize an inactive NHERF1 conformation that we show is refractory to PKA phosphorylation and impairs assembly of the ternary complex. Compensatory mutations introduced in mutant NHERF1 re-establish the integrity of the ternary complex to permit phosphorylation of NHERF1 and rescue PTH action. These findings offer new insights into a novel macromolecular mechanism for the physiological action of a critical ternary complex, where anchored PKA coordinates the assembly and turnover of the Npt2a-NHERF1-ezrin complex.  相似文献   

7.
The brush border (BB) Na(+)/H(+) exchanger NHE3 is rapidly activated or inhibited by changes in trafficking, which mimics renal and intestinal physiology. However, there is a paradox in that NHE3 has limited mobility in the BB due to its binding to the multi-PDZ domain containing the NHERF family. To allow increased endocytosis, as occurs with elevated intracellular Ca(2+), we hypothesized that NHE3 had to be, at least transiently, released from the BB cytoskeleton. Because NHERF1 and -2 are localized at the BB, where they bind NHE3 as well as the cytoskeleton, we tested whether either or both might dynamically interact with NHE3 as part of Ca(2+) signaling. We employed FRET to study close association of NHE3 and these NHERFs and fluorescence recovery after photobleaching to monitor NHE3 mobility in the apical domain in polarized opossum kidney cells. Under basal conditions, NHERF2 and NHE3 exhibited robust FRET signaling. Within 1 min of A23187 (0.5 μm) exposure, the NHERF2-NHE3 FRET signal was abolished, and BB NHE3 mobility was transiently increased. The dynamics in FRET signal and NHE3 mobility correlated well with a change in co-precipitation of NHE3 and NHERF2 but not NHERF1. We conclude the following. 1) Under basal conditions, NHE3 closely associates with NHERF2 in opossum kidney cell microvilli. 2) Within 1 min of elevated Ca(2+), the close association of NHE3-NHERF2 is abolished but is re-established in ~60 min. 3) The change in NHE3-NHERF2 association is accompanied by an increased BB mobile fraction of NHE3, which contributes to inhibition of NHE3 transport activity via increased endocytosis.  相似文献   

8.
Na(+)/H(+) exchanger 3 (NHE3) is expressed in the brush border (BB) of intestinal epithelial cells and accounts for the majority of neutral NaCl absorption. It has been shown that the Na(+)/H(+) exchanger regulatory factor (NHERF) family members of multi-PDZ domain-containing scaffold proteins bind to the NHE3 COOH terminus and play necessary roles in NHE3 regulation in intestinal epithelial cells. Most studies of NHE3 regulation have been in cell models in which NHERF1 and/or NHERF2 were overexpressed. We have now developed an intestinal Na(+) absorptive cell model in Caco-2/bbe cells by expressing hemagglutinin (HA)-tagged NHE3 with an adenoviral infection system. Roles of NHERF1 and NHERF2 in NHE3 regulation were determined, including inhibition by cAMP, cGMP, and Ca(2+) and stimulation by EGF, with knockdown (KD) approaches with lentivirus (Lenti)-short hairpin RNA (shRNA) and/or adenovirus (Adeno)-small interfering RNA (siRNA). Stable infection of Caco-2/bbe cells by NHERF1 or NHERF2 Lenti-shRNA significantly and specifically reduced NHERF protein expression by >80%. NHERF1 KD reduced basal NHE3 activity, while NHERF2 KD stimulated NHE3 activity. siRNA-mediated (transient) and Lenti-shRNA-mediated (stable) gene silencing of NHERF2 (but not of NHERF1) abolished cGMP- and Ca(2+)-dependent inhibition of NHE3. KD of NHERF1 or NHERF2 alone had no effect on cAMP inhibition of NHE3, but KD of both simultaneously abolished the effect of cAMP. The stimulatory effect of EGF on NHE3 was eliminated in NHERF1-KD but occurred normally in NHERF2-KD cells. These findings show that both NHERF2 and NHERF1 are involved in setting NHE3 activity. NHERF2 is necessary for cGMP-dependent protein kinase (cGK) II- and Ca(2+)-dependent inhibition of NHE3. cAMP-dependent inhibition of NHE3 activity requires either NHERF1 or NHERF2. Stimulation of NHE3 activity by EGF is NHERF1 dependent.  相似文献   

