首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
细胞核是真核细胞中最大的细胞器.高等动物细胞核主要由双层核膜、核孔复合体、核纤层、染色质和核仁等组成.在细胞有丝分裂期,细胞核呈现去装配和再装配等动态变化.在细胞分裂间期,核膜、核孔复合体和核纤层构成细胞核的外周结构,为遗传物质在染色质和核仁中的代谢提供了一个相对稳定的环境,同时调控细胞核内外的物质转运,在细胞增殖、分化、个体发育和细胞衰老等许多方面发挥着重要作用.本文主要对高等动物细胞核膜和核纤层结构、功能及动态变化调控机制等方面的研究进展进行简要综述.  相似文献   

2.
Immunofluorescent analysis has shown that autoimmune sera M-222 and M-260 are bound to interphase nuclei and mitotic chromosomes of the pig embryo kidney cell culture. The fluorescent stain is diffuse in nuclei and forms a thin fluorescent area around each nucleolus, whereas the nucleolar cores are unstained. The periphery of each mitotic chromosome is stained distinctly. After removal of histones and DNA by the cell treatment with 2 M NaCl and DNase I, the Hoechst 33258 staining of nuclei and chromosomes disappears completely, whereas the pattern of staining with antibodies is not changed as compared with normal cells. Electron microscopy revealed in interphase nuclei after such treatment only lamina, residual nucleoli, and the intranuclear matrix network, and antibodies are bound just to these elements. Molecular mass of proteins bound to these antibodies was determined by immunoblotting. Serum M-260 contained antibodies to a single 65 kDa polypeptide, whereas antibodies to two polypeptides of 47 and 65 kDa were found in M-222. After chromatin removal and revealing nuclear protein matrix, M-222 binds only to 65 kDa polypeptides. Thus, peripheral chromosomal material is involved in transfer of the nuclear matrix polypeptide to daughter nuclei during mitosis.  相似文献   

3.
Cell division in many metazoa is accompanied by the disassembly of the nuclear envelope and the assembly of the mitotic spindle. These dramatic structural rearrangements are reversed after mitosis, when the mitotic spindle is dismantled and the nuclear envelope reassembles. The targeting protein for XKlp2 (TPX2) plays important roles in mitotic spindle assembly. We report that TPX2 depletion from nuclear assembly extracts prepared from Xenopus laevis eggs results in the formation of nuclei that are only about one fifth the size of control nuclei. TPX2-depleted nuclei assemble nuclear envelopes, nuclear pore complexes, and a lamina, and they perform nuclear-specific functions, including DNA replication. We show that TPX2 interacts with lamina-associated polypeptide 2 (LAP2), a protein known to be required for nuclear assembly in interphase extracts and in vitro. LAP2 localization is disrupted in TPX2-depleted nuclei, suggesting that the interaction between TPX2 and LAP2 is required for postmitotic nuclear reformation.  相似文献   

4.
Chromatin associated with the nuclear envelope appears in the interphase nuclei as a layer of anchorosomes, granules 20-25 nm in diameter. The fraction of chromatin directly associated with the nuclear envelope is resistant to decondensation, shows a low level of DNA methylation, and contains specific acid-soluble proteins. However, mechanisms underlying the interaction of chromatin with the nuclear envelope are not fully understood. Specifically, it is not known whether anchorosomes are permanent structures or if they undergo reversible disassembly during mitosis, when contacts between chromatin and the nuclear envelope are destroyed. We obtained immune serum recognizing a 68 kDa protein from the nuclear envelopes fraction and studied the localization of this protein in interphase and mitotic cells. We show that this protein present in the NE/anchorosomal fraction does not remain bound with chromosomes during mitosis. It dissociates from chromosomes at the beginning of the prophase and then can be identified again at the periphery of the newly forming nuclei in the telophase.  相似文献   

5.
Breaking and making of the nuclear envelope   总被引:10,自引:0,他引:10  
During mitosis, a single nucleus gives rise to two nuclei that are identical to the parent nucleus. Mitosis consists of a continuous sequence of events that must be carried out once and only once. Two such important events are the disassembly of the nuclear envelope (NE) during the first stages of mitosis, and its accurate reassembly during the last stages of mitosis. NE breakdown (NEBD) is initiated when maturation-promoting factor (MPF) enters the nucleus and starts phosphorylating nuclear pore complexes (NPCs) and nuclear lamina proteins, followed by NPC and lamina breakdown. Nuclear reassembly starts when nuclear membranes assemble onto the chromatin. This article focuses on the different models of NEBD and reassembly with emphasis on recent data.  相似文献   