9.
The multi-PDZ domain containing protein Na(+)/H(+) Exchanger Regulatory Factor 1 (NHERF1) binds to Na(+)/H(+) exchanger 3 (NHE3) and is associated with the brush border (BB) membrane of murine kidney and small intestine. Although studies in BB isolated from kidney cortex of wild type and NHERF1(-/-) mice have shown that NHERF1 is necessary for cAMP inhibition of NHE3 activity, a role of NHERF1 in NHE3 regulation in small intestine and in intact kidney has not been established. Here a method using multi-photon microscopy with the pH-sensitive dye SNARF-4F (carboxyseminaphthorhodafluors-4F) to measure BB NHE3 activity in intact murine tissue and use it to examine the role of NHERF1 in regulation of NHE3 activity. NHE3 activity in wild type and NHERF1(-/-) ileum and wild type kidney cortex were inhibited by cAMP, whereas the cAMP effect was abolished in kidney cortex of NHERF1(-/-) mice. cAMP inhibition of NHE3 activity in these two tissues is mediated by different mechanisms. In ileum, a protein kinase A (PKA)-dependent mechanism accounts for all cAMP inhibition of NHE3 activity since the PKA antagonist H-89 abolished the inhibitory effect of cAMP. In kidney, both PKA-dependent and non-PKA-dependent mechanisms were involved, with the latter reproduced by the effect on an EPAC (exchange protein directly activated by cAMP) agonist (8-(4-chlorophenylthio)-2'O-Me-cAMP). In contrast, the EPAC agonist had no effect in proximal tubules in NHERF1(-/-) mice. These data suggest that in proximal tubule, NHERF1 is required for all cAMP inhibition of NHE3, which occurs through both EPAC-dependent and PKA-dependent mechanisms; in contrast, cAMP inhibits ileal NHE3 only by a PKA-dependent pathway, which is independent of NHERF1 and EPAC.  相似文献   

10.
Phosphate homeostasis, mediated by dietary intake, renal absorption, and bone deposition, is incompletely understood because of the uncharacterized roles of numerous implicated protein factors. Here, we identified a novel role for one such element, regulator of G protein signaling 14 (RGS14), suggested by genome-wide association studies to associate with dysregulated Pi levels. We show that human RGS14 possesses a carboxy-terminal PDZ ligand required for sodium phosphate cotransporter 2a (NPT2A) and sodium hydrogen exchanger regulatory factor-1 (NHERF1)–mediated renal Pi transport. In addition, we found using isotope uptake measurements combined with bioluminescence resonance energy transfer assays, siRNA knockdown, pull-down and overlay assays, and molecular modeling that secreted proteins parathyroid hormone (PTH) and fibroblast growth factor 23 inhibited Pi uptake by inducing dissociation of the NPT2A–NHERF1 complex. PTH failed to affect Pi transport in cells expressing RGS14, suggesting that it suppresses hormone-sensitive but not basal Pi uptake. Interestingly, RGS14 did not affect PTH-directed G protein activation or cAMP formation, implying a postreceptor site of action. Further pull-down experiments and direct binding assays indicated that NPT2A and RGS14 bind distinct PDZ domains on NHERF1. We showed that RGS14 expression in human renal proximal tubule epithelial cells blocked the effects of PTH and fibroblast growth factor 23 and stabilized the NPT2A–NHERF1 complex. In contrast, RGS14 genetic variants bearing mutations in the PDZ ligand disrupted RGS14 binding to NHERF1 and subsequent PTH-sensitive Pi transport. In conclusion, these findings identify RGS14 as a novel regulator of hormone-sensitive Pi transport. The results suggest that changes in RGS14 function or abundance may contribute to the hormone resistance and hyperphosphatemia observed in kidney diseases.  相似文献   

11.
Nitric oxide (NO) in articular chondrocytes regulates differentiation, survival, and inflammatory responses by modulating ERK-1 and -2, p38 kinase, and protein kinase C (PKC) alpha and zeta. In this study, we investigated the effects of the actin cytoskeletal architecture on NO-induced dedifferentiation, apoptosis, cyclooxygenase (COX)-2 expression, and prostaglandin E2 production in articular chondrocytes, with a focus on ERK-1/-2, p38 kinase, and PKC signaling. Disruption of the actin cytoskeleton by cytochalasin D (CD) inhibited NO-induced apoptosis, dedifferentiation, COX-2 expression, and prostaglandin E2 production in chondrocytes cultured on plastic or during cartilage explants culture. CD treatment did not affect ERK-1/-2 activation but blocked the signaling events necessary for NO-induced dedifferentiation, apoptosis, and COX-2 expression such as activation of p38 kinase and inhibition of PKCalpha and -zeta. CD also suppressed activation of downstream signaling of p38 kinase and PKC, such as NF-kappaB activation, p53 accumulation, and caspase-3 activation, which are necessary for NO-induced apoptosis. NO production in articular chondrocytes caused down-regulation of phosphatidylinositol (PI) 3-kinase and Akt activities. The down-regulation of PI 3-kinase and Akt was blocked by CD treatment, and the CD effects on apoptosis, p38 kinase, and PKCalpha and -zeta were abolished by the inhibition of PI 3-kinase with LY294002. Our results collectively indicate that the actin cytoskeleton mediates NO-induced regulatory effects in chondrocytes by modulating down-regulation of PI 3-kinase and Akt, activation of p38 kinase, and inhibition of PKCalpha and -zeta  相似文献   

12.
During drought, the plant hormone abscisic acid (ABA) triggers stomatal closure, thus reducing water loss. Using infrared thermography, we isolated two allelic Arabidopsis mutants (ost1-1 and ost1-2) impaired in the ability to limit their transpiration upon drought. These recessive ost1 mutations disrupted ABA induction of stomatal closure as well as ABA inhibition of light-induced stomatal opening. By contrast, the ost1 mutations did not affect stomatal regulation by light or CO(2), suggesting that OST1 is involved specifically in ABA signaling. The OST1 gene was isolated by positional cloning and was found to be expressed in stomatal guard cells and vascular tissue. In-gel assays indicated that OST1 is an ABA-activated protein kinase related to the Vicia faba ABA-activated protein kinase (AAPK). Reactive oxygen species (ROS) were shown recently to be an essential intermediate in guard cell ABA signaling. ABA-induced ROS production was disrupted in ost1 guard cells, whereas applied H(2)O(2) or calcium elicited the same degree of stomatal closure in ost1 as in the wild type. These results suggest that OST1 acts in the interval between ABA perception and ROS production. The relative positions of ost1 and the other ABA-insensitive mutations in the ABA signaling network (abi1-1, abi2-1, and gca2) are discussed.  相似文献   

13.
We have demonstrated that Na+/H+ exchanger regulatory factor 1 (NHERF1) overexpression in CFBE41o- cells induces a significant redistribution of F508del cystic fibrosis transmembrane conductance regulator (CFTR) from the cytoplasm to the apical membrane and rescues CFTR-dependent chloride secretion. Here, we observe that CFBE41o- monolayers displayed substantial disassembly of actin filaments and that overexpression of wild-type (wt) NHERF1 but not NHERF1-Δ Ezrin-Radixin-Moesin (ERM) increased F-actin assembly and organization. Furthermore, the dominant-negative band Four-point one, Ezrin, Radixin, Moesin homology (FERM) domain of ezrin reversed the wt NHERF1 overexpression-induced increase in both F-actin and CFTR-dependent chloride secretion. wt NHERF1 overexpression enhanced the interaction between NHERF1 and both CFTR and ezrin and between ezrin and actin and the overexpression of wt NHERF1, but not NHERF1-ΔERM, also increased the phosphorylation of ezrin in the apical region of the cell monolayers. Furthermore, wt NHERF1 increased RhoA activity and transfection of constitutively active RhoA in CFBE41o- cells was sufficient to redistribute phospho-ezrin to the membrane fraction and rescue both the F-actin content and the CFTR-dependent chloride efflux. Rho kinase (ROCK) inhibition, in contrast, reversed the wt NHERF1 overexpression-induced increase of membrane phospho-ezrin, F-actin content, and CFTR-dependent secretion. We conclude that NHERF1 overexpression in CFBE41o- rescues CFTR-dependent chloride secretion by forming the multiprotein complex RhoA-ROCK-ezrin-actin that, via actin cytoskeleton reorganization, tethers F508del CFTR to the cytoskeleton stabilizing it on the apical membrane.  相似文献   