6.
The nuclear matrix contains a group of residual non-histone proteins which remain structurally organized after extensive extraction of isolated nuclei with a high salt buffer, nucleases and a non-ionic detergent. Electron microscopic examination shows that the nuclear matrix is composed of a pore-complex lamina, an intranuclear network and residual nucleoli. In CHO cells biochemical analyses performed by one-dimensional SDS-PAGE show three major nuclear matrix polypeptides with molecular weights between 60 and 70 kDa. Polyclonal antibodies produced against these polypeptides were used to determine their nuclear distribution. Using immunoblotting, these proteins were found in whole nuclei, nuclear matrix, and in the intranuclear network but not in the pore-complex lamina. In order to determine the relationship between these structural proteins and the organization of the nucleus, the proteins were localized in situ. Ultrastructural detection was carried out by immunogold staining of thin sections of Lowicryl K4M-embedded cells. In interphase nuclei all condensed chromatin clumps were labelled. The nucleolus and the interchromatin granules were never immunogold-stained. During mitosis, the label was found to be associated with the chromosomes. This study shows that unlike the lamins, these 60-70 kDa nuclear matrix proteins are associated with the condensed chromatin throughout the cell cycle.  相似文献   

7.
Antibodies have been obtained against specific fractions of the nuclear lamina from chick red blood cells. Immunofluorescent staining of acrylamide gels from nuclear lamina preparations revealed a spectrum of at least 8–10 proteins cross-reacting immunologically with each other. These proteins are not the result of proteolysis in the course of preparation. The antigens are localized in the nuclear periphery and do not extend into the chromatin. Interspecies cross-reactions enabled us to localize the antigens in the envelope of Xenopus oocyte nuclei. In this case any association with the chromatin is unlikely. During mitosis the antigens are released from the nuclear lamina and are recovered from the postmicrosomal supernatant. The molecular weights of the nuclear lamina proteins do not change during mitosis.  相似文献   

8.
《The Journal of cell biology》1986,103(6):2073-2081
We describe a cell-free system in which a postribosomal supernatant (s140) from metaphase Chinese hamster ovary (CHO) cells induces prophase-like changes in isolated CHO cell nuclei, including chromatin condensation, and nuclear envelope and lamina disassembly. These events are strongly promoted by gamma-S-ATP and an ATP-regenerating system, and do not take place with an s140 derived from G2-phase cells. The metaphase cell s140 also induces disassembly of an isolated nuclear lamina fraction that is depleted of membranes, chromatin, and nuclear pore complexes. Disassembly of the isolated lamina is accompanied by phosphorylation of the major lamina proteins (lamins A, B, and C) to levels characteristic of metaphase cells. Kinetic analysis of lamina depolymerization indicates that cooperativity may be involved in this process. The biochemical properties of in vitro lamina disassembly suggest that the activity that depolymerizes the lamina during mitosis is soluble in metaphase cells, and support the notion that this activity is a lamin protein kinase.  相似文献   

9.
We have analyzed the fate of several integral membrane proteins of the nuclear envelope during mitosis in cultured mammalian cells to determine whether nuclear membrane proteins are present in a vesicle population distinct from bulk ER membranes after mitotic nuclear envelope disassembly or are dispersed throughout the ER. Using immunofluorescence staining and confocal microscopy, we compared the localization of two inner nuclear membrane proteins (laminaassociated polypeptides 1 and 2 [LAP1 and LAP2]) and a nuclear pore membrane protein (gp210) to the distribution of bulk ER membranes, which was determined with lipid dyes (DiOC6 and R6) and polyclonal antibodies. We found that at the resolution of this technique, the three nuclear envelope markers become completely dispersed throughout ER membranes during mitosis. In agreement with these results, we detected LAP1 in most membranes containing ER markers by immunogold electron microscopy of metaphase cells. Together, these findings indicate that nuclear membranes lose their identity as a subcompartment of the ER during mitosis. We found that nuclear lamins begin to reassemble around chromosomes at the end of mitosis at the same time as LAP1 and LAP2 and propose that reassembly of the nuclear envelope at the end of mitosis involves sorting of integral membrane proteins to chromosome surfaces by binding interactions with lamins and chromatin.  相似文献   