14.
Oxidized low density lipoprotein (OxLDL) has multiple proatherogenic effects, including induction of apoptosis. We have recently shown that OxLDL markedly downregulates insulin-like growth factor-1 receptor (IGF-1R) in human aortic smooth muscle cells, and that IGF-1R overexpression blocks OxLDL-induced apoptosis. We hypothesized that specific OxLDL-triggered signaling events led to IGF-1R downregulation and apoptosis. We examined OxLDL signaling pathways and found that neither IGF-1R downregulation nor the proapoptotic effect was blocked by inhibition of OxLDL-triggered extracellular signal-regulated kinase, p38 mitogen-activated protein kinase (MAPK), or peroxisome proliferator-activated receptor gamma (PPARgamma) signaling pathways, as assessed using specific inhibitors. However, antioxidants, polyethylene glycol catalase, superoxide dismutase, and Trolox completely blocked OxLDL downregulation of IGF-1R and OxLDL-induced apoptosis. Nordihydroguaiaretic acid, AA-861, and baicalein, which are lipoxygenase inhibitors and also have antioxidant activity, blocked IGF-1R downregulation and apoptosis as well as reactive oxygen species (ROS) production. These results suggest that OxLDL enhances ROS production possibly through lipoxygenase activity, leading to IGF-1R downregulation and apoptosis. Furthermore, anti-CD36 scavenger receptor antibody markedly inhibited OxLDL-induced IGF-1R downregulation and apoptosis as well as ROS production. In conclusion, our data demonstrate that OxLDL downregulates IGF-1R via redox-sensitive pathways that are distinct from OxLDL signaling through MAPK- and PPARgamma-involved pathways but may involve a CD36-dependent mechanism.  相似文献   

15.
16.
The sodium-hydrogen exchange regulatory factor 1 (NHERF-1/EBP50) interacts with the C terminus of several G protein-coupled receptors (GPCRs). We examined the role of NHERF-1 and the cytoskeleton on the distribution, dynamics, and trafficking of the beta(2)-adrenergic receptor (beta(2)AR; a type A receptor), the parathyroid hormone receptor (PTH1R; type B), and the calcium-sensing receptor (CaSR; type C) using fluorescence recovery after photobleaching, total internal reflection fluorescence, and image correlation spectroscopy. beta(2)AR bundles were observed only in cells that expressed NHERF-1, whereas the PTH1R was localized to bundles that parallel stress fibers independently of NHERF-1. The CaSR was never observed in bundles. NHERF-1 reduced the diffusion of the beta(2)AR and the PTH1R. The addition of ligand increased the diffusion coefficient and the mobile fraction of the PTH1R. Isoproterenol decreased the immobile fraction but did not affect the diffusion coefficient of the beta(2)AR. The diffusion of the CaSR was unaffected by NHERF-1 or the addition of calcium. NHERF-1 reduced the rate of ligand-induced internalization of the PTH1R. This phenomenon was accompanied by a reduction of the rate of arrestin binding to PTH1R in ligand-exposed cells. We conclude that some GPCRs, such as the beta(2)AR, are attached to the cytoskeleton primarily via the binding of NHERF-1. Others, such as the PTH1R, bind the cytoskeleton via several interacting proteins, one of which is NHERF-1. Finally, receptors such as the CaSR do not interact with the cytoskeleton in any significant manner. These interactions, or the lack thereof, govern the dynamics and trafficking of the receptor.  相似文献   

17.
Parathyroid hormone (PTH) significantly affects osteoblast function by altering gene expression. We have identified neuron-derived orphan receptor-1 (NOR-1) as a PTH-induced primary gene in osteoblastic cells. NOR-1, Nurr1, and Nur77 comprise the NGFI-B nuclear orphan receptor family and Nurr1 and Nur77 are PTH-induced primary osteoblastic genes. Ten nM PTH maximally induced NOR-1 mRNA at 2h in primary mouse osteoblasts and at 1h in mouse calvariae. Cycloheximide pretreatment did not inhibit PTH-induced NOR-1 mRNA. PTH activates cAMP-protein kinase A (PKA), protein kinase C (PKC), and calcium signaling. Forskolin (PKA activator) and PMA (PKC activator) mimicked PTH-induced NOR-1 mRNA. Ionomycin (calcium ionophore) and PTH(3-34), which do not activate PKA, failed to induce NOR-1 mRNA. PKA inhibition with H89 blocked PTH- and FSK-induced NOR-1 mRNA. PMA pretreatment to deplete PKC inhibited PMA-induced, but not PTH-induced, NOR-1 mRNA. We conclude that NOR-1 is a PTH-regulated primary osteoblastic gene that is induced mainly through cAMP-PKA signaling.  相似文献   

18.
Bone formation requires synthesis, secretion, and mineralization of matrix. Deficiencies in these processes produce bone defects. The absence of the PDZ domain protein Na+/H+ exchange regulatory factor 1 (NHERF1) in mice, or its mutation in humans, causes osteomalacia believed to reflect renal phosphate wasting. We show that NHERF1 is expressed by mineralizing osteoblasts and organizes Na+/H+ exchangers (NHEs) and the PTH receptor. NHERF1-null mice display reduced bone formation and wide mineralizing fronts despite elimination of phosphate wasting by dietary supplementation. Bone mass was normal, reflecting coordinated reduction of bone resorption and formation. NHERF1-null bone had decreased strength, consistent with compromised matrix quality. Mesenchymal stem cells from NHERF1-null mice showed limited osteoblast differentiation but enhanced adipocyte differentiation. PTH signaling and Na+/H+ exchange were dysregulated in these cells. Osteoclast differentiation from monocytes was unaffected. Thus, NHERF1 is required for normal osteoblast differentiation and matrix synthesis. In its absence, compensatory mechanisms maintain bone mass, but bone strength is reduced.  相似文献   

19.
Na+/H+ exchanger regulatory factor 1 (NHERF1) is a scaffold protein known to interact with a number of cancer-related proteins. nherf1 Mutations (K172N and D301V) were recently identified in breast cancer cells. To investigate the functional properties of NHERF1, wild-type and cancer-derived nherf1 mutations were stably expressed in SKMES-1 cells respectively. NHERF1-wt overexpression suppressed the cellular malignant phenotypes, including proliferation, migration, and invasion. nherf1 Mutations (K172N and D301V) caused complete or partial loss of NHERF1 functions by affecting the PTEN/NHERF1/PDGFRβ complex formation, inactivating NHERF1 inhibition of PDGF-induced AKT and ERK activation, and attenuating the tumor-suppressor effects of NHERF1-wt. These results further demonstrated the functional consequences of breast cancer-derived nherf1 mutations (K172N and D301V), and suggested the causal role of NHERF1 in tumor development and progression.  相似文献   

20.
Reactive oxygen species (ROS) impair the physiological functions of retinal pigment epithelial (RPE) cells, which is known as one major cause of age-related macular degeneration. Salvianolic acid A (Sal A) is the main effective aqueous extract of Salvia miltiorrhiza. The aim of this study was to test the potential role of Sal A against oxidative stress in cultured RPE cells and to investigate the underlying mechanistic signaling pathways. We observed that Sal A significantly inhibited hydrogen peroxide (H2O2)-induced primary and transformed RPE cell death and apoptosis. H2O2-stimulated mitogen-activated protein kinase activation, ROS production, and subsequent proapoptotic AMP-activated protein kinase activation were largely inhibited by Sal A. Further, Sal A stimulation resulted in a fast and dramatic activation of Akt/mammalian target of rapamycin complex 1 (mTORC1) signaling, followed by phosphorylation, accumulation, and nuclear translocation of the NF-E2-related factor 2 (Nrf2), along with increased expression of the antioxidant-response element-dependent gene heme oxygenase-1 (HO-1). Both Nrf2 and HO-1 were required for Sal A-mediated cytoprotective effect, as Nrf2/HO-1 inhibition abolished Sal A-induced beneficial effects against H2O2. Meanwhile, the PI3K/Akt/mTORC1 chemical inhibitors not only suppressed Sal A-induced Nrf2/HO-1 activation, but also eliminated its cytoprotective effect in RPE cells. These observations suggest that Sal A activates the Nrf2/HO-1 axis in RPE cells and protects against oxidative stress via activation of Akt/mTORC1 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号