10.
Xenopus egg extract provides an extremely powerful approach in the study of cell cycle regulated aspects of nuclear form and function. Each egg contains enough membrane and protein components to support multiple rounds of cell division. Remarkably, incubation of egg extract with DNA in the presence of an energy regeneration system is sufficient to induce formation of a nuclear envelope around DNA. In addition, these in vitro nuclei contain functional nuclear pore complexes, which form de novo and are capable of supporting nucleocytoplasmic transport. Mitotic entry can be induced by the addition of recombinant cyclin to an interphase extract. This initiates signaling that leads to disassembly of the nuclei. Thus, this cell-free system can be used to decipher events involved in mitotic remodeling of the nuclear envelope such as changes in nuclear pore permeability, dispersal of membrane, and disassembly of the lamina. Both general mechanisms and individual players required for orchestrating these events can be identified via biochemical manipulation of the egg extract. Here, we describe a procedure for the assembly and disassembly of in vitro nuclei, including the production of Xenopus egg extract and sperm chromatin DNA.  相似文献   

11.
Three isoforms of a single nuclear lamin have been identified in Drosophila. Two, lamins Dm1 and Dm2, are present during interphase and are apparently in equilibrium with each other in vivo. The third, lamin Dmmit, is found in cells that have undergone nuclear envelope breakdown, either during meiosis or mitosis. All three isoforms were purified under nondenaturing conditions using a novel technique of immunoaffinity chromatography and their in vitro activities were examined. Interphase lamins Dm1 and Dm2 can assemble into filaments at physiologic ionic strength; assembly is reversible upon addition of concentrated NaCl. Negative staining of filaments formed in vitro shows long, unbranched bundles approximately 20 nm in diameter. Addition of specific antilamin antibodies blocks in vitro assembly completely. In contrast with lamins Dm1 and Dm2, lamin Dmmit remains soluble at physiologic ionic strength. These observations are consistent with the notion that lamina disassembly in vivo is due, at least in part, to changes in properties of the lamins themselves.  相似文献   

12.
Antibodies have been prepared against the three major polypeptides of the nuclear pore complex-lamina fraction from rat liver nuclei. The three antisera prepared in chickens give similar results in indirect immunofluorescence microscopy. In rat embryo fibroblasts we observe bright fluorescence at the level of the nuclear envelope, with no fluorescence of the nuclear interior and little or no fluorescence of the cytoplasm. The nuclear envelope regions of rat hepatoma cells, mouse A9 cells, HeLa cells and rat liver nuclei also fluoresce brightly. HeLa nucleoids, which are depleted of nuclear envelope components, still exhibit specific fluorescence when reacted with these antibodies. Distribution of the antigens changes during mitosis. Fluorescence in the cytoplasm is observed following the breakdown of the nuclear envelope at prometaphase. The antigens appear to progressively accumulate at the periphery of the chromosomes until telophase. In late telophase fluorescence occurs predominantly at the periphery of the chromosomes where the new nuclear envelope is formed.  相似文献   

13.
We have used high resolution scanning electron microscopy (SEM) to study the nuclear envelope components of isolated mouse liver nuclei. The surfaces of intact nuclei are covered by closely packed ribosomes which are distinguishable by SEM from nuclear pore complexes. After removal of nuclear membranes with the nonionic detergent Triton X-100, the pore complexes remain attached to an underlying, peripheral nuclear lamina, as described by others. The surface of this dense lamina is composed of particulate granules, 75-150 A in diameter, which are contiguous over the entire periphery. We did not observe the pore-to-pore fibril network suggested by other investigators, but such a structure might be the framework upon which the dense lamina is formed. Morphometric analysis of pores and pore complexes shows their size, structure, and density to be similar to that of other mammalian cells. In addition, several types of pore complex-associated structures, not previously reported by other electron microscope (EM) techniques, are observed by SEM. Our studies suggest that the major role of the dense lamina is associated with the distribution, stability, and perhaps, biogenesis of nuclear pore complexes. Treatment of isolated nuclei with a combination of Triton X-100 and sodium deoxycholate removes membranes, dense lamina, and nuclear pore complexes. The resulting "chromatin nuclei" retain their integrity despite the absence of any limiting peripheral structures.  相似文献   

14.
Xenopus egg extract provides an extremely powerful approach in the study of cell cycle regulated aspects of nuclear form and function. Each egg contains enough membrane and protein components to support multiple rounds of cell division. Remarkably, incubation of egg extract with DNA in the presence of an energy regeneration system is sufficient to induce formation of a nuclear envelope around DNA. In addition, these in vitro nuclei contain functional nuclear pore complexes, which form de novo and are capable of supporting nucleocytoplasmic transport. Mitotic entry can be induced by the addition of recombinant cyclin to an interphase extract. This initiates signaling that leads to disassembly of the nuclei. Thus, this cell-free system can be used to decipher events involved in mitotic remodeling of the nuclear envelope such as changes in nuclear pore permeability, dispersal of membrane, and disassembly of the lamina. Both general mechanisms and individual players required for orchestrating these events can be identified via biochemical manipulation of the egg extract. Here, we describe a procedure for the assembly and disassembly of in vitro nuclei, including the production of Xenopus egg extract and sperm chromatin DNA.  相似文献   

15.
The mammalian NE (nuclear envelope), which separates the nucleus from the cytoplasm, is a complex structure composed of nuclear pore complexes, the outer and inner nuclear membranes, the perinuclear space and the nuclear lamina (A- and B-type lamins). The NE is completely disassembled and reassembled at each cell division. In the present paper, we review recent advances in the understanding of the mechanisms implicated in the transport of inner nuclear membrane and nuclear lamina proteins from the endoplasmic reticulum to the nucleus in interphase cells and mitosis, with special attention to A-type lamins.  相似文献   

16.
Identification of a major polypeptide of the nuclear pore complex   总被引:63,自引:44,他引:19       下载免费PDF全文
The nuclear pore complex is a prominent structural component of the nuclear envelope that appears to regulate nucleoplasmic molecular movement. Up to now, none of its polypeptides have been defined. To identify possible pore complex proteins, we fractionated rat liver nuclear envelopes and microsomal membranes with strong protein perturbants into peripheral and intrinsic membrane proteins, and compared these fractions on SDS gels. From this analysis, we identified a prominent 190-kilodalton intrinsic membrane polypeptide that occurs specifically in nuclear envelopes. Lectin binding studies indicate that this polypeptide (gp 190) is the major nuclear envelope glycoprotein. Upon treatment of nuclear envelopes with Triton X-100, gp 190 remains associated with a protein substructure of the nuclear envelope consisting of pore complexes and nuclear lamina. We prepared monospecific antibodies to gp 190 for immunocytochemical localization. Immunofluorescence staining of tissue culture cells suggests that gp 190 occurs exclusively in the nucleus during interphase. This polypeptide becomes dispersed throughout the cell in mitotic prophase when the nuclear envelope is disassembled, and subsequently returns to the nuclear surfaces during telophase when the nuclear envelope is reconstructed. Immunoferritin labeling of Triton-treated rat liver nuclei demonstrates that gp 190 occurs exclusively in the nuclear pore complex, in the regions of the cytoplasmic (and possibly nucleoplasmic) pore complex annuli. A polypeptide that cross-reacts with gp 190 is present in diverse vertebrate species, as shown by antibody labeling of nitrocellulose SDS gel transfers. On the basis of its biochemical characteristics, we suggest that gp 190 may be involved in anchoring the pore complex to nuclear envelope membranes.  相似文献   

17.
免疫荧光染色结果说明植物细胞核内含有与抗动物NuMA多抗呈阳性交叉反应的多肽。选择性抽提并结合免疫荧光染色结果说明这种多肽位于核基质纤维蛋白网络上。免疫印迹反应显示胡萝卜(DaucuscarotaL.)悬浮培养细胞核基质蛋白与抗动物NuMA蛋白多抗的阳性反应条带为74kD和76kD。有丝分裂各期免疫荧光染色的结果表明植物细胞中的NuMA类似蛋白在有丝分裂过程中呈现有规律的变化。结合选择性抽提的有丝分裂各期的免疫荧光染色的结果表明核基质在此过程中也发生明显变化。应用选择性抽提并结合DGD包埋去包埋电镜技术对植物细胞间期及有丝分裂期核基质的形态结构进行了观察。结果显示胡萝卜悬浮培养细胞间期核内存在一个非染色质性的纤维蛋白网络体系,而在正处于分裂的细胞中则未观察到。以上结果说明NuMA类似蛋白是核基质的组分之一并与有丝分裂密切相关。  相似文献   

18.
Nuclear pore complexes (NPCs) are large macromolecular structures embedded in the nuclear envelope (NE), where they facilitate exchange of molecules between the cytoplasm and the nucleoplasm. In most cell types, NPCs are evenly distributed around the NE. However, the mechanisms dictating NPC distribution are largely unknown. Here, we used the model organism Caenorhabditis elegans to identify genes that affect NPC distribution during early embryonic divisions. We found that down-regulation of the Sm proteins, which are core components of the spliceosome, but not down-regulation of other splicing factors, led to clustering of NPCs. Down-regulation of Sm proteins also led to incomplete disassembly of NPCs during mitosis, but had no effect on lamina disassembly, suggesting that the defect in NPC disassembly was not due to a general defect in nuclear envelope breakdown. We further found that these mitotic NPC remnants persisted on an ER membrane that juxtaposes the mitotic spindle. At the end of mitosis, the remnant NPCs moved toward the chromatin and the reforming NE, where they ultimately clustered by forming membrane stacks perforated by NPCs. Our results suggest a novel, splicing-independent, role for Sm proteins in NPC disassembly, and point to a possible link between NPC disassembly in mitosis and NPC distribution in the subsequent interphase.  相似文献   

19.
Distribution on both nuclei and metaphase chromosomes of Ku-proteins, recognized by autoantibodies from a patient with systemic lupus erythematosus, has been studied using a specific monoclonal antibody (mAbH6) that recognizes p70, one Ku-protein. Observation with either a conventional fluorescent microscope or a confocal laser scanning microscope revealed mAbH6-stained p70 antigen localized on both nuclear periphery and nucleoli of human interphase cells. The specific staining of nucleoli with mAbH6 has been confirmed using isolated nucleoli from rat liver in which the staining was seen as fine granules surrounding nucleolar DNA. During mitosis p70 antigen moved away from association with the nuclear envelope region to localization on the periphery of condensed chromosomes with no apparent staining of chromosome interior. The p70 antigen was copurified with DNA fragments by immunoaffinity column chromatography using mAbH6. The mAbH6 staining of both nuclear periphery and nucleoli was lost upon digestion with DNase I at low concentrations. These results suggest that p70 antigen is connected with these nuclear structures through DNA.  相似文献   

20.
We have isolated and partially characterized a major intranuclear matrix polypeptide from rat liver. This polypeptide, which is reversibly stabilized into the intranuclear matrix under conditions which promote intermolecular disulfide bond formation, has a Mr of 62,000 and pI of 6.8-7.2 as determined by two-dimensional IEF/SDS-PAGE. A chicken polyclonal antiserum was raised against the polypeptide purified from two-dimensional polyacrylamide gels. Affinity-purified anti-62-kD IgG was prepared and used to immunolocalize this polypeptide in rat liver tissue hepatocytes. In interphase hepatocytes the 62-kD antigen is localized in small, discrete patches within the nucleus consistent with the distribution of chromatin. The staining is most prominent at the nuclear periphery and somewhat less dense in the nuclear interior. Nucleoli and cytoplasm are devoid of staining. During mitosis the 62-kD antigen localizes to the condensed chromosomes with no apparent staining of cytoplasmic areas. The chromosomal staining during mitosis is uniform with no suggestion of the patching seen in interphase nuclei. Fractionation and immunoblotting studies using rat hepatoma tissue culture cells blocked in metaphase with colcemid confirm the chromosomal localization of this 62-kD intranuclear protein during mitosis. The 62-kD polypeptide fractionates completely with metaphase chromosome scaffolds generated by sequential treatment of isolated chromosomes with DNAse I and 1.6 M NaCl, suggesting that this major 62-kD intranuclear protein may be involved in maintaining metaphase chromosomal architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